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Abstract— Embedded systems are more and more used to 

control critical systems. In this paper, we propose a diagnostic 

approach to increase the security of control of critical 

embedded system based on digital components. This is a part of 

a study to design of an electronic card to control a railway 

vehicle braking system. Because of the critical aspect, it is 

necessary to diagnose the failures of the control card to process 

them online for safety purposes. In this paper, we propose to 

use diagnoser technique based on timed automata. But since 

this technique suffers of combinatorial explosion and because 

digital devices are characterized by a lot of input/output, our 

approach proposes to make an abstraction of the system 

behavior to reduce the size of the models and to implement a 

kind of distributed diagnosers.  

I. INTRODUCTION 

Nowadays, embedded systems are more and more used to 

control complex systems. In this study, we are interested in 

critical embedded systems that can be used in the control of 

transport systems like railway systems or autonomous 

intelligent vehicles. These systems are critical since in case 

of misbehavior, it is necessary to react very quickly in order 

to keep them in a safety working mode.  

Generally, the implementation of embedded systems is 

based on COTS (commercial off-the-shelf) such as 

microcontrollers or FPGA. These components can have 

failures that can bring the controlled system to an unsafe 

state. For that reason, one tries to develop redundant control 

architecture that enables to implement fault-tolerant control. 

This requires the necessity to detect and isolate quickly the 

failures of the control system. In this paper, we will focus on 

the example of the control of a railway vehicle braking 

system given in [1].   

Electronic devices with Boolean inputs/outputs are 

discreet event systems (DES hereafter). This study aims to 

propose an efficient method based on model checking 

technique and the notion of diagnoser to identify online the 

failures of such systems. But the large number of input-

output leads to a combinatorial explosion which renders a 

priori unenforceable the diagnoser approach. In this paper, 
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we propose an approach based on temporal abstraction of 

system behavior and a kind of distributed implementation to 

solve this combinatorial problem.  

 The paper is structured as follows. In section 2, we will 

first recall the main techniques used for the diagnosis of 

DES. In section 3, we will present the modeling tool 

adopted: the formalism of timed automata that will be used 

in the rest of the paper. In section 4, we will propose a 

generic model of the complete behavior of an electronic 

control card. This model is one of the main contributions of 

this paper since it will give the capacity to build the 

diagnoser to survey this card. In section 5, we will propose a 

method to build and implement the diagnoser of the fault-

tolerant control architecture.  

II. DIAGNOSIS OF DES: A STATE OF THE ART  

In DES, there are observable events, coming from 

information sent by the sensors or/and command orders, and 

other unobservable events such as failures. The objective of 

the diagnostic procedure is to detect and/or isolate (when 

possible) those failures from the occurrences of observable 

events. In DES, there are two basic approaches for 

diagnosis; the diagnoser based approach [2] and the 

chronicles based approach [3]. 

A. Diagnoser 

A diagnoser is an observer automaton in charge of 

identifying faults in a system. An observer automaton 

models all observable behaviors of the system. Strictly 

speaking, an observer is an automaton whose alphabet can 

be partitioned into two types of events: the set of observable 

events  and that of unobservable events . 

The objective of an observer is to identify the current state 

of the system given the observable events that it generates. 

There are many studies to observe the process [2]. Most of 

them are based on finite state automata or timed automata 

[4]. Traditionally there are two major classes of observers; 

observers for the states recognition and observers for events 

recognition or sequences of events recognition. 

The observers for the recognition of states also imply two 

categories of approaches. The first category is inspired by 

Lin and Wonham‟s works about controllers‟ synthesis [5]. It 

requires the identification of the current state after each 

reception of the event produced by the process [6] [7]. The 

second category deals with the identification of the state 

reached after a finite sequence of events [8]. 

Some other works are also interested in the recognition of 

events sequence leading from one state of the system to 
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another. For example, works relating to the concept of 

invertibility [9]. A language is called invertible if at any 

time, using the knowledge from observed events‟ sequences, 

one can reconstruct the entire sequence (including 

unobservable events) over a bounded number of past events 

[9]. This concept of invertibility can be very useful for 

failure isolation, but must not be mistaken for the concept of 

diagnosability proposed by Sampath [10]. Diagnosability is 

more dedicated to the problem of failure detection. 

The major limitation of diagnoser approaches 1ies in the 

management of the combinatorial explosion related to the 

formalism of automata. Indeed, the classical approach is to 

decompose the system into components. Then, an automaton 

model is associated with each component. The system 

diagnoser in a centralized approach is then obtained by the 

synchronous product of automata of its components. This 

synchronous product leads to combinatorial explosion when 

the system is complex. To cope with this drawback, some 

studies are based on Petri Nets (PN) [11]. In section 4, we 

will propose a modeling based on timed automata and a 

distributed implementation to solve this problem.  

B. Chronicles 

Chronicles model an evolution of an observed system. 

They are adapted to the interpretation over time of 

occurrence of events produced by a system. In fact, a 

chronicle consists of a set of partially ordered observable 

events. These events are usually linked together by temporal 

constraints on their occurrences. In practice, a chronicle is a 

description of a temporal pattern defining a partial order on 

events described by their type and date of occurrence. The 

relations between events can be logical (conjunction) or 

temporal (sequence, missing , etc). 

Early works on the chronicles have been proposed by 

McDermott [12]. Other studies have been conducted by A. 

Toguyéni at LAGIS [13], Malik Ghallab and Christophe 

Dousson at LAAS [14] [15]… 

Thus each abnormal situation can be described by one or 

more chronicles. In that case, the events can be symptoms or 

alarms constrained by their date of occurrence. Diagnosis 

based on chronicles allows to interpret online the occurred 

events and then instantiate some chronicles patterns. A 

chronicle is recognized when all its events have occurred 

with respect to their constraints. This determines whether the 

system works normally or not. 

Generally, a chronicle pattern can be described by “(1)”: 

 

(In, A, nct)* (In, C, nct) *(A,B, ct1) * (A,D, ct2)  * (C, D, 

ct3)*(D, not E, ct4) -> G                                                    (1)

 

„A‟, „B‟, „C‟,‟ D‟, „E‟ are events; „In‟ is the always-

occurring event used as the reference of events that are not 

constrained  ; „G‟ is a failure or an unobservable event that 

can be used in other chronicle; „cti‟ is a time constraint that 

can model a date, a delay or a duration; „nct‟ means no time 

constraint. 

Let (A, B, ct1) be a triplet with „A‟ as the reference event 

and „B‟ the constrained event. (In, A, nct) means that „A‟ is 

an unconstrained event. (D, not E, ct4) means that „E‟ must 

not occur after „D‟ with respect to the temporal constraint 

„ct4‟. The meaning of (1) is as follows. If one has the 

occurrences of event 'A' (respectively the occurrence of 

event „C) and after that the occurrences of event „B‟ meeting 

the constraint 'ct1' and event „D‟ with respect to constraint 

„ct2‟,  and if one has the occurrences of event 'D' from 'C' in 

compliance with the  'ct3' constraint, and if one does not  

have event 'E' from 'D' with respect to the  'ct4' constraint, 

then one concludes to 'G'. For recognition, the chronicles can 

be represented as temporal graphs (Fig. 1) [14][15]. 

 

  
 

Fig. 1.  Temporal Graph 
 

The main advantage of this approach is the relative 

simplicity to write chronicles from Failure Mode, Effects, 

and Criticality Analysis (FMECA) completed by an analysis 

of the temporal behavior of the process. A major limitation 

in this context is first to be able to guaranty the completeness 

of the knowledge encoded as abnormal. A second level of 

difficulty is in interpreting some sequences of events at the 

input of the diagnostic system under the hypothesis of 

multiple failures [16]. The problem in this context is the 

interweaving of the events produced by different failures 

which can lead to diagnose a superset of failures. In fact, 

chronicles are generally regarded as surface models 

knowledge as opposed to deep models that are based on 

physical properties. Deep models enable to explicit systems‟ 

behaviors. They are difficult to obtain. But, the advantage of 

chronicles is that they allow direct interpretation of the 

observed events. 

III. THE MODELING TOOL ADOPTED: TIMED AUTOMATA 

In this work, our objective is to monitor digital systems 

by the diagnoser approach. To combat the risk of 

combinatorial explosion, it is necessary to make an 

abstraction of the behavior of the monitored system to 

simplify it. Our modeling approach is based on a discrete 

and temporal abstraction of its behavior that consist in 

specifying the delay where is expected its report after an 

order send by the control part. This led us to choose the 

formalism of timed automata. Not only it allows explicit 

modeling of temporal behaviors, but it also allows for more 

compact models than finite state automata. Timed automata 
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(TA hereafter) are also useful because it exists software tools 

(like UPPAAL, KRONOS, etc.) to verify the models.  

Following its definition in [5], a timed automaton A is a 

tuple (L, ℓ0, X, , E, Inv) with: L is a finite set of states; ℓ0 is 

the initial state; X is a finite set of clocks to positive real 

values;  is a finite set of actions (that we also called events 

hereafter); E  L × C(X) ×  × 2
X 

×L is a finite set of 

transitions; Inv C(X)
L
 associates a constraint to each state. 

The synchronous product of timed automata is defined as 

standard: the automata synchronize on common actions 

except for the unobservable action. 

Let Ai = (Li,
i

0 , Xi, i ,Ei, Invi), i{1,2}, two timed 

automata as X1  X2 =. The synchronized product of A1 

and A2 is the A1×A2 = (L, 0 , X, , E, Inv) automaton 

defined by : L = L1×L2 ; 0 = (
1

0 ,
2

0 ) ;   = 1  2 ;     

X = X1  X2 ; E  L × C(X) ×  × 2
X
 × L and                   

(( 1 ,
2 ), g1,2, σ, R, (

'

1 ,
'

2 )) E if : 

- Whether σ  1  2  and i) ( k , gk, σ, rk, 
'

k )  Ek 

for k=1 and k=2; ii) g1,2 = g1  g2 ; iii) R = r1  r2; 

- Whether for k = 1 or k = 2, σ  ( k \ k3 ) and           

i) ( k , gk, σ, rk, 
'

k ) Ek; ii) g1,2 = gk and iii) R = rk; 

- Inv ( 1 , 2 ) = Inv ( 1 )Inv ( 2 ) . 

IV. THE BEHAVIORAL MODEL OF A CONTROLLER CARD 

A. Description of the case study 

In this study we consider the example of a redundant 

architecture based on three controller cards and a 2/3 voter 

[1]. Fig. 2 summarizes the main part of this architecture. 

„DCi‟ (with i in {1,2,3}) is a controller card based on a 

digital COTS (microcontroller, FPGA, etc).  

 

 
Fig. 2.  The three daughter cards system 

 

The overall controller system is composed of three 

identical „DCi‟ cards. It is characterized by inputs and 

outputs. Each system boolean output, noted „Ok‟ here, is a 

function of its inputs. This function depends on the code that 

one implements in each „DCi‟ card. As an example, if an 

output depends on 3 boolean inputs, one can write 

Ok=f(Ix,Iy,Iz). In fig.2, functional block „R‟ is a distributer 

of an input signal to each „DCi‟ card. Considering the 

connector between „R‟ and „DCi‟, we assume that each 

daughter card receives an internal signal called „IRik‟ at its 

inputs. For this study, we assume that this internal signal is 

not observable. The „Oik‟ output of each „DCi‟ daughter 

card is processed by the 2/3 voter. Output „Ok‟ is equal to 1 

if at least two „Oik‟ are equal to 1. 

B. The behavioral model 

To build diagnoser one requires a behavioral model of 

the system. Such type of model can be based on the control 

code implemented in the „DCi‟ card. But such solution 

presents two drawbacks. First the model and then the 

diagnosers would not be independent with regard this code. 

The second drawback would be the high size of the model 

caused by the complexity of the control. This would induce a 

combinatorial explosion.  

To avoid these drawbacks we must make several 

abstractions to construct this behavioral model. First, we 

decouple each of the outputs of the system and we study it 

separately. After, for each output, the first abstraction 

consists in avoiding considering directly each inputs of the 

overall card. In the behavioral model related to an output 

„Ok‟, one considers a reference signal that is noted „IRk‟.  

To understand this abstraction, let us consider the following 

example. For Ok=f(Ix,Iy,Iz), let us assume that „Ok‟ takes 

the value 1 after Ix and Iy rising edge move to 1, and Iz 

falling edge move to 0 (Ix, Iy and Iz are boolean inputs). We 

are not interested in the order of these events. Once a 

sequence of these events is obtained, the reference signal, 

„IRk‟ is issued (fig. 2). This initial behavior is modeled by a 

Mealy automaton in fig. 3. In Mealy automaton, the 

interpretation of a transition ei/eo from state x to state y is as 

follows : when the system is in state x, if the automaton 

receives input event ei, it will make a transition to state y 

and in that process will emit the output event eo.  

  

 
 

Fig. 3.  Reference input signal‟s generation 

 

To avoid the combinatorial explosion, the second 

abstraction consists in reducing the normal functioning of a 

„DCi‟ card to a temporal specification between the reference 

signal „IRk‟ and the output „Oik‟. Let us assume that this 

output is given between 2 and 9 time units (t.u. hereafter) 

after the occurrence of the reference event. Fig. 4 gives the 
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temporal specification (Fig. 4. a) and the corresponding 

timed automaton that can be built (Fig.  4. b).       
 

 
Fig.4.  Abstraction of the normal behavioral model of „DCi‟ 

 

To construct the diagnoser to survey this system, one 

must complete this model taking into account its failures. 

We will call „fi‟ the failure of „DCi‟. Fig. 5 represents the 

behavioral model of „DCi‟ with „fi‟ which is an 

unobservable event that can occur before or after „IRk‟. If it 

occurs before „IRk‟, the model reaches state 3. If it occurs 

after „IRk‟ the system goes from state 1 to state 4. In all 

cases, it will reach state 4. After 9 t.u., if „Oik‟ does not 

occur, we conclude that DCi fails. The guard of the 

transition between states 4 and 5 models the timeout. „ri‟ is 

an event that models the repair of the card. It is an 

observable event that brings back the „DCi‟ to its initial 

state. In the diagnoser technique, one cannot process 

transition without event as transition from state 4 to state 5 

(Fig. 5). To solve this problem, let us take more 

consideration about how the whole system works. 
 

 
 

Fig.5.  First behavioral model of „DCi‟ 

 

The 2/3 voter gives us information that makes the 

behavioral model of each card better. In fact, in case of CDi 

failure, after the occurrence of „IRk‟, all „Ojk‟ (j≠i) occur 

and the voter can produce „Ok‟ between 10 and 11 t.u. This 

information is then added to our model. The model 

represented in Fig. 6. b. is then obtained. The transition 

between states 4 and 5 is fired between 10 t.u. and 11 t.u as 

soon as „Ok‟ occurs. In section VI.C we will discuss the 

validity of this model. 

One performs a synchronous product to construct the 

behavioral model of the general controller system. Tools like 

KRONOS allow obtaining timed automaton synchronous 

products. The global model contains 54 states and 124 

transitions. It is therefore not represented here. For 

simplicity purposes, let us consider here a system composed 

of only two „DCi‟ daughter cards with the ad hoc functional 

block to replace the voter. The behavioral model obtained is 

shown in Fig. 7.  

 
Fig.6.  Second behavioral model of „DCi‟ 

V. CONSTRUCTION OF THE DIAGNOSTIC OF THE FAULT-

TOLERANT CONTROL SYSTEM  

The objective of this section is to propose a method to 

construct the diagnostic task of the fault-tolerant control 

system (the controller card). In that case, two problems must 

be addressed:  

Problem 1 (Modeling problem): Which model must be 

used to construct the whole system diagnoser? The local 

model of each „DCi‟ daughter card or the general model of 

the fault-tolerant system? 

 

 
Fig.7.  Behavioral model of the two daughter cards system 

 

Problem 2 (Implementation problem): Can we have the 

same diagnostic with several local diagnosers that evolve in 

parallel or a single general one (Centralized approach).  

The last problem has been already addressed in the 

literature. It is close to the problem of centralized diagnose 

approach vs decentralized approach without or with 

coordinator vs distributed approach with communication 

among local diagnosers. These different approaches depend 

on the nature of the behavioral model of the considered 

system (local or general model) and the nature of the 

observations (local or general). Decentralized approaches are 

based on a general model of the system and a local or partial 

observation of the system observable events. This means that 
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the diagnoser is local since it is constructed from a 

projection of the general model in the space defined by the 

set of local observations. Distributed approaches are based 

on local models and local observations. Thus, they require 

communications among the local diagnosers to be able to 

obtain a coherent understanding of the global state of the 

system.  
 

In this study, the way each „DCi‟ daughter card is built 

implies that each sub-system uses a general observation. 

Consequently, is it possible to construct a general diagnoser 

from local diagnoser of each „DCi‟ daughter card? Is it 

possible to implement each local diagnoser independently of 

the other?  

A. Synchronous product of sub-system diagnosers 

The idea here is to build a diagnoser resulting from the 

synchronous product of the diagnoser of each daughter card 

of the system.  For DES modeled by finite state automaton, 

one uses the determination technique to build the diagnoser. 

But, timed automata are not always determinable [17] and 

the test to prove if one is determinable is undecidable [18]. 

So we built the behavioral model of daughter card „DCi‟ to 

be able to apply determination technique. Application of this 

technique to the model of fig. 6 gives us the diagnoser of 

fig. 8. The initial state „a‟ is uncertain because it is a meta-

state that groups state 0 and state 3 of the behavioral model 

(noted <0,3> in fig. 8). Indeed, because fault „fi‟ is an 

unobservable event, the „DCi‟ can go from state 0 to state 3 

without any observable event.  

 
Fig.8.  Diagnoser of „DCi‟ with repect to output „Ok‟ 

 

The same reasoning enables us to build state „b‟ (it groups 

together the basic state 1 and state 4). The occurrence of the 

„IRk‟ observable event causes the transition from state „a‟ to 

state „b‟. If „Oik‟ occurs before 9 t.u. the diagnoser reaches 

state „c‟ (equivalent to state 2) which is a normal state. On 

the opposite, the occurrence of event „Ok‟ before „Oik‟ 

implies a transition to state „d‟ (equivalent to state 5). It is a 

faulty state and the diagnoser identified in this state the fault 

of „DCi‟.   

Figure 9 shows the synchronous product of the diagnoser 

of „DC1” with the diagnoser of „DC2‟. State 5 also noted 

<a,d> corresponds to the localization of a fault of „DC2‟. 

State 6 also noted <d,a> is a localization of a fault of „DC1‟. 

Consequently, the synchronous product gives a diagnoser of 

the system composed of „DC1‟ and „DC2‟.  

B. General diagnoser from the system behavioral model 

In this section, we want to build the diagnoser of the 

general system from its behavioral model given in fig. 7. 

One applies again the determination technique. For „DC1‟ 

and „DC2‟ cards, the result is exactly the same as the 

diagnoser of' fig.9.  For example, the initial state is a meta-

state that groups together states 0, 1, 3, and 5 of the model 

given by fig. 7. It is uncertain because some of these states 

are faulty. The rest of the diagnoser is built in the same way.  
 

 
 

Fig.9.  The synchronous product of the diagnosers of two daughter cards 

C. Discussion and proposals 

Sections V.A and V.b show us that for our example the 

synchronous product of the diagnosers of „DC1‟ and „DC2‟ 

gives exactly the diagnoser of the fault-tolerant control 

system. As underlined in the introduction of this part, this 

case is different from classical decentralized or distributed 

approaches. Indeed each local diagnoser and the general 

diagnoser used the same observation set. Another difference 

with classical techniques is the fact that each local diagnoser 

can locate only the faults of its corresponding „DCi‟ 

daughter card.   

 

Proposal 1: Considering a system A and its sub-systems 

Ai (i {1..n}) such as : 

nsss AAAA ...21  

 is the set of observable events (or actions) of A and of 

each Ai, 

fi is a fault of Ai (this means that Ai is a timed automaton 

on fi=  U{fi}), 

and i is a (, ∆i)-diagnoser of Ai with , ∆i   

then nsss  ...21 is a (, ∆)-diagnoser of A 

wih ∆= min(∆i) with i {1..n} 

  

Proof: For each faulty timed sequences of events ρ of A, 

there is fi a faulty event belonging to ρ. Consequently Ai 

exits as a sub-system of A with fi the faulty event of Ai. Let 

us call 
fi

P / the classical projection from 

 nfff ,...,, 21  to fi . Consequently )(/ 
fi

P  is a 

a

<0,3>

IRk; xi:=0
d

<5>

b

<1,4>

c

<2>

2xi ; Oik
10xi ; Ok

[xi11]

[xi11]

10xi  ; Ok

Ojk with j≠ i

ri

Ojk with j≠ i

2 Normal

0,3 Uncertain

5 Fauly

0

<a,a>

I1 ; x1:= 0 ; x2:= 0

2

<c,b>

1

<b,b>

3

<b,c>

2  x2  9 ;

O21

[x1,2  11]

10  x1,2  11 ; O1 ; 

x1:= 0, x2:= 0

2  x1  9 ; 

O11

4

<c,c>

2  x2  9 ;

O21

2  x1  9 ;  

O11

5

<a,d>

10  x1,2  11 ; 

O1 ; x1:= 0, x2 := 0

6

<d,a>

10  x1,2  11 ;

O1 ; x1:= 0, x2:= 0
F1

F2

r2 ; x1:= 0, x2 := 0

7

<d,d>

10  x1,2  11 ;

O1 ; x1:= 0, x2:= 0

F1&F2

[x1,2  11]

[x1,2  11]

[x1,2  11]

r1 ; x1 := 0, x2 := 0
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faulty timed sequence of Ai and )(/ P is the timed 

sequence obtained by projection of ρ on the set of 

observable event  (deletion of fi). Because each i is a (, 

∆i)-diagnoser, )(/ P is a timed sequence of i   and then 

of . 

As i is a (, ∆i)-diagnoser of Ai, there exists a decision 

function Di defined on TW*() the set of timed sequences 

based on alphabet  (Di: TW* () -> {0,1})  such as 

1))(( /  PDi . This means that for each faulty timed 

sequence ρ we can find a decision function D: TW* () -> 

{0,1}, such as: 

if fi belongs to  ρ  then 1))(())(( //    PDPD i  

This means that  is a diagnoser of A. 

Let us called )( ii AFaulty  the set of faulty time 

sequences on Ai with the minimal time before a fault fi can 

be diagnosed. If we consider ii '
 then 

)()(' iiii
AFaultyAFaulty 

 . Consider ∆=min(∆i) 

with i {1..n}. According to previous relation and the 

definition of A, for each i {1..n} 

)()( AFaultyAFaulty ii   . Consequently ∆ is the 

minimal time to diagnose each fault fi of A, then  is (, ∆)-

diagnoser of A.  

 

Proposal 1 generalizes the result given by the example of 

fault-tolerant systems built from two „DCi‟ daughter cards to 

the case of a system with n sub-system working in parallel. 

This result has been checked by a simulation of the fault-

tolerant system on UPPAAL. It proves that instead of 

implementing a single general diagnoser of the whole 

system, it is sufficient to implement a local diagnoser for 

each sub-system and the n diagnosers evolving in parallel.  

VI. CONCLUSION 

In this paper, we have proposed a method to identify the 

faults of electronic cards in case of fault-tolerant 

architecture. We have shown that the diagnoser technique 

can be used in that purpose.  The main problem one must 

solve in that case is the combinatorial explosion in case of 

attempt to build a single general behavioral model of fault-

tolerant system. In this paper a method is proposed that 

consists in building a diagnoser to survey each card with 

regard to an output of the system. This method allows 

identifying the failure of one of the daughter cards and has 

been extended to a system with n sub-systems evolving in 

parallel.  

In this study we have focused on the use of the diagnoser 

technique to identify a fault. For implementation, it is 

important to see that from diagnosers we can extract Causal 

Temporal Signatures and implement them directly [19]. It is 

the first perspective of this work. Another perspective is the 

use of Functional Graph to be able to identify the root cause 

of any fault [20]. 
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