



Abstract— Embedded systems are more and more used to

control critical systems. In this paper, we propose a diagnostic

approach to increase the security of control of critical

embedded system based on digital components. This is a part of

a study to design of an electronic card to control a railway

vehicle braking system. Because of the critical aspect, it is

necessary to diagnose the failures of the control card to process

them online for safety purposes. In this paper, we propose to

use diagnoser technique based on timed automata. But since

this technique suffers of combinatorial explosion and because

digital devices are characterized by a lot of input/output, our

approach proposes to make an abstraction of the system

behavior to reduce the size of the models and to implement a

kind of distributed diagnosers.

I. INTRODUCTION

Nowadays, embedded systems are more and more used to

control complex systems. In this study, we are interested in

critical embedded systems that can be used in the control of

transport systems like railway systems or autonomous

intelligent vehicles. These systems are critical since in case

of misbehavior, it is necessary to react very quickly in order

to keep them in a safety working mode.

Generally, the implementation of embedded systems is

based on COTS (commercial off-the-shelf) such as

microcontrollers or FPGA. These components can have

failures that can bring the controlled system to an unsafe

state. For that reason, one tries to develop redundant control

architecture that enables to implement fault-tolerant control.

This requires the necessity to detect and isolate quickly the

failures of the control system. In this paper, we will focus on

the example of the control of a railway vehicle braking

system given in [1].

Electronic devices with Boolean inputs/outputs are

discreet event systems (DES hereafter). This study aims to

propose an efficient method based on model checking

technique and the notion of diagnoser to identify online the

failures of such systems. But the large number of input-

output leads to a combinatorial explosion which renders a

priori unenforceable the diagnoser approach. In this paper,

Manuscript was received on March 11, 2011.
R. Saddem is with Université Lille Nord de France/Ecole Centrale de

Lille, Laboratoire d'Automatique, Génie Informatique et Signal, Lille,

France and with Université de la Manouba, Ecole Nationale des Sciences de
l‟Informatique, Stratégies d'Optimisation des Informations et de la

connaissancE, Manouba, Tunisia (ramla.saddem@ec-lille.fr).

A. Toguyeni is with Université Lille Nord de France/Ecole Centrale de
Lille, Laboratoire d'Automatique, Génie Informatique et Signal, Lille,

France (armand.toguyeni@ec-lille.fr).

M. Tagina is with Université de la Manouba, Ecole Nationale des
Sciences de l‟Informatique, Stratégies d'Optimisation des Informations et de

la connaissancE, Manouba, Tunisia, (moncef.tagina@ensi.rnu.tn).

we propose an approach based on temporal abstraction of

system behavior and a kind of distributed implementation to

solve this combinatorial problem.

 The paper is structured as follows. In section 2, we will

first recall the main techniques used for the diagnosis of

DES. In section 3, we will present the modeling tool

adopted: the formalism of timed automata that will be used

in the rest of the paper. In section 4, we will propose a

generic model of the complete behavior of an electronic

control card. This model is one of the main contributions of

this paper since it will give the capacity to build the

diagnoser to survey this card. In section 5, we will propose a

method to build and implement the diagnoser of the fault-

tolerant control architecture.

II. DIAGNOSIS OF DES: A STATE OF THE ART

In DES, there are observable events, coming from

information sent by the sensors or/and command orders, and

other unobservable events such as failures. The objective of

the diagnostic procedure is to detect and/or isolate (when

possible) those failures from the occurrences of observable

events. In DES, there are two basic approaches for

diagnosis; the diagnoser based approach [2] and the

chronicles based approach [3].

A. Diagnoser

A diagnoser is an observer automaton in charge of

identifying faults in a system. An observer automaton

models all observable behaviors of the system. Strictly

speaking, an observer is an automaton whose alphabet can

be partitioned into two types of events: the set of observable

events  and that of unobservable events .

The objective of an observer is to identify the current state

of the system given the observable events that it generates.

There are many studies to observe the process [2]. Most of

them are based on finite state automata or timed automata

[4]. Traditionally there are two major classes of observers;

observers for the states recognition and observers for events

recognition or sequences of events recognition.

The observers for the recognition of states also imply two

categories of approaches. The first category is inspired by

Lin and Wonham‟s works about controllers‟ synthesis [5]. It

requires the identification of the current state after each

reception of the event produced by the process [6] [7]. The

second category deals with the identification of the state

reached after a finite sequence of events [8].

Some other works are also interested in the recognition of

events sequence leading from one state of the system to

Diagnosis of critical embedded systems: application to the control

card of a railway vehicle braking systems

R. Saddem, A. Toguyeni, and M. Tagina

2011 IEEE International Conference on
 Automation Science and Engineering
Trieste, Italy - August 24-27, 2011

ThB1.1

U.S. Government work not protected by U.S. copyright 163

another. For example, works relating to the concept of

invertibility [9]. A language is called invertible if at any

time, using the knowledge from observed events‟ sequences,

one can reconstruct the entire sequence (including

unobservable events) over a bounded number of past events

[9]. This concept of invertibility can be very useful for

failure isolation, but must not be mistaken for the concept of

diagnosability proposed by Sampath [10]. Diagnosability is

more dedicated to the problem of failure detection.

The major limitation of diagnoser approaches 1ies in the

management of the combinatorial explosion related to the

formalism of automata. Indeed, the classical approach is to

decompose the system into components. Then, an automaton

model is associated with each component. The system

diagnoser in a centralized approach is then obtained by the

synchronous product of automata of its components. This

synchronous product leads to combinatorial explosion when

the system is complex. To cope with this drawback, some

studies are based on Petri Nets (PN) [11]. In section 4, we

will propose a modeling based on timed automata and a

distributed implementation to solve this problem.

B. Chronicles

Chronicles model an evolution of an observed system.

They are adapted to the interpretation over time of

occurrence of events produced by a system. In fact, a

chronicle consists of a set of partially ordered observable

events. These events are usually linked together by temporal

constraints on their occurrences. In practice, a chronicle is a

description of a temporal pattern defining a partial order on

events described by their type and date of occurrence. The

relations between events can be logical (conjunction) or

temporal (sequence, missing , etc).

Early works on the chronicles have been proposed by

McDermott [12]. Other studies have been conducted by A.

Toguyéni at LAGIS [13], Malik Ghallab and Christophe

Dousson at LAAS [14] [15]…

Thus each abnormal situation can be described by one or

more chronicles. In that case, the events can be symptoms or

alarms constrained by their date of occurrence. Diagnosis

based on chronicles allows to interpret online the occurred

events and then instantiate some chronicles patterns. A

chronicle is recognized when all its events have occurred

with respect to their constraints. This determines whether the

system works normally or not.

Generally, a chronicle pattern can be described by “(1)”:

(In, A, nct)* (In, C, nct) *(A,B, ct1) * (A,D, ct2) * (C, D,

ct3)*(D, not E, ct4) -> G (1)

„A‟, „B‟, „C‟,‟ D‟, „E‟ are events; „In‟ is the always-

occurring event used as the reference of events that are not

constrained ; „G‟ is a failure or an unobservable event that

can be used in other chronicle; „cti‟ is a time constraint that

can model a date, a delay or a duration; „nct‟ means no time

constraint.

Let (A, B, ct1) be a triplet with „A‟ as the reference event

and „B‟ the constrained event. (In, A, nct) means that „A‟ is

an unconstrained event. (D, not E, ct4) means that „E‟ must

not occur after „D‟ with respect to the temporal constraint

„ct4‟. The meaning of (1) is as follows. If one has the

occurrences of event 'A' (respectively the occurrence of

event „C) and after that the occurrences of event „B‟ meeting

the constraint 'ct1' and event „D‟ with respect to constraint

„ct2‟, and if one has the occurrences of event 'D' from 'C' in

compliance with the 'ct3' constraint, and if one does not

have event 'E' from 'D' with respect to the 'ct4' constraint,

then one concludes to 'G'. For recognition, the chronicles can

be represented as temporal graphs (Fig. 1) [14][15].

Fig. 1. Temporal Graph

The main advantage of this approach is the relative

simplicity to write chronicles from Failure Mode, Effects,

and Criticality Analysis (FMECA) completed by an analysis

of the temporal behavior of the process. A major limitation

in this context is first to be able to guaranty the completeness

of the knowledge encoded as abnormal. A second level of

difficulty is in interpreting some sequences of events at the

input of the diagnostic system under the hypothesis of

multiple failures [16]. The problem in this context is the

interweaving of the events produced by different failures

which can lead to diagnose a superset of failures. In fact,

chronicles are generally regarded as surface models

knowledge as opposed to deep models that are based on

physical properties. Deep models enable to explicit systems‟

behaviors. They are difficult to obtain. But, the advantage of

chronicles is that they allow direct interpretation of the

observed events.

III. THE MODELING TOOL ADOPTED: TIMED AUTOMATA

In this work, our objective is to monitor digital systems

by the diagnoser approach. To combat the risk of

combinatorial explosion, it is necessary to make an

abstraction of the behavior of the monitored system to

simplify it. Our modeling approach is based on a discrete

and temporal abstraction of its behavior that consist in

specifying the delay where is expected its report after an

order send by the control part. This led us to choose the

formalism of timed automata. Not only it allows explicit

modeling of temporal behaviors, but it also allows for more

compact models than finite state automata. Timed automata

A

B

D

C

Not E
ct4 = [1, 5]

ct2 = [10,15]

ct3 = [2,5]

ct1 = [3,4]

164

(TA hereafter) are also useful because it exists software tools

(like UPPAAL, KRONOS, etc.) to verify the models.

Following its definition in [5], a timed automaton A is a

tuple (L, ℓ0, X, , E, Inv) with: L is a finite set of states; ℓ0 is

the initial state; X is a finite set of clocks to positive real

values;  is a finite set of actions (that we also called events

hereafter); E  L × C(X) ×  × 2
X

×L is a finite set of

transitions; Inv C(X)
L
 associates a constraint to each state.

The synchronous product of timed automata is defined as

standard: the automata synchronize on common actions

except for the unobservable action.

Let Ai = (Li,
i

0 , Xi, i ,Ei, Invi), i{1,2}, two timed

automata as X1  X2 =. The synchronized product of A1

and A2 is the A1×A2 = (L, 0 , X, , E, Inv) automaton

defined by : L = L1×L2 ; 0 = (
1

0 ,
2

0) ;  = 1  2 ;

X = X1  X2 ; E  L × C(X) ×  × 2
X
 × L and

((1 ,
2), g1,2, σ, R, (

'

1 ,
'

2)) E if :

- Whether σ  1  2 and i) (k , gk, σ, rk,
'

k)  Ek

for k=1 and k=2; ii) g1,2 = g1  g2 ; iii) R = r1  r2;

- Whether for k = 1 or k = 2, σ  (k \ k3) and

i) (k , gk, σ, rk,
'

k) Ek; ii) g1,2 = gk and iii) R = rk;

- Inv (1 , 2) = Inv (1)Inv (2) .

IV. THE BEHAVIORAL MODEL OF A CONTROLLER CARD

A. Description of the case study

In this study we consider the example of a redundant

architecture based on three controller cards and a 2/3 voter

[1]. Fig. 2 summarizes the main part of this architecture.

„DCi‟ (with i in {1,2,3}) is a controller card based on a

digital COTS (microcontroller, FPGA, etc).

Fig. 2. The three daughter cards system

The overall controller system is composed of three

identical „DCi‟ cards. It is characterized by inputs and

outputs. Each system boolean output, noted „Ok‟ here, is a

function of its inputs. This function depends on the code that

one implements in each „DCi‟ card. As an example, if an

output depends on 3 boolean inputs, one can write

Ok=f(Ix,Iy,Iz). In fig.2, functional block „R‟ is a distributer

of an input signal to each „DCi‟ card. Considering the

connector between „R‟ and „DCi‟, we assume that each

daughter card receives an internal signal called „IRik‟ at its

inputs. For this study, we assume that this internal signal is

not observable. The „Oik‟ output of each „DCi‟ daughter

card is processed by the 2/3 voter. Output „Ok‟ is equal to 1

if at least two „Oik‟ are equal to 1.

B. The behavioral model

To build diagnoser one requires a behavioral model of

the system. Such type of model can be based on the control

code implemented in the „DCi‟ card. But such solution

presents two drawbacks. First the model and then the

diagnosers would not be independent with regard this code.

The second drawback would be the high size of the model

caused by the complexity of the control. This would induce a

combinatorial explosion.

To avoid these drawbacks we must make several

abstractions to construct this behavioral model. First, we

decouple each of the outputs of the system and we study it

separately. After, for each output, the first abstraction

consists in avoiding considering directly each inputs of the

overall card. In the behavioral model related to an output

„Ok‟, one considers a reference signal that is noted „IRk‟.

To understand this abstraction, let us consider the following

example. For Ok=f(Ix,Iy,Iz), let us assume that „Ok‟ takes

the value 1 after Ix and Iy rising edge move to 1, and Iz

falling edge move to 0 (Ix, Iy and Iz are boolean inputs). We

are not interested in the order of these events. Once a

sequence of these events is obtained, the reference signal,

„IRk‟ is issued (fig. 2). This initial behavior is modeled by a

Mealy automaton in fig. 3. In Mealy automaton, the

interpretation of a transition ei/eo from state x to state y is as

follows : when the system is in state x, if the automaton

receives input event ei, it will make a transition to state y

and in that process will emit the output event eo.

Fig. 3. Reference input signal‟s generation

To avoid the combinatorial explosion, the second

abstraction consists in reducing the normal functioning of a

„DCi‟ card to a temporal specification between the reference

signal „IRk‟ and the output „Oik‟. Let us assume that this

output is given between 2 and 9 time units (t.u. hereafter)

after the occurrence of the reference event. Fig. 4 gives the

DC1

DC2

R
IRk

2/3
Ok

IR2k

IR1k O1k

O2k

DC3
IR3k O3k

Overall Controller System

wait-0

wait-1
wait-3

wait-4
wait-5 wait-6

IRK

Ix = 1 / wait

Iy = 1 / wait

Iz = 0 / wait

Iz = 0 / wait Iy = 1 / wait

wait-2

Ix = 1 / wait

Iz = 0 /

IRk

165

temporal specification (Fig. 4. a) and the corresponding

timed automaton that can be built (Fig. 4. b).

Fig.4. Abstraction of the normal behavioral model of „DCi‟

To construct the diagnoser to survey this system, one

must complete this model taking into account its failures.

We will call „fi‟ the failure of „DCi‟. Fig. 5 represents the

behavioral model of „DCi‟ with „fi‟ which is an

unobservable event that can occur before or after „IRk‟. If it

occurs before „IRk‟, the model reaches state 3. If it occurs

after „IRk‟ the system goes from state 1 to state 4. In all

cases, it will reach state 4. After 9 t.u., if „Oik‟ does not

occur, we conclude that DCi fails. The guard of the

transition between states 4 and 5 models the timeout. „ri‟ is

an event that models the repair of the card. It is an

observable event that brings back the „DCi‟ to its initial

state. In the diagnoser technique, one cannot process

transition without event as transition from state 4 to state 5

(Fig. 5). To solve this problem, let us take more

consideration about how the whole system works.

Fig.5. First behavioral model of „DCi‟

The 2/3 voter gives us information that makes the

behavioral model of each card better. In fact, in case of CDi

failure, after the occurrence of „IRk‟, all „Ojk‟ (j≠i) occur

and the voter can produce „Ok‟ between 10 and 11 t.u. This

information is then added to our model. The model

represented in Fig. 6. b. is then obtained. The transition

between states 4 and 5 is fired between 10 t.u. and 11 t.u as

soon as „Ok‟ occurs. In section VI.C we will discuss the

validity of this model.

One performs a synchronous product to construct the

behavioral model of the general controller system. Tools like

KRONOS allow obtaining timed automaton synchronous

products. The global model contains 54 states and 124

transitions. It is therefore not represented here. For

simplicity purposes, let us consider here a system composed

of only two „DCi‟ daughter cards with the ad hoc functional

block to replace the voter. The behavioral model obtained is

shown in Fig. 7.

Fig.6. Second behavioral model of „DCi‟

V. CONSTRUCTION OF THE DIAGNOSTIC OF THE FAULT-

TOLERANT CONTROL SYSTEM

The objective of this section is to propose a method to

construct the diagnostic task of the fault-tolerant control

system (the controller card). In that case, two problems must

be addressed:

Problem 1 (Modeling problem): Which model must be

used to construct the whole system diagnoser? The local

model of each „DCi‟ daughter card or the general model of

the fault-tolerant system?

Fig.7. Behavioral model of the two daughter cards system

Problem 2 (Implementation problem): Can we have the

same diagnostic with several local diagnosers that evolve in

parallel or a single general one (Centralized approach).

The last problem has been already addressed in the

literature. It is close to the problem of centralized diagnose

approach vs decentralized approach without or with

coordinator vs distributed approach with communication

among local diagnosers. These different approaches depend

on the nature of the behavioral model of the considered

system (local or general model) and the nature of the

observations (local or general). Decentralized approaches are

based on a general model of the system and a local or partial

observation of the system observable events. This means that

0

IRk ; xi:=0

1

x12 ; Oik

[xi  9]

IRk Oik

0 2 9

t

b)

a)

0
IRk ; xi := 0

1

xi  2 ;

Oik

[xi  9]

3

4

5

fi

IRk ;

xi := 0

fi

[xi  11]

2

xi  10 ;

Ok

xi  10 ;

Ok

[xi  11]

Ojk
Ojk

ri

11

IRk Ok

0 10
t

a)

b)

Evt Description Observable?

IRk
Reference

input of OK
Yes

Ok
Voted output

number k
Yes

Oik Output of Dci Yes

Ojk Output of DCj Yes

fi Failure of DCi No

ri
Reparation of

DCi
Yes

0

3

2

1

dF1

dF2

I1;

x1:= 0

x2:= 0

4

5

I1;

x1 := 0

x2 := 0

dF2

[x1,2  9]

dF1

6
dF2

7

8

O21;

X2  2

O
11 ; x1 

2

dF1

I1 ; x
1:= 0 ; x

2 := 0

[x1,2  9]

9

dF2

10
O21; x22

I1 ; x1:= 0; x2 := 0

[x1,2  9]

dF1

11
O11 ; x1  2

dF1

12

O11; x1  2[x1,2  9]

[x2  9]

O21; x
2 

2

[x1,2  11]

13

14

15

16

17

O1; x1,2  10;

[x1,2  11]

O1; x1,2  10

x1,2  11

O1; 10  x1,2  11

[x1  11;

x2  11]

O1 ; 10  x1,2  11

r2

r1
r1

dF2

dF1

r1

r2

r2

[x1,2  11]

Normal

F1

F2

F1&F2

0

3

2

1

dF1

dF2

I1;

x1:= 0

x2:= 0

4

5

I1;

x1 := 0

x2 := 0

dF2

[x1,2  9]

dF1

6
dF2

7

8

O21;

X2  2

O
11 ; x1 

2

dF1

I1 ; x
1:= 0 ; x

2 := 0

[x1,2  9]

9

dF2

10
O21; x22

I1 ; x1:= 0; x2 := 0

[x1,2  9]

dF1

11
O11 ; x1  2

dF1

12

O11; x1  2[x1,2  9]

[x2  9]

O21; x
2 

2

[x1,2  11]

13

14

15

16

17

O1; x1,2  10;

[x1,2  11]

O1; x1,2  10

x1,2  11

O1; 10  x1,2  11

[x1  11;

x2  11]

O1 ; 10  x1,2  11

r2

r1
r1

dF2

dF1

r1

r2

r2

[x1,2  11]

Normal

F1

F2

F1&F2

166

the diagnoser is local since it is constructed from a

projection of the general model in the space defined by the

set of local observations. Distributed approaches are based

on local models and local observations. Thus, they require

communications among the local diagnosers to be able to

obtain a coherent understanding of the global state of the

system.

In this study, the way each „DCi‟ daughter card is built

implies that each sub-system uses a general observation.

Consequently, is it possible to construct a general diagnoser

from local diagnoser of each „DCi‟ daughter card? Is it

possible to implement each local diagnoser independently of

the other?

A. Synchronous product of sub-system diagnosers

The idea here is to build a diagnoser resulting from the

synchronous product of the diagnoser of each daughter card

of the system. For DES modeled by finite state automaton,

one uses the determination technique to build the diagnoser.

But, timed automata are not always determinable [17] and

the test to prove if one is determinable is undecidable [18].

So we built the behavioral model of daughter card „DCi‟ to

be able to apply determination technique. Application of this

technique to the model of fig. 6 gives us the diagnoser of

fig. 8. The initial state „a‟ is uncertain because it is a meta-

state that groups state 0 and state 3 of the behavioral model

(noted <0,3> in fig. 8). Indeed, because fault „fi‟ is an

unobservable event, the „DCi‟ can go from state 0 to state 3

without any observable event.

Fig.8. Diagnoser of „DCi‟ with repect to output „Ok‟

The same reasoning enables us to build state „b‟ (it groups

together the basic state 1 and state 4). The occurrence of the

„IRk‟ observable event causes the transition from state „a‟ to

state „b‟. If „Oik‟ occurs before 9 t.u. the diagnoser reaches

state „c‟ (equivalent to state 2) which is a normal state. On

the opposite, the occurrence of event „Ok‟ before „Oik‟

implies a transition to state „d‟ (equivalent to state 5). It is a

faulty state and the diagnoser identified in this state the fault

of „DCi‟.

Figure 9 shows the synchronous product of the diagnoser

of „DC1” with the diagnoser of „DC2‟. State 5 also noted

<a,d> corresponds to the localization of a fault of „DC2‟.

State 6 also noted <d,a> is a localization of a fault of „DC1‟.

Consequently, the synchronous product gives a diagnoser of

the system composed of „DC1‟ and „DC2‟.

B. General diagnoser from the system behavioral model

In this section, we want to build the diagnoser of the

general system from its behavioral model given in fig. 7.

One applies again the determination technique. For „DC1‟

and „DC2‟ cards, the result is exactly the same as the

diagnoser of' fig.9. For example, the initial state is a meta-

state that groups together states 0, 1, 3, and 5 of the model

given by fig. 7. It is uncertain because some of these states

are faulty. The rest of the diagnoser is built in the same way.

Fig.9. The synchronous product of the diagnosers of two daughter cards

C. Discussion and proposals

Sections V.A and V.b show us that for our example the

synchronous product of the diagnosers of „DC1‟ and „DC2‟

gives exactly the diagnoser of the fault-tolerant control

system. As underlined in the introduction of this part, this

case is different from classical decentralized or distributed

approaches. Indeed each local diagnoser and the general

diagnoser used the same observation set. Another difference

with classical techniques is the fact that each local diagnoser

can locate only the faults of its corresponding „DCi‟

daughter card.

Proposal 1: Considering a system A and its sub-systems

Ai (i {1..n}) such as :

nsss AAAA ...21

 is the set of observable events (or actions) of A and of

each Ai,

fi is a fault of Ai (this means that Ai is a timed automaton

on fi=  U{fi}),

and i is a (, ∆i)-diagnoser of Ai with , ∆i  

then nsss  ...21 is a (, ∆)-diagnoser of A

wih ∆= min(∆i) with i {1..n}

Proof: For each faulty timed sequences of events ρ of A,

there is fi a faulty event belonging to ρ. Consequently Ai

exits as a sub-system of A with fi the faulty event of Ai. Let

us call
fi

P / the classical projection from

 nfff ,...,, 21 to fi . Consequently)(/ 
fi

P is a

a

<0,3>

IRk; xi:=0
d

<5>

b

<1,4>

c

<2>

2xi ; Oik
10xi ; Ok

[xi11]

[xi11]

10xi ; Ok

Ojk with j≠ i

ri

Ojk with j≠ i

2 Normal

0,3 Uncertain

5 Fauly

0

<a,a>

I1 ; x1:= 0 ; x2:= 0

2

<c,b>

1

<b,b>

3

<b,c>

2  x2  9 ;

O21

[x1,2  11]

10  x1,2  11 ; O1 ;

x1:= 0, x2:= 0

2  x1  9 ;

O11

4

<c,c>

2  x2  9 ;

O21

2  x1  9 ;

O11

5

<a,d>

10  x1,2  11 ;

O1 ; x1:= 0, x2 := 0

6

<d,a>

10  x1,2  11 ;

O1 ; x1:= 0, x2:= 0
F1

F2

r2 ; x1:= 0, x2 := 0

7

<d,d>

10  x1,2  11 ;

O1 ; x1:= 0, x2:= 0

F1&F2

[x1,2  11]

[x1,2  11]

[x1,2  11]

r1 ; x1 := 0, x2 := 0

167

faulty timed sequence of Ai and)(/ P is the timed

sequence obtained by projection of ρ on the set of

observable event  (deletion of fi). Because each i is a (,

∆i)-diagnoser,)(/ P is a timed sequence of i and then

of .

As i is a (, ∆i)-diagnoser of Ai, there exists a decision

function Di defined on TW*() the set of timed sequences

based on alphabet  (Di: TW* () -> {0,1}) such as

1))((/  PDi . This means that for each faulty timed

sequence ρ we can find a decision function D: TW* () ->

{0,1}, such as:

if fi belongs to ρ then 1))(())((//    PDPD i

This means that  is a diagnoser of A.

Let us called)(ii AFaulty  the set of faulty time

sequences on Ai with the minimal time before a fault fi can

be diagnosed. If we consider ii '
 then

)()(' iiii
AFaultyAFaulty 

 . Consider ∆=min(∆i)

with i {1..n}. According to previous relation and the

definition of A, for each i {1..n}

)()(AFaultyAFaulty ii   . Consequently ∆ is the

minimal time to diagnose each fault fi of A, then  is (, ∆)-

diagnoser of A.

Proposal 1 generalizes the result given by the example of

fault-tolerant systems built from two „DCi‟ daughter cards to

the case of a system with n sub-system working in parallel.

This result has been checked by a simulation of the fault-

tolerant system on UPPAAL. It proves that instead of

implementing a single general diagnoser of the whole

system, it is sufficient to implement a local diagnoser for

each sub-system and the n diagnosers evolving in parallel.

VI. CONCLUSION

In this paper, we have proposed a method to identify the

faults of electronic cards in case of fault-tolerant

architecture. We have shown that the diagnoser technique

can be used in that purpose. The main problem one must

solve in that case is the combinatorial explosion in case of

attempt to build a single general behavioral model of fault-

tolerant system. In this paper a method is proposed that

consists in building a diagnoser to survey each card with

regard to an output of the system. This method allows

identifying the failure of one of the daughter cards and has

been extended to a system with n sub-systems evolving in

parallel.

In this study we have focused on the use of the diagnoser

technique to identify a fault. For implementation, it is

important to see that from diagnosers we can extract Causal

Temporal Signatures and implement them directly [19]. It is

the first perspective of this work. Another perspective is the

use of Functional Graph to be able to identify the root cause

of any fault [20].

ACKNOWLEDGMENT

This work was supported by Fond Unique
Interministeriel and I-TRANS in the framework of
FerroCOTS project (Use of COTS in railway systems), from
FUI Vague 7 program.

REFERENCES

[1] R. Johansson, “A fault-tolerant architecture for computer-based
railway vehicle brake systems,” in Journal of Rail and Rapid Transit,

vol. 218, Num 3, 2004, pp. 189-20.

[2] M. Sampath, R. Sengupta, S. Lafortune, K.Sinnamohideen, and D.
Teneketzis, “Diagnosability of Discrete Event Systems”, IEEE

Transactions on Automatic Control, vol. 40, n° 9, september 1995.

[3] C. Dousson, P. Gaborit, and M. Ghallab, “Situation Recognition:
Representation and Algorithms”, International Joint Conference on

Artificial Intelligence, IJCAI, , Chambéry, France, August 1993.

[4] R. Alur and D.L. Dill, “A theory of timed automata”, Theoretical

Computer Science, vol. 126, 1994, pp. 183–235.

[5] F. Lin and W. M. Wonham, "Decentralized control and coordination

of discrete-event systems," in Proc. 27th IEEE Conf Decision and
Control (Austin, TX), pp. 1125-1130, December 1988.

[6] Shu S., Lin F, Ying H., and Chen X., “State estimation and

detectability of probabilistic discrete event systems”, Automatica
(Journal of IFAC), vol. 44, Issue 12, December 2008, pp. 3054-3060.

[7] L. Feng, “Analysis of temporal performance of supervised discrete

event systems”, Automatica (Journal of IFAC), Vol. 30, Issue 12,
March 1994, pp. 3054-3060.

[8] C.M. Ozveren, “Observability of Descret Event Dynamic system”.

IEEE Transactions on Automatic Control, vol. 35, n° 7, 1990, pp. 797-
806.

[9] C.M. Ozveren and A.S. Willsky, “Invertibility of Descret Event

Dynamic system”, Mathematics of Control, Signals, and Systems, vol.
5, n°4, 1992, pp. 365-390.

[10] M. Sampath, R. Sengupta, S. Lafortune, K.Sinnamohideen and D.

Teneketzis, “Failure Diagnosis Using Discrete-Event Models”, IEEE
Transactions on Control System technology, vol. 4, n° 2, 1996, pp.

105-124.

[11] M. Fanti and C. Seatzu, “Fault diagnosis and identification of discrete
event systems using Petri nets”, Proceedings of the 9th International

Workshop on Discrete Event Systems, Göteborg, Sweden, May 2008.
[12] D.V. Mcdermott, “A temporal logic for Reasoning about Processes

and Plans”, Cognitive Science, vol. 6, 1982, pp. 101-155.

[13] A. Toguyéni, E. Craye, and J.C. Gentina, “Time and reasoning for on-
line diagnosis of failures in flexible manufacturing systems”, in

Proceedings of the 15th IMACS world congress on scientific

computation, modeling, and applied mathematics, vol. 6. Berlin,
Germany, 1995, pp. 709-714.

[14] C. Dousson, P. Gaborit and M. Ghallab, "Situation Recognition:

Representation and Algorithms", In Proceedings of IJCAI-93,
Chambéry, 1993, pp. 166-172.

[15] C. Dousson, Suivi d'évolution et reconnaissance de chroniques, Phd

these , Paul Sabatier‟ University of Toulouse, 1994.

[16] J. De Kleer, B.C. Williams, “Diagnosing Multiple Faults”, Artificial

Intelligence, vol. 32 (1), 1987, pp. 97-130.

[17] R. Alur, L Fix, and T.A. Henzinger, “A Determinizable Class of
Timed Automata”, Proceedings of the 6th International Conference

on Computer Aided Verification(CAV’94), vol. 818 of Lecture Notes

in Computer Science, Springer Verlag, 1994, pp. 1-13.
[18] S. Tripakis, « Folk theorems on the determinization and minimization

of timed automata », Information Processing Letters, vol. 99 (6),

Elsevier, North-Holland, Inc., 2006, pp. 222-226.
[19] R. Saddem, A.K.A Toguyeni, and M. Tagina, “Consistency‟s

checking of chronicles‟ set Using Time Petri Nets”, in 18th

Mediterranean Conference on Control & Automation, Marrakech,
Morocco, 23-25 June 2010, pp. 1520–1525.

[20] R. Saddem, A.K.A Toguyeni, and M. Tagina, “From a Functional
Graph to a T-Timed Petri Nets Model for the diagnosis of Complex
System”, in The 2011 International Conference on Communications,
Computing and Control Applications, Hammamet, Tunisia, 3-5 March
2011.

168

