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Abstract— We propose a hierarchical learning architecture
for predictive control in unknown environments. We consider
a constrained nonlinear dynamical system and assume the
availability of state-input trajectories solving control tasks in
different environments. A parameterized environment model
generates state constraints specific to each task, which are
satisfied by the stored trajectories. Our goal is to find a feasible
trajectory for a new task in an unknown environment. From
stored data, we learn strategies in the form of target sets in
a reduced-order state space. These strategies are applied to
the new task in real-time using a local forecast of the new
environment, and the resulting output is used as a terminal
region by a low-level receding horizon controller. We show
how to i) design the target sets from past data and then ii)
incorporate them into a model predictive control scheme with
shifting horizon that ensures safety of the closed-loop system
when performing the new task. We prove the feasibility of the
resulting control policy, and verify the proposed method in a
robotic path planning application.

I. INTRODUCTION

Classical Iterative Learning Controllers (ILCs) aim to im-
prove a system’s closed-loop reference tracking performance
at each iteration of a repeated task [1]–[3]. Recent work
has also explored reference-free ILC for applications whose
goals are better defined through a performance metric, such
as racing autonomously around a track or harvesting wind
energy [4]–[6].

In general, the learned ILC policy is not cost-effective,
or even feasible, if the task environment changes [7], [8].
In the Artificial Intelligence and Reinforcement Learning
communities, the ability to generate a control policy which
performs well under different environment conditions is a
common challenge, often referred to as generalization or
transfer learning [9], [10]. These data-driven approaches
typically focus on minimizing the performance loss between
solving tasks in the original and new environment, rather than
guaranteeing feasibility of the policy in a new environment.

Methods that do guarantee feasibility are generally model-
based [11]–[15]. Approaches have been proposed for au-
tonomous vehicles [16] and robotic manipulation applica-
tions [8], [17], [18]. These strategies often require maintain-
ing a trajectory library, and adapting the stored trajectories
online to the new constraints of the changed tasks, which
can be both time-consuming and computationally expensive.
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This article proposes a data-driven method for tackling
a simple abstraction of the “changing environment” control
problem. We consider availability of state-input trajectories
which solve a set of control tasks {T 1,. . . ,T n}. A successful
execution of the ith control task T i is defined as a trajectory
of states and inputs evolving according to a nonlinear differ-
ence equation, satisfying system state and input constraints,
and satisfying constraints imposed by the task environment.
In each of the n control tasks the system model, system
constraints and objective function are identical. However, a
parameterized environment descriptor function θ generates
a set of state constraints specific to each task T i, where
θ = θi.

Our goal is to use stored executions of n previous control
tasks in order to complete a successful execution of a new
task T n+1 in a new environment described by θn+1. This
paper presents a hierarchical predictive learning architecture
to solve such a problem. Specifically, we use stored data
to design strategy sets in reduced-dimension state space.
These strategy sets represent high-level strategies learned
from previous control tasks, and are used as waypoint regions
in a receding horizon control. In this paper, we:

1) propose interpreting “strategies” as sets in reduced-
dimension state space, referred to as “strategy sets”,

2) show how to design strategy sets from past data,
3) demonstrate how to incorporate the strategy sets into a

receding horizon control,
4) prove the proposed method will lead to a successful

execution of the new control task, and
5) apply the controller to a robotic path planning example.

II. PROBLEM FORMULATION

We consider a discrete-time system with dynamical model

xk+1 = f(xk, uk), (1)

subject to system state and input constraints

xk ∈ X , uk ∈ U . (2)

The vectors xk ∈ Rnx and uk ∈ Rnu collect the states and
inputs at time k.

A. Task Environments

The system (1) solves a series of n control tasks
{T 1, . . . , T n} in different task environments parameterized
by {θ1, . . . ,θn}. For each task T i, the environment descrip-
tor function θi maps the state xk at time k to a description of
the local task environment θi(xk, k). Examples of θi(xk, k)
include camera images, the coefficients of a polynomial
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describing a race track lane boundaries, or simple waypoints
for tracking.

In each control task the system model (1) and constraints
(2) are identical. However, the environment descriptor func-
tion generates additional local environment-specific state
constraints, denoted E(θi(xk, k)). In task T i, we write the
combined system and environment constraints as

xk ∈ X (θi, xk, k), (3)

where

X (θi, xk, k) = E(θi(xk, k)) ∩ X .

For notational simplicity, we refer to the combined system
and environment constraints (3) as X (θi).

B. Task Executions

A feasible execution of the task T i in environment E(θi)
is defined as a pair of state and input trajectories

Ex(T i,θi) = [xi,ui] (4)

xi = [xi0, x
i
1, ..., x

i
Di ], xik ∈ X (θi) ∀k ∈ [0, Di],

xDi ∈ P(θi),

ui = [ui0, u
i
1, ..., u

i
Di ], uk ∈ U ∀k ∈ [0, Di],

where ui collects the inputs applied to the system (1) and
xi is the resulting state evolution. Di is the duration of
the execution of task T i. The final state of a feasible task
execution, xDi , is in the task target set P(θi) ⊂ X (θi).

Problem Definition: Given a dynamical model (1) with
state and input constraints (2), (3), and a collection of
feasible executions (4) that solve a series of n control
tasks, {Ex(T 1,θ1), ...,Ex(T n,θn)}, our aim is to find
an execution for a new task in an unseen environment:
Ex(T n+1,θn+1).

Remark 1: For notational simplicity, we write that the
collected data set contains one execution from each task.
However, in practice one may collect multiple executions
of each task T i. In this case, the executions can simply
be stacked, and the procedure proposed in this paper can
proceed as described.

C. Environment Forecasts

The control architecture proposed in this paper relies on
forecasts of the task environment. At time k, we use forecasts
of the system state across a horizon N , x̂ik:k+N , to predict the
corresponding environments [θi(x̂k, k), . . . ,θi(x̂k+N , k +
N)]. For notational simplicity, we write this environment
forecast as θik:k+N .

III. HIERARCHICAL PREDICTIVE LEARNING CONTROL

We propose a data-driven controller that uses stored exe-
cutions from previous tasks, {Ex(T 1,θ1), . . . ,Ex(T n,θn)},
to find an execution for a new task in a new environment,
Ex(T n+1,θn+1). Instead of simply adapting the stored
executions from previous tasks to the constraints of the new
task, our aim is to learn a generalizable and interpretable
strategy from past tasks, and apply it to the new task.

A. Approach

Our approach is inspired by how navigation tasks are
typically explained to humans, who can easily generalize
learning to new environments. For example, if a human has
learned to race a vehicle by driving around a single track,
they can easily adapt their learned strategy when racing a
new track. Based on real-life intuition, we propose three
principles of strategy:

1) Strategies are a function of a local environment forecast.
2) Strategies work in a reduced-order state space.
3) Strategies provide target regions in the (reduced-order)

state space for which to aim.
The control architecture proposed in this paper formalizes the
above principles of strategy, and shows how to incorporate
this strategy framework into a hierarchical learning control.
In particular, we focus on two aspects. First, we show how
to learn generalizable strategies from stored executions of
previous control tasks. Second, we show how to integrate the
learned strategies in an MPC framework so as to guarantee
feasibility when solving a new control task in real-time.

Vehicle Racing Example: Consider, for example, learning
how to race a vehicle around a track. A snippet of common
racing strategies1 taught to new racers is depicted in Fig. 1.
The environmental constraints imposed on the vehicle are

Fig. 1: Sample of strategies taught at various online racing
schools.

parameterized by the race track curvature. This environmen-
tal descriptor gives rise to physical areas in state space with
respect to which racing rules are then explained, e.g. “cut the
curve at the apex and aim for the outside of the straightaway.”
The strategies consist of sections of the track towards which
to aim the vehicle as well as acceleration profiles to apply
along the way. The strategies are explained using only a
subset of the state space: the distance from the centerline.
Given guidelines on this subset, the driver is free to adjust
other states and inputs such as vehicle velocity and steering
as necessary.

B. Implementation

Hierarchical Predictive Learning (HPL) is a data-driven
control scheme based on high-level strategies, learned from
previous executions of different tasks according to our prin-
ciples of strategy. The HPL controller modifies its behavior
whenever new strategies become applicable, and operates

1As taught at online racing schools such as Driver 61: https://
driver61.com/uni/racing-line/

https://driver61.com/uni/racing-line/
https://driver61.com/uni/racing-line/
https://driver61.com/uni/racing-line/
https://driver61.com/uni/racing-line/


in coordination with a safety controller to ensure constraint
satisfaction at all future time steps.

At each time k, an N -step local environment forecast
θik:k+N is used to determine if a new high-level control
strategy is available. A strategy consists of state and input
sets in reduced dimensions, X̃k+T and Ũk:k+T , that provide a
set towards which to steer the system in the next T timesteps,
as well as input guidelines for getting there. The strategy sets
are used to construct a target set in the full state space, Xk+T .
Lastly, a receding horizon controller calculates a low-level
input to get the system to the target set. In the following
sections, we explain each of the three hierarchy levels in
detail and prove the feasibility of the resulting control law.

We note the difference between the environment forecast
horizon N and the strategy prediction horizon T . The two
need not be the same, and it is reasonable to select N > T .

IV. LEARNING STRATEGIES FROM DATA

This section addresses the first aim of our paper: learning
generalizable strategies from previously solved tasks. There
are several ways of learning strategies, including model-
based methods that use an explicit model for how variations
in task environments affect the optimal control input [11]. In
this work we instead opt for a data-driven approach, using
stored executions (4) that solved related tasks.

We propose using Gaussian Processes (GPs) to learn a
mapping from a current system state and environment fore-
cast, (xk, θ

i
k:k+N ), to hyperrectangular state and input con-

straint sets in reduced dimension, (X̃k+T , Ũk:k+T ), known as
strategy sets. The GPs are trained offline, and the strategy sets
are built online during the execution of a new control task
using the estimated mean and standard deviation provided
by the GPs. A review of GPs in control is provided in [19],
and implementation details in the Appendix.

A. Training the GP (Offline)

1) GPs in MPC: GPs have been used in recent predictive
control literature as data-driven estimates of unknown non-
linear dynamics [12], [20], [21]. Specifically, GPs are used
to approximate vector-valued functions with real (scalar)
outputs. Given training data (input vectors and output val-
ues), GPs learn a similarity measure known as “kernel”
between inputs to estimate the true underlying function.
The kernel represents the learned covariance between two
function evaluations.

2) Why use GPs?: Once a kernel has been learned, the GP
can be queried at a new input vector. Given an input, the GP
returns a one-dimensional Gaussian distribution over output
estimates; thus GPs provide a best guess for the output value
corresponding to an input and a measure of uncertainty about
the estimate based on the distribution’s standard deviation.
This allows us to gauge how confident the GP is in its
prediction at a particular input.

Note: The robust MPC community often prefers stochastic
models with bounded support [22] to GPs, in order to have
strict safety guarantees. Our approach can be extended to
these types of models as well.

3) GPs for Hierarchical Predictive Learning: We con-
sider strategies to be maps from a state and environment
forecast to reduced-dimension strategy sets. The choice of
appropriate strategy states and inputs depends on the tasks.
We define the strategy state at each time k as

x̃k = g(xk) ∈ Rnx̃ , (5)

where g(·) maps the full-dimensional state xk into the
corresponding lower-dimensional strategy state. Similarly,
the strategy inputs are

ũk = r(uk) ∈ Rnũ , (6)

where r(·) maps the full-dimensional input at time k into
lower-dimensional strategy inputs. We denote the strategy
state and strategy input spaces as

X̃ = {x̃ | x̃ = g(x), x ∈ X}, (7)

Ũ = {ũ | ũ = r(u), u ∈ U}. (8)

In HPL, we train GPs to predict the values of the strategy
states (5) and inputs (6) at T timesteps into the future, based
on the current state and environment forecast. Each GP learns
to approximate the mapping between a state and environment
forecast and a particular strategy state or input:

(µ, σ2) = GP(x̃k, θ
i
k:k+N ), (9)

where µ and σ2 represent statistics of the Gaussian distri-
bution over strategy state estimates which are used to build
strategy sets in Sec.IV-B. GPs best approximate functions
with scalar outputs, so we train one GP for each strategy
state and input (a total of nx̃ + nũ number of GPs).

4) Building Training Data: We use stored executions (4)
from previous control tasks to create GP training data. Each
GP uses the same training input data. The training output
data for each GP contains the strategy state or input the GP
is learning to predict. After solving n control tasks at least
once (see Remark 1), the training data consists of:

D = {z = [z10 , z
1
1 , . . . , z

1
D1−T , z

2
0 , . . . , ..., z

n
Dn−T ] (10)

y = [y10 , y
1
1 , . . . , y

n
Dn−T ]}.

Each input vector zij corresponds to the output yij , where

zij = [xij , θ
i
j , θ

i
j+1, ...,θ

i
j+N ], (11)

i ∈ [1, n], j ∈ [0, Di − T ],

and θij denotes the local environment at time k of the
ith control task. For example, this can correspond to the
instantaneous track curvature or the camera image recorded
at that time step. The output entry yij contains the value of
the strategy state or input of interest at T time steps in the
future:

yij = x̃ij+T or ũij+T ,

i ∈ [1, n], j ∈ [0, Di − T ].

Again, we emphasize the difference between the environment
forecast horizon N and the strategy prediction horizon T .



Fig. 2: Each dimension x̃(i) of the strategy set X̃k+T is
bounded using a GP (12).

5) Training: We use the Matlab Statistics and Machine
Learning toolbox2 to learn kernel hyperparameters that best
match the training data (10). Specifically, we train a squared-
exponential kernel with separate length scales for each pre-
dictor (see Appendix). New hyperparameters can be learned
whenever more executions become available.

B. Constructing the Strategy Sets (Online)

Once the GPs are trained, they can be used to solve a new
task. At time k of a new task T n+1, we evaluate the GPs at
the new query vector zn+1

k , formed as in (11), to construct
hyperrectangular strategy sets in reduced-dimension space.

Each GP returns a one-dimensional Gaussian distribution
over output scalars, parameterized by a mean µ and variance
σ2. Once means and variances have been determined for each
strategy state and input from the learned kernel hyperparame-
ters (see (26) in Appendix), we form one-dimensional bounds
on each ith strategy state and jth strategy input as

X̃k+T (i) = [µi(zn+1
k )± ησi(zn+1

k )], ∀i ∈ [1, nx̃] (12)

Ũk:k+T (j) = [µj(zn+1
k )± ησj(zn+1

k )],

∀j ∈ [nx̃ + 1, nx̃ + nũ].

In (12), µi(·) and σi(·) are the means and standard deviations
computed by the ith GP. The parameter η > 0 determines
the size of the range. When these one-dimensional bounds
are combined for all strategy states and strategy inputs, re-
spectively, we form hyperrectangular strategy sets in strategy
space, with each dimension constrained according to (12). An
example is shown in Fig. 2. The hyperrectangular strategy
sets are denoted X̃k+T and Ũk:k+T , and indicate where (in
strategy space) the system should be in T timesteps and what
inputs to apply to get there.

V. SAFELY APPLYING LEARNED STRATEGIES

We now address the second aim of our paper: using the
strategy sets in a low-level controller while maintaining
safety guarantees. Our approach consists of i) lifting the
reduced-dimension strategy sets back into full-dimension,
and ii) integrating the full-dimension set with a safety

2https://www.mathworks.com/help/stats/index.html

controller. The result is a target set that can be used in a
low-level MPC controller.

Assumption 1: There exists a safety control policy that
can prevent the system (1) from violating both system- and
task-specific environment constraints (3). In particular, there
exists a safe set

XE ⊆ X (θ), (13)

and a corresponding safety control law

u = πe(x,θ), (14)

such that ∀x ∈ XE , f(x, πe(x,θ)) ∈ XE .
Remark 2: Given a safety control law (14), the safe set

(13) may be found using a variety of data-driven methods,
including backwards reachability from a known subset of
XE (such as physical standstill), or sample-based forward
reachability from a gridded state space X .

A. Converting to full-dimensional hyperrectangles

At each time k of solving a task T n+1, new reduced-
dimension strategy sets (12) are constructed. These strategy
sets are converted to a target set in full-dimensional state
space, to be used as a terminal constraint in a low-level MPC
controller. Critically, the target set must belong to the safe
set (13). This ensures that once the system has reached the
target set, there will always exist at least one feasible input
(the safety control (14)) that allows the system to satisfy all
state constraints. Given strategy sets (12) found at time k,
we define a corresponding lifted strategy set as:

Xk+T = {x ∈ XE | g(x) ∈ X̃k+T }, (15)

where g(x) (5) is the projection of the full-dimensional
state x onto the set of chosen strategy states. Xk+T is
a full-dimensional set in which the strategy states (5) are
constrained to lie in the strategy sets (12), and the remaining
states are constrained such that for any state xk ∈ Xk+T ,
the safety control (14) can be applied if necessary to ensure
constraint satisfaction in future time steps.

B. Incorporating the Uncertainty Measure

A benefit of using GPs is that the standard deviation
around an estimate may be used to evaluate how confident
the GP is in its prediction at a particular input. At time
k, consider the uncertainty measure Ck which is a vector
containing the standard deviations of the evaluated GPs:

Ck = [σ1(zn+1
k ), . . . , σnsx+nsu(zn+1

k )]. (16)

If the GPs return a strategy set with standard deviations (16)
larger than a chosen threshold dthresh, we may opt not to
use this strategy. We expect Ck > dthresh if:

1) the system did not encounter a similar environment
forecast in a previous control task, or

2) in previous control tasks this environment forecast did
not lead to a single coherent strategy, resulting in a wide
distribution of potential future strategy states.

With high uncertainty measures, the strategy sets are not
likely to contain valuable control information for the system.

https://www.mathworks.com/help/stats/index.html


In this case, HPL sets the target set to be empty: Xk+T = [ ].
As explained in Sec. VI, this results in a horizon shift for
the low-level MPC, and the system (1) re-uses the target set
from the previous time step.

VI. LOW-LEVEL CONTROLLER DESIGN

The low-level MPC controller is responsible for calculat-
ing the input to be applied to the system at each time k. This
input is calculated based on the sequence of target sets (15)
found during the last T timesteps.

A. Target Set List

At each time k of solving task T n+1, a new target set
(15) is constructed by lifting the strategy sets (12). However,
if the standard deviations (16) are too high, or there is no
feasible input sequence to reach the lifted strategy set Xk+T ,
the target set for time k will be empty: Xk+T = [ ].

The “target set list” keeps track of which target sets (empty
or not) were constructed during the most recent T timesteps:

SetListk = [Xk+1,Xk+2, . . . ,Xk+T ]. (17)

At each new time step, the first set gets removed and the
target set found at the current time step gets appended to
the end. In this way, the target set list (17) always maintains
exactly T sets, though some (including the last one) may be
empty. This list is used to guide the objective function and
constraints of the MPC controller.

B. Shifting Horizon MPC Formulation

We formulate an MPC controller to calculate our input at
each time step:

u?(xk) = arg min
u0|k,...,uNk−1|k

Nk−1∑
j∈Sk

dist
(
xj|k,Xk+j

)
(18)

s.t. xj+1|k = f(xj|k, uj|k)

xj|k ∈ X (θn+1) ∀j ∈ {0, NM − 1}
uj|k ∈ U ∀j ∈ {0, NM − 1}
xNk|k ∈ Xk+Nk

x0|k = xk,

where Sk is the set of indices with non-empty target sets,

Sk = {s | notEmpty(Xk+s−1)}.

The MPC objective function (18) penalizes the Euclidean
distance from each predicted state to the target set cor-
responding to that prediction time. If a smoother cost is
desired, the objective could be augmented to take the input
effort into account.

The MPC uses a time-varying shifting horizon 0 < Nk ≤
T that corresponds to the largest time step into the future for
which a non-empty target set results in feasibility of (18):

Nk = max s : {s ∈ Sk, (18) is feasible with Nk = s}.
(19)

This ensures that the MPC controller (18) has a non-empty
terminal constraint and the optimization problem is feasible.

To avoid unnecessary repeated computations, all target sets
in the target set list (17) which lead to infeasibility of (18)
when used as the terminal constraint are set as empty in (17).
At time step k, we apply the first optimal input to the system:

uk = u?0|k. (20)

Note: Here, the target sets (15) are found at the same
frequency as the controller (18)-(20) is updated, but our
framework can easily be adapted to use asynchronous loops.

C. Safety Control

If no target sets in (17) can be used as a terminal constraint
in (18) such that (18) is feasible, all sets in the target set list
(17) will be empty, and the MPC horizon is Nk = 0. When
this occurs, the system enters into Safety Control mode. The
safety controller (14) turns on, and controls the system in
a safe manner until a time when a satisfactory target set is
found (at which point the MPC horizon resets to Nk = T ).
The HPL approach ensures that the system (1) will always
be in the safe set (13) when Nk = 0 and the safety controller
(14) needs to turn on. We prove this in Sec. VIII.

VII. THE HPL ALGORITHM

Alg. 1 summarizes the HPL control policy. Importantly,
HPL only requires a local forecast of the new task en-
vironment, rather than the entire environment description.
Gaussian Processes, trained offline on trajectories from past
control tasks, are used to construct reduced-dimension strat-
egy sets. Target sets are formed in conjunction with a safety
controller, and are used as terminal sets in a shifting-horizon
MPC controller.

VIII. FEASIBILITY PROOF

We prove that Alg. 1 outputs a feasible execution for a
new control task T n+1.

Theorem 1: Let Assumption 1 hold. Consider the avail-
ability of feasible executions (4) by a constrained system
(1)-(2) of a series of control tasks {T 1, . . . , T n} in different
environments {E(θ1), . . . , E(θn)}. Consider a new control
task T n+1 in a new environment E(θn+1). If xn+1

0 ∈ XE ,
then the output of Alg. 1 is a feasible execution of T n+1:
Ex(T n+1,θn+1).
For ease of reading, we drop the task index (·)n+1.

Proof: We use induction to prove that for all k ≥ 0,
the iteration loop (Lines 10-23) in Alg. 1 finds an input uk
such that the resulting closed-loop trajectory satisfies system
and environment constraints.

At time k = 0 of the new task T n+1, the target set list
can contain at most one non-empty set, XT (15). If XT

is non-empty, and the resulting (18) is feasible, then there
exists an input sequence [u0|0, . . . , uT−1|0] calculated by (18)
satisfying all state and input constraints (3), with xT |0 ∈ XT .
However, if XT is empty or (18) is infeasible, we instead
apply the safety control law u0 = πe(x0). By assumption,
x0 ∈ XE , so this input is feasible. Thus we have shown that
the iteration loop in Alg. 1 is feasible for k = 0.



Algorithm 1 HPL Control Policy

1: parameters: dthresh, T,N,XE , πE
2: input: f , X , U , {Ex(T 1,θ1), ...,Ex(T n,θn)}, θn+1

3: output: Ex(T n+1,θn+1)
4:
5: offline:
6: train GPs using stored executions as in Sec.IV-A
7:
8: online:
9: initialize k = 0, Nk = T , SetList = [ ]

10: for each time step k do
11: collect (xk, θ

n+1
k:k+N )

12: find [X̃k+T , Ũk:k+T , Ck] using (9) - (12)
13: construct Xk+T using (15)
14: if Ck < dthresh then
15: Xk+T = [ ]

16: append Xk+T to SetList (17) and shift sets
17: if all sets in SetList (17) are empty then
18: uk = πe(xk)
19: else
20: calculate Nk using (19)
21: solve MPC (18) with horizon Nk

22: uk = u?0|k (20)

23: end

Next, we show that the iteration loop of Alg. 1 is re-
cursively feasible. Assume that at time k > 0, the low-level
policy (18-20) is feasible with horizon Nk, and let x?

k:k+Nk|k
and u?

k:k+Nk−1|k be the optimal state trajectory and input
sequence according to (18), such that

uk = u?k|k (21)

x?k+Nk|k ∈ Xk+Nk
. (22)

If at time k+1 a non-empty target set Xk+T+1 is constructed
according to (15) such that (18) is feasible, then there exists a
feasible input sequence [uk+1|k+1, . . . , uk+T |k+1] satisfying
all state and input constraints such that xk+T+1 ∈ Xk+T+1.

If at time k+1 the target set is empty, or (18) is infeasible,
we must consider two cases separately:

Case 1: The MPC horizon at time step k is Nk > 1. In
the absence of model uncertainty, when the closed-loop
input uk (21) is applied, the system (1) evolves such that

xk+1 = x?k+1|k. (23)

According to Alg. 1, when the empty target set Xk+1+T

is added to the target set list (17), the MPC horizon is
shortened and the most recent non-empty target set is used
again. Since Nk > 1, we are guaranteed at least one non-
empty target set in (17) that may used as a feasible terminal
constraint in the low-level controller (18). At time step k+1,
the shifted input sequence u?

k+1:k+NM−1|k will be optimal
for this shifted horizon optimal control problem (with a
corresponding state trajectory x?

k+1:k+NM |k). At time step
k + 1, Alg. 1 applies the second input calculated at the

previous time step: uk+1 = u?k+1|k.
Case 2: Nk = 1. In this scenario, the target set list (17)

at time step k + 1 is empty, resulting in Nk+1 = 0 (19).
However, combining the fact that Nk = 1 with (22) and
(23), we note that

xk+1 ∈ Xk+1 ⊆ XE ,

by construction of the target set (15). This implies that at
time step k+1, system (1) is necessarily in the safe set (13),
and so application of the safety controller will result in a
feasible input, uk+1 = πe(xk+1).

We have shown that i) the online iteration loop (Lines
10-23) in Alg. 1 finds a feasible input at time step k = 0,
and ii) if the loop finds a feasible input at time step k, it
must also find a feasible input at time k + 1. We conclude
by induction that the iteration loop in Alg. 1 finds a feasible
input uk∀k ∈ Z0+ in the new task T n+1. This results in a
feasible execution of T n+1.

IX. ROBOT PATH PLANNING EXAMPLE

We demonstrate the effectiveness of our proposed control
architecture in a robotic path planning example.

A. System and Task description

Consider a UR5e3 robotic arm tasked with maneuvering
its end-effector through a tube with varying slope. The UR5e
has high end-effector reference tracking accuracy, allowing
us to use a simplified end-effector model in place of a
discretized second-order model [23]. At each time step k,
the state of the system is zk,

zk = [xk, ẋk, yk, ẏk],

where xk and yk are the coordinates of the end-effector, and
ẋk and ẏk their respective velocities. The inputs to the system
at time step k are

uk = [ẍk, ÿk], (24)

the accelerations of the end-effector in the x and y direction,
respectively. We model the base-and-end-effector system as
a quadruple integrator:

zk+1 = Azk +Buk (25)

A =


1 dt 0 0
0 1 0 0
0 0 1 dt
0 0 0 1

 , B =


0 0
dt 0
0 0
0 dt

 ,
where dt = 0.01 seconds is the sampling time. This model
holds as long as we operate within the region of high end-
effector reference tracking accuracy, characterized experi-
mentally as the following state and input constraints:

X =

[
−3
−3

]
≤
[
ẋk
ẏk

]
≤
[
3
3

]
U =

√
ẍk + ÿk ≤ 1,

3https://www.universal-robots.com/products/ur5-robot/



Fig. 3: The end-effector is constrained to stay in the light
blue tube X (θ), whose centerline is plotted in dashed blue.
The strategy states s and h measure the cumulative distance
along the centerline and the distance from the centerline.

where the states xk and yk are not constrained by the system,
but by the particular task environment.

Each control task T i requires the end-effector to be
controlled through a different tube, described using the
environment descriptor function θi, as quickly as possible.
Here, the function θi maps a state in a tube segment to
the slope of the constant-width tube. Different control tasks
{T 1, . . . , T n} correspond to maneuvering through tubes of
constant width but different piecewise-constant slopes.

We choose two strategy states for these tasks:

x̃k = [sk, hk],

where sk is the cumulative distance along the centerline of
the tube from the current point (xk, yk) to the projection
onto the centerline, and hk is the distance from (xk, yk)
to the centerline. The strategy states therefore measure the
total distance traveled along the tube up to time step k, and
the current signed distance from the center of the tube. The
system inputs (24) are used as strategy inputs.

Our safety controller (14) is an MPC controller which
tracks the centerline of the tube at a slow, constant velocity
of 0.5 meters per second. The system (25) in closed-loop
with this centerline-tracking controller is able to solve each
of the considered tasks without breaking the state constraints
imposed by the environment (i.e. without hitting the tube
boundary). The safe set XE (13) is determined offline using
sampling-based forward reachability.

B. Hierarchical Predictive Learning Results

We test our proposed control architecture in simulation.
We begin by collecting executions that solve a series of 20
control tasks {T 1, ..., T 20}, with each control task corre-
sponding to a different tube shape. The executions are used
to create training data for our GPs, using an environment
forecast horizon of N = 10 and a control horizon of T = 5.
GPs are then found to approximate the strategies learned
from solving the 20 different control tasks.

Figure 4 shows the closed-loop trajectory and target set
list at various time steps of solving a new task, T 21, using
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Fig. 4: At each time step, the target set list (17) provides
different regions in the task space for the system to track.

Fig. 5: The HPL execution is compared to the raceline (the
fastest possible execution), as determined by an LMPC [7].
Respective execution times in [s] are 6.5 (LMPC), 8.8 (HPL),
and 12.8 (Centerline-tracking πe).

the HPL framework. At each time step, the final predicted
state lies within the last set in the target set list; the other
predicted states track any non-empty target sets as closely
as possible. The formulation allows us to visualize what
strategies have been learned, by plotting at each time step
where the system thinks it should go. Indeed, we see that the
system has learned to maneuver along the insides of curves,
and even takes the direct route between two curves going in
opposite directions.

Figure 5 shows the resulting executions for a new task
solved forwards and backwards. We emphasize that HPL
generalizes the strategies learned from training data to un-
seen tube segments. Specifically, for the tasks shown here
the GPs were trained on executions solving tasks in the



‘forward’ direction, i.e. constructed left to right using tube
segments as shown in the top images. When the tasks are
solved backwards, the environment descriptors are piecewise
mirror images of previously seen environment descriptors.
For example, tube segments of certain slopes had only been
traversed upwards in previous control tasks, never down. The
HPL control architecture was able to handle this change very
well. As in Fig. 4, the forward and backwards trajectories
demonstrate good maneuvering strategies, including moving
along the insides of curves and cutting consecutive corners.

X. CONCLUSION

A data-driven hierarchical predictive learning architecture
for control in unknown environments is presented. The HPL
algorithm uses stored executions that solve a variety of pre-
vious control tasks in order to learn a generalizable control
strategy for new, unseen tasks. Based on a local description
of the task environment, the learned control strategy proposes
regions in the state space towards which to aim the system
at each time step, and provides input constraints to guide
the system evolution according to previous task solutions.
We prove that the resulting policy is guaranteed to be
feasible for the new tasks, and evaluate the effectiveness
of the proposed architecture in a simulation of a robotic
path planning task. Our results confirm that HPL architecture
is able to learn applicable strategies for efficient and safe
execution of unseen tasks.

XI. APPENDIX

We use Gaussian Processes trained on data (4) from
previous tasks to construct strategy sets for solving a new
task. Specifically, GPs use a similarity measure known as
“kernel” between input vectors to learn a nonlinear ap-
proximation of the underlying input-output mapping. The
kernel function represents the learned covariance between
two function evaluations. In this paper we use the squared-
exponential kernel for our GPs. Given two entries of z in
(10), this kernel evaluates as

k(zoi , z
w
j ) = σ2

f exp−1

2

nx+N+1∑
m=1

(zoi (m)− zwj (m))2

σ2
m

,

where zoi (m) is the mth entry of the vector zoi . The hyperpa-
rameters σf , σ1, ..., σnx+N+1 are learned from the training
data (10) using maximum log-likelihood regression. We use
the Matlab GP toolbox for this process.

Given a new query vector zn+1
k , hyperrectangular strategy

sets are formed using the mean µ and variance σ2 of the
resulting Gaussian distribution:

µ(zn+1
k ) = k(zn+1

k )K̄−1y (26)

σ(zn+1
k )2 = k(zn+1

k , zn+1
k )− k(zn+1

k )K̄−1k>(zn+1
k ),

where

k(zn+1
k ) = [k(zn+1

k , z10), . . . , k(zn+1
k , znbn)],

and the matrix K̄ is formed out of the covariances between
training data samples such that

K̄i,j = k(zi, zj).

The strategy sets are then constructed according to (12).
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