
  

  

Abstract— As an undesired and instantaneous failure in the 

production of cold-rolled strip products, strip breakage results 

in yield loss, reduced work speed and further equipment 

damage. Typically, studies have investigated this failure in a 

retrospective way focused on root cause analyses, and these 

causes are proven to be multi-faceted. In order to model the 

onset of this failure in a predictive manner, an integrated multi-

source feature-level approach is proposed in this work. Firstly, 

by harnessing heterogeneous data across the breakage-relevant 

processes, blocks of data from different sources are collected to 

improve the breadth of breakage-centric information and are 

pre-processed according to its granularity. Afterwards, feature 

extraction or selection is applied to each block of data separately 

according to the domain knowledge. Matrices of selected 

features are concatenated in either flattened or expanded 

manner for comparison. Finally, fused features are used as 

inputs for strip breakage prediction using recurrent neural 

networks (RNNs). An experimental study using real-world data 

instantaneous effectiveness of the proposed approach. 

I. INTRODUCTION 

Strip breakage is one of the most common and undesirable 
production failures during the production of cold-rolled strips 
[1]. This failure leads to severe consequences such as yield 
loss, an extended downtime caused by severe damage of 
rolling assets and an altered rolling performance when 
production resumes from a strip breakage [2-4]. Previous 
works on strip breakage have typically been analysed through 
retrospective root cause analyses after the occurrence of this 
failure [2, 5-7]. It is concluded that there are various causes for 
strip breakages from different problem spaces. 

With the advancement of technologies which facilitate data 
acquisition and storage, various measurement devices are 
deployed throughout the modern steel-making process. This 
data-rich environment enables a handful of data-driven 
approaches [4, 8-10] to investigate this failure. However, 
firstly, these works were conducted for quality characterisation 
rather than prediction. Secondly, the data granularity taken in 
these works cannot match the temporal characteristic of strip 
breakage, which occurs instantaneously. Lastly, owing to 
organisational and technological restrictions, the consecutive 
steel-making processes is usually compactly deployed, and 
these processes are strongly correlated [11]. While in the 
aforementioned data-driven approaches, excluding cold 
rolling process data, other breakage-centric data were not 
considered. 
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New technologies have enabled the investigation of the 
steel-making process in multiple sources and dimensions with 
more accessible data. For the manufacturing of cold-rolled 
steel strip products, these dimensions include data from the 
Cold Rolling Process (CRP), incoming feedstock Hot-Rolled 
Coil (HRC), previous Annealing and Pickling (A&P) process 
and so on. In the meantime, no single data source can capture 
the complexity of all the factors relevant to a phenomenon 
such as a strip breakage [12]. 

In this context, we proposed a multi-source feature-level 
fusion approach for predicting Strip breakage. Data fusion was 
incorporated for breakage prediction for these reasons: firstly, 
since the causes of strip breakage are multifarious in problem 
spaces, a single measuring modality is typically inadequate. In 
contrast, multiple data sources can help improve the breadth of 
collected information [13]. Secondly, data measured on the 
same phenomenon from multiple sources can be combined to 
generate collective values, whilst potentially unnoticeable 
events can be fused into informative data [14]. Thirdly, multi-
source heterogeneous data from the steel-making process is 
usually presented in large quantities. Feature-level fusion can 
reduce the size and dimension of the dataset by extracting 
useful information [15]. 

In this work, by harnessing heterogeneous data across the 
break-relevant steel-making processes, an integrative 
computational approach is proposed to tackle this prediction 
task. We start with a data collection and pre-processing stage, 
where breakage-centric data is collected following the 
production process of cold-rolled strip coils. Secondly, 
regarding the datasets originated from different sources, 
corresponding feature engineering technologies such as 
feature extraction and feature selection are applied based on 
the granularity of each data source, followed by a fusion of 
these features. Lastly, a sequence-to-vector Recurrent Neural 
Networks (RNN) architecture is used for modelling and 
evaluating the predictive performance. 

The remainder of this paper is structured as follows. In 
Section II, a review of relevant studies of the strip breakage 
analyses and data fusion strategy from low- mid-level data 
fusion was first conducted. Section III outlines the flowchart 
of the proposed methodology for strip breakage prediction by 
fusing multi-source data. Section IV reports an experimental 
study using real-world cold rolling data to demonstrate the 
effectiveness of the method, followed by result analyses and 
discussions. Section V concludes this work. 
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II. LITERATURE REVIEW 

A. Strip Breakages in Cold Rolling  

Cold rolling, as an essential process in the metal processing 
of sheets and strips, is widely applied due to its production rate 
and high efficiency [16]. Cold rolling is one of the primary 
metal forming processes in the production of steel strip. Strip 
properties such as surface smoothness, tensile strength, yield 
strength and hardness are enhanced by changing the 
microstructure and thickness of the steel [8]. Cold rolling can 
encounter inevitable failures such as edge cracking, central 
burst, surface defects and buckling [17]. Among these failures, 
strip breakages require special attention since it does not only 
significantly increases production costs and cycle time but also 
cause severe damage to mill accessories [18].  

As a common and undesired production failure, plenty of 
work has been conducted on strip breakage in cold rolling. 
However, previous research on strip breakage has been 
performed in a retrospective manner focusing on root causes 
analyses. There are diverse causes of strip breakage in cold 
rolling as proved in [1, 2, 4, 6-9, 16, 19]. We can generally 
classify the causes into four categories such as feedstock 
property, equipment malfunction, improper rolling process 
operation and other causes. 

Firstly, strip breakages can be caused by the chemical and 
physical properties of the feedstock, which is the hot-rolled 
coil (HRC) [20, 21]. By analysing and comparing the surface 
and mechanical defects of HRC, it is considered that there are 
two reasons for the strip breakage during cold rolling. One is 
the protective slag involved in the steel-making process, and 
the other one is the oxide scale pressed into the hot rolling 
process [21]. Secondly, equipment malfunction has also been 
analysed as a common cause of strip breakage. For instance, a 
high-pressure fluctuation results from servo-valve malfunction 
can lead to inter-frame tension deviations. The deviations 
crush the strip to one side, which causes strip breakages [1]. 
Thirdly, inappropriate operation parameter settings is another 
critical aspect accounts for strip breakage. The parameters 
such as levelness, the perpendicular position of the deflector 
rolls,  diameter disparity between the top and bottom work 
rolls, levelness of the bottom work roll and convexity degree 
of the work rolls have been discussed as the significant strip 
breakage causes [2].  

B. Data Fusion Strategies 

As reviewed in Section II-A, there are various causes for 
strip breakages in the cold rolling process. In other words, the 
problem of strip breakage needs to be investigated in multiple 
dimensions that include feedstock properties, equipment 
malfunction, improper rolling process operation and other 
causes. In this case, no single data type can capture the 
complexity of all breakage-centric factors describing the 
phenomenon of strip breakage. Therefore, as an integrative 
method, a data fusion technique that combines data from 
multiple problem spaces should be considered. 

 The taxonomy of data fusion is defined as the methods to 
the analysis of multiple data sets jointly, and these methods are 
dating back to the 1990s [22]. For now, there are several 
definitions of the term "data fusion" presented, which mainly 

differ in the specific research areas [23]. For the case herein 
presented, the data fusion gathers enhanced information about 
strip breakage phenomena which are observed from different 
problem spaces. Therefore, the definition reported in [24] is 
preferred: "Data fusion is a formal framework expressed as 
means and tools for the alliance of data originating from 
different sources." 

 Besides the definition of data fusion, three levels were 
defined to represent at which level fusion is operated [25]. 
Low-level data fusion is directly applied to data sets at an 
observational level. Mid- or feature- level is where data fusion 
operates on extracted features from pre-processed data in more 
general terms. High- or decision- level is where the outcomes 
of the models based on each data source are fused [23]. 

 To be specific, firstly, data fusion at low-level may be 
conducted by simply concatenating different data blocks or by 
applying various joined or coupled methods on data blocks. 
The main advantage of low-level data fusion is the possibility 
to interpret and backtrack the results from the original 
variables [26]. Secondly, regarding data fusion at mid-level, 
two approaches are typically applied, 1) feature selection 
methods, and 2) decomposition techniques [22]. When feature 
selection is applied, the model interpretation regarding the 
original variables is straightforward. In contrast, when a 
decomposition technique such as principal component 
analysis (PCA) is applied, it requires a back-linking between 
the salience of each feature to its pattern. Thirdly, the fusion of 
modelling results from each independent data block is defined 
as the high- or decision- level fusion. Therefore, the role of 
each data set from different sources is not investigated while 
the focus on the final performance of the disjoint modelling on 
each data set is performed [23]. 

III. METHODOLOGY 

In this paper, a multi-source feature-level fusion approach 

for predicting strip breakage in cold rolling is proposed, as 

shown in Figure 2 below. Breakage-centric data is collected 

following the production process of cold-rolled strip coils in 

stage 1. For the next stage, regarding the datasets originated 

from different sources, feature extraction and feature selection 

are applied based on the granularity of each data source, 

followed by a fusion of these features. In stage 3, a sequence-

to-vector RNN architecture is applied for modelling and 

evaluating the predictive performance. 

A. Data Collection and Pre-processing 

 As reviewed in Section II-A and suggested by the domain 
experts, the preparatory processes before cold rolling should 
be deemed as potentially relevant with strip breakage. It should 
be noted that regarding the collection of CRP data, which is 
typically recorded in a multivariate time-series manner, the 
concept of recency should be incorporated. Since strip 
breakage is an instantaneous failure, the temporal observations 
that extend far from the breakage point into the past are 
believed to be less informative than breakage-recent 
observations [27]. In this context, data was collected in a run-
to-failure manner, from the strip breakage time point 
backwards in time to obtain the most recent observations of 
breakage. Besides, a segmented time window conveys more 



  

information than a single time point; a sliding window strategy 
is adopted to segment the raw time-series data into a collection 
of pieces, as illustrated in Figure 1. 

Figure 1. Illustration of proposed sliding window strategy 

 
Through this sliding window strategy, an instance is a two-

dimensional matrix containing Lin sampling points (i.e. the 
window length) with N attributes. By sliding window 
backwards in time from the breakage point following a 
selected step size Ls, the total window length is segmented into 
M instances. The label of each instance is determined by the 
interval between the last sample point and the strip breakage 
point. If the interval is wider than the predefined predicted 
window length Lp, the corresponding instance is labelled as 
"good" representing no breakage. Otherwise, if the interval is 
within the pre-set predicted window length, the corresponding 
instance is labelled as "break", which represents the coming 
breakage. Under this manner, the label is a binary class 
representing whether the strip will break within the specific 
predicted time window. 

B. Feature-level Data Fusion  

Besides the CRP data, the A&P data is also recorded in a 
real-time manner from the continuous annealing and pickling 
process. This process affects the occurrence of strip breakage 
from the feedstock aspect, such as strip roughness. The 
probability of breakage can be increased by failing to remove 
all the scales from HRC strip during A&P process. In this case, 
feature extraction is applied to transform the time-series A&P 
data into a feature vector representing the A&P process details 
of each coil. In this study, we consider a list of time-domain 
features to describe the A&P process characteristics. 

Feature extractions are performed on A&P data to extract 
these data into features at a coil-level granularity. Then these 
features are concatenated with HRC data which is measured 
per coil. Subsequently, feature selection is conducted on the 
concatenated HRC and A&P dataset with the annotation of 
"good" and "break" coils to find optimal features subset Fc. 
Meanwhile, features Fs from CRP data are selected based on 
previous physics-based models and empirical knowledge of 
the strip breakage at the granularity of seconds. By tracking 

material genealogy, emulsion features Fd at the granularity of 
daily level are fused with Fs and Fc. 

C. Modelling for Strip Breakage using Fused Features 

With the fusion of features from multi-source data, the task 
is set to be a binary classification problem to classify whether 
a strip will break within a specific time window using these 
fused features. For this task, a supervised learning approach 
based on sequence-to-vector recurrent neuron networks 
(RNNs) architecture was proposed. To be specific, an instance 
entering the proposed RNNs architecture is a two-dimensional 
matrix containing r sampling points (i.e. the window length), 
with N attributes. As illustrated in Figure 2, the proposed 
RNNs are applied to classify the multivariate time-series. Input 
data for a time slice represented as a matrix instance (r × N) is 
fed into the recurrent layers, and only the output of the last 
neuron is fed into the linear layer (the rest are ignored). This 
output is subsequently fed into a linear layer which embedded 
with an activation function to make binary predictions.  

Figure 2. The proposed methodology flowchart 

 

IV. EXPERIMENTAL STUDY 

The experimental study was conducted using the historical 
data provided by a cold-rolled silicon electrical steel 
manufacturer. Compared with general low carbon steel strips, 
the silicon steel strips are lower in toughness due to a high 
silicon content [28]. In this context, strip breakages are 
therefore more frequently occurred in the cold rolling process 
of the high silicon steel strips.  

A. Data Acquisition 

Data from four sources are considered to be relevant with 
strip breakage: hot rolled coils (HRC), annealing and pickling 



  

(A&P), emulsion and cold rolling process. The data sources 
for strip breakage prediction are identified in the table below. 

TABLE I DATA SOURCES FOR STRIP BREAKAGE PREDICTION 

The HRC, A&P, Emulsion and CRP data of 1324 coils 
were collected, and 368 out of them were labelled as "break" 
while the rest were "good". The HRC data consists of 47 
variables recording the physical and chemical properties of 
each incoming feedstock hot rolled coil. The A&P data 
comprised of 18 variables recording the real-time annealing 
and pickling process on each incoming hot rolled coil at the 
frequency of 50Hz. The emulsion data was recorded in this 
steel plant daily with eight variables. 

The CRP data was extracted from a production data 
acquisition (PDA) system, which is installed on-site. Cold 
rolling process variables are sampled and recorded 
continuously at a frequency of 100Hz. Due to the high 
correlation between neighbouring data points, a lower 
sampling rate results in a distortion compared with a higher 
rate. Meanwhile, using full-resolution data enables a detailed 
and accurate calculation of the breakage point. Therefore, to 
get the most information out of CRP data, we used full 
resolution for further segmentation. There are thousands of 
measurements being recorded in the PDA system; it is 
necessary to select the subset of the most relevant features. The 
domain of the text in the dataset is also of significant influence 
for the choice of features. For either a specific domain or in a 
non-domain dependent dataset, certain features work better 
[32]. It was decided to determine candidate feature sets from 
two facets. One is the physical-based features set derived from 
the previous physics-based models of strip breakage failure, 
and the other is the empirical knowledge features set with 
referring to domain experts. In this context, 17 features were 
identified from CRP data. 

B. Segmentation on CRP Data 

As shown in Figure 1, based on a sliding window strategy, 
an overlapping segmentation was performed on CRP data. The 
sliding window parameters were set as follows: the total 
extracted length Lt is set to 30 seconds; the predicted window 
length Lp is set to 0.5 seconds, the instance length Lin is set to 
29 seconds and the step size Ls is set to 0.01 seconds. To be 

specific, each coil set can generate 101 instances, 50 out of 101 
were marked as "break", and rest were labelled as "good" 
under this parameter setting. 

C. Feature Selection on HRC and A&P Data 

Correlation-based Subset Feature Selection (CFSsub) [33] 
was employed in this study considering the task of finding the 
optimal subset of feature relevant and minimising the 
computational cost. For a subset S, an underlying importance 
score shown in Eq. 1 is used to represent the usefulness of the 
subset for prediction of the response class variable. 

                   𝑖𝑆𝑐𝑜𝑟𝑒 =
m𝑅𝑐𝑓

√𝑚+𝑚(𝑚−1)𝑅𝑓𝑓

                            (1)

 where 𝑖𝑆𝑐𝑜𝑟𝑒  stands for the importance for subset S, 

𝑅𝑓𝑓 and 𝑅𝑐𝑓 represents feature-feature correlation and 

response-feature correlation, respectively. As discussed in 

Section III-B, each the A&P variable measured at a frequency 

of 50Hz is extracted to 4 time-domain statistical features for 

each coil. Therefore, 47 HRC variables and 72 (18*4) A&P 

features were fused for the selected features at the granularity 

of per coil. By applying the CFSsub, 23 attributes were 

selected. To summarise, fused features were listed in Table II.  

TABLE II. DETAILS OF FUSED FEATURES FROM DIFFERENT SOURCES 

Origin of 

data 

Raw data 

granularity 

Number 

of 

selected 

features 

Feature Granularity 

1. HRC Per coil 15 Per coil 

2. A&P Per 0.02s  8 Per coil 

3. Emulsion Per day 9 Per day 

4. CRP Per 0.01s  17 
Time window 

covering 29 seconds 

D. Experiment Design 

Three different data fusion strategies were designed to 
reveal the merits of our proposed methodology and 
schematically depicted in Figure 3. Data-level or low-level 
flatten fusion (shown in Figure 3a) is the straightforward 
concatenation of different data blocks. However, in our case, 
the HRC, A&P and Emulsion data is batch-oriented, which 
means the data block is a two-dimension array shown as X1. In 
contrast, the CRP data is time-oriented with the data structure 
of the three-dimension matrix illustrated as M2. In this case, 
hand-crafted features were designed to extract the time-
domain and frequency-domain features so that the CRP data 
block M2 is flattened to data block X2 which share one mode 
(the batch number) with X1. In this scenario, data fusion is 
conducted by directly fusing the data blocks. Figure 3b shows 
the middle level or feature level fusion of flattening features 
from data block X1 and M2. As feature extraction and selection 
of separate data blocks is conducted to generate a selected 
feature set T1 and T2 before fusing them, this approach can 
cope with large redundancy in the information from various 
measured variables. The Figure 3c shows the feature level 
fusion of expanded data where X1 is expanded to a time-
oriented matrix M2 so that it can be fused with M1 to avoid 
information lost by time- and frequency-domain feature 
extraction. 

Origin of 

data 
Relationship with strip breakage 

Representative 

features 

1. HRC 

The information of chemical 
properties and strip shape 

parameters are included in HRC 

data, while these properties are 
critical for strip breakage [3, 20, 21]. 

Chemical content, 
Sol Al ratio, 

Finishing gauge, 

Crown 
measurement. 

2. A&P 

Annealing significantly affects the 

physical properties, while pickling is 

crucial for the surface condition [17, 
21, 28]. 

Annealing 

temperature, 

Pickling material, 
Jet flow speed. 

3. Emulsion 

The emulsion acts as lubrication and 

coolant, thus significantly influence 

the friction and thermodynamics 
between strip and roll [29, 30]. 

 

Dirt result, 

pH, 

Concentration, 
Heat conductivity, 

Chloride index. 

4. CRP 

The CRP data is the direct and real-
time measurements of the operations 

before the occurrence of breakage 

[3, 7, 8, 31]. 

Rolling speed, 

Tension, 
Measured slip. 



  

Figure 1. Schematic overview of different designed data fusion scenarios: 
 a) data-level flatten fusion, b) feature-level flatten fusion and c) feature-

level expand fusion. 

 
For scenario a and b, three conventional algorithms 

Random Forest (RF) [34], Support Vector Classification 
(SVC) [35] and Artificial Neuron Network (ANN) were 
deployed for breakage prediction using the open-source 
package Scikit-learn [36] with the default hyperparameters. 

For scenario c, Long Short-term Memory (LSTM) 
network, Gated Recurrent Unit (GRU) and RNNs were applied 
using Pytorch [37], and Cross-Entropy is used as the loss 
function for this binary classification task. The efficient Adam 
[38] algorithm is used for optimisation. The model is fit for 
100 epochs because it quickly overfits the problem. 

Beside classification accuracy (ACC), the area under the 
ROC curve (AUC) is applied as one of the performance 
metrics here regarding the unbalance characterisation of the 
dataset [34]. 

E. Results and Discussions 

The modelling results on different fusion strategies are 
shown in Figure 4 and 5. Generally, in terms of both AUC and 
ACC, the improvement of RNN-based models in scenario c 
compared to conventional approaches in scenario a and b is 
enormous. Since a segmented time window conveys much 
more information than extracted features, detailed 
representation of the cold rolling process using M2 surpass the 
flatten data block X2 in terms of strip breakage performance. 
This can also result from the nature of strip breakage, which 
occurs instantaneously; in this case, only a detailed and 
representation can capture the momentary pattern before 
breakage. However, RNN-based models are more 
computationally expensive than conventional approaches as a 
result of model complexity. Besides, a time-consuming 
hyperparameter selection is required for RNN-based models to 
achieve the desired performance. 

Figure 2. AUCs of models with the best performance in predicting strip 
breakage in different scenarios 

 
 

Figure 3. ACCs of models with the best performance in predicting strip 
breakage in different scenarios 

 
Compared with low-level data fusion strategy, feature-

level fusion is much less computationally expensive. Since 
low-level fusion is usually confronted with a large dataset after 
concatenation, it is less challenging to handle due to a lower-
demanding memory and computation time. By comparing the 
results between scenario a and b, feature-level fusion strategy 
outperforms data-level strategy in terms of AUC and ACC. For 
conventional classification algorithms, mid-level fusion, 
which overcomes the difference in information density by 
extracting the predictive information from the blocks, 
performed better than low-level data fusion. However, feature-
level fusion is demanding in terms of validation since it 
requires the application of feature selection algorithms for 
each data block from a different source.  

V. CONCLUSIONS 

We have demonstrated the effectiveness of feature-level 
fusion approach using selected HRC, A&P and Emulsion 



  

features and segmented time-window CRP data in terms of 
breakage prediction performance. Besides, feature-level 
fusion surpasses data-level fusion in terms of both 
computational cost and classification performance. Moreover, 
in terms of feature-level fusion through feature selection, 
extraction and identification, less effort is required to interpret 
the results compared with latent variable approaches. The cold 
rolling mill operator can benefit from utilising this prediction 
approach to their contingency mitigation strategies. According 
to the predicted information, a planned stop action can be taken 
to avoid damage from an unplanned fast stop. Understanding 
the likelihood of strip breakage soon can also be critical for 
post-analysis, such as determining what countermeasures 
should use. 

Meanwhile, this approach did not recognise how different 
levels of granularity can result in regularities in the data. It is 
believed that different features and relationships emerge at 
different granularities. Further work will focus on trying to 
take advantage of this fact in designing more effective data 
fusion strategies for strip breakage prediction. 
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