
Compact Representation of Time-Index Job Shop Problems Using a
Bit-Vector Formulation

Downloaded from: https://research.chalmers.se, 2024-04-19 15:48 UTC

Citation for the original published paper (version of record):
Roselli, S., Bengtsson, K., Åkesson, K. (2020). Compact Representation of Time-Index Job Shop
Problems Using a Bit-Vector Formulation. IEEE International Conference on Automation Science
and Engineering, 2020-August: 1590-1595. http://dx.doi.org/10.1109/CASE48305.2020.9216908

N.B. When citing this work, cite the original published paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



Compact Representation of Time-Index Job Shop Problems Using a
Bit-Vector Formulation

Sabino Francesco Roselli1 and Kristofer Bengtsson1 and Knut Åkesson1

Abstract— The Job Shop Scheduling Problem (JSP) is a
combinatorial optimization problem where jobs visit single-
capacity machines while minimizing a cost function, typically
the makespan. The problem can be extended to fit typical
industrial scenarios such as flexible assembly shop floors or
for coordinating fleets of automated vehicles. General purpose
optimizers can handle extended versions of the problem that
typically arise in industrial problems. Mixed Integer Linear
Programming (MILP) solvers and recently optimizing Satisfi-
ability Modulo Theory (SMT) solvers can be used as general
solvers for JSP problems. There exist different formulations of
JSP problems, among them the time-index (TI) model. The TI
offers the advantage of providing strong lower bounds, though
its drawback is the model size.

In this paper we present a new formulation of the TI model
suitable for optimizing SMT-solvers that support bit-vector
theories. The new formulation is significantly more compact
than the standard TI formulation and is thus reducing one of
the major issues with the TI model.

We benchmark two different optimizing SMT solvers sup-
porting bit-vector theories, comparing the standard formulation
of the TI to the new formulation on a set of benchmark
instances. The computational analysis shows that the new
formulation outperforms the standard one, being up to twice
faster and regardless of the solver employed; moreover the
model generated with the new formulation is considerably
smaller than with the standard formulation.

I. INTRODUCTION

The Job Shop Problem (JSP) is the assignment of jobs
to resources, where each job is a sequence of operations,
such that the makespan is minimized. Resources have single
capacity, thus two operations cannot use the same resource at
the same time. The problem is NP-hard and has been studied
since the 60s, yet it is often emerging when developing
automation systems and because of its complexity, it cannot
be solved to optimality for large problem instances.

A thorough study on the subject is presented in [1], where
the authors point out that, many different techniques have
been applied to solve the problem: both approximation and
exact methods. Whether the target is the true optimal or
an approximate solution, it is important to develop general
techniques that would be able to handle variations of the
problem, since real-world scenarios typically involve addi-
tional requirements and as soon as a new constraint is added,
tailor-made algorithms might no longer be feasible.

Thus general purpose algorithms like Mixed Integer Lin-
ear Program (MILP) solvers are often used in industrial
applications since they can handle additional constraints
without changing the main optimization algorithm. Note

We gratefully acknowledge financial support from Chalmers
AI Research Centre (CHAIR) and AB Volvo (Project ViMCoR).
1Department Electrical Engineering, Chalmers University of Technology,
Göteborg, Sweden {rsabino, kristofer.bengtsson,
knut}@chalmers.se

that new constraints could have a significant impact on the
performance, but they will not disrupt the solution method.

MILP solvers can be used to provide approximate solu-
tions by terminating the optimization procedure when the
best incumbent (current best solution) is within a predefined
gap from a lower bound to the problem, or after a time limit.

Another general purpose approach that can offer similar
flexibility is optimizing Satisfiability Modulo Theory (SMT)
solvers [2], [3]. SMT solvers support different theories,
from reals, linear arithmetics, arrays to bit-vectors; these
theories allow for a flexible modelling environment to easily
instantiate quite complicated constraints.

In our previous works, [4] and [5], we showed that SMT
solvers are a viable option to deal with the JSP both in
its standard and flexible variants, since they could handle
medium-large size problems (instances counting up to 15
concurrent jobs and 10 machines) in a relatively short time
(time limit set to 1200 seconds). Our analysis showed that
the SMT solver Z3 [6] outperformed a state-of-the-art MILP
solver in terms of running time, by more than one order of
magnitude for large instances.

We also implemented three model formulations of the JSP
for SMT and benchmarked them over a set of instances
generated according to predefined rules. One of the models
we compared is known as the time-index model (TI) and
was first presented by [7]; it is based on boolean (or binary)
variables to represent the possibility for each job on each
machine (operation) to start at a given time-step. Time is
discretized and for each operation, one variable will evaluate
to True to indicate at which step such operation is starting.

Though our comparison proved the disjunctive model [8]
to have the best performance, the TI is still widely employed
to tackle the problem, in academia, [9] and [10] as well as in
industrial applications [11]. This is due to the strong lower
bounds that LP relaxations of the model provide [12], since
they can be used to implement branch and bound or list-
scheduling algorithms. The downside of the TI is its size: the
number of constraints required to build the model becomes
prohibitive even for relatively small instances, making the
model-generation a bottleneck.

In [13], different optimization problems are tackled using
both boolean (BL) and bit-vector (BV) models and, while
in general a bit-vector formulation results in a much more
compact representation, for some problems, it also leads
to increase in performance by more than one order of
magnitude.

Given these premises, it is reasonable to assume that a
bit-vector based formulation could provide a more compact
model and outperform the standard TI model based on
boolean (or binary) variables.

The contributions of this paper are: (i) comparison of



a new formulation of the TI model, based on bit-vectors,
with the standard formulation over a set of benchmark and
generated instances; the comparison is carried out both on
the model generation phase (in terms of model size) and the
running time to solve such models. (ii) Benchmark of two
different state-of-the-art SMT solvers, namely Z3 and Opti-
MathSAT [14], chosen because they have shown consistently
good performance in the latest SMT competitions and they
come with a built-in optimizing tool.

In the next section, a formal mathematical description
of the problem is given; in sections III and IV the two
model formulations are presented; in section V a complexity
analysis over the two models is given; in section VI, the
experimental methods are described and in the following
section, results are discussed. Finally, conclusions are drawn
in section VII.

II. PROBLEM FORMULATION

The JSP problem consists of a set of n jobs J = {ji}ni=1,
where each job has its own processing order through a set
of k machines, M = {mi}ki=1. Also, let dmj model the
duration of the execution of the same operation. Operations
are defined as the execution of a job on a certain machine
and, as each job has to visit each machine, the total number
of operations in the problem is nk. Each job will go through
all machines sequentially. Let oji model the index of the
machine to be used for job j executing operation i in
sequence. The index of the machines for each step in the
job sequence is thus given by (oj1, . . . , o

j
i , . . . , o

j
k).

Finding a solution to the job-shop scheduling problem
means to assign operations to machines so that all jobs are
completed. The constraints in this kind of problem are two:
• as there exist a sequence of operations for each job,

operations belonging to the same job must be executed
in the right order;

• operations requiring the same machine and belonging
to different jobs cannot overlap in time.

Given these two constraints, the target is to find a feasible
schedule such that the overall makespan is minimized. Other
variants of the problem involve different cost functions such
as tardiness or lateness, but in order to compare our results
to the optimal values available in the literature we followed
the standard of the makespan.

We are now to present the TI model formulation, first
in its standard form and then implemented using BV. An
important feature of TI models is that they require an upper
bound of the makespan. Since time is discretized, the upper
bound is necessary to define a sufficient number of variables
to describe the behaviour of the system at each time-step.
If the upper bound is not large enough, the model will
yield an infeasible result. On the other hand, the larger
the upper bound, the more variables and constraints are
needed. A trivial upper bound is the sum of all operation
durations but tighter bounds can be calculated quickly using
heuristic algorithms. However, computing tight upperbounds
is beyond the scope of this paper. In the following we will
assume that H is a given upper bound for a problem instance.

III. STANDARD TIME-INDEX MODEL

In this model the execution time is split into steps, whose
length is the minimum time-step. For instance, if the duration

of an operation is n time-steps, n steps will be taken since
it starts and until it is completed. The time-steps will be
T = {0, . . . ,H}. Let dmj be a natural number that models
the number of steps it takes for machine m to execute job j.
The decision variables are Tmax and smjt, where Tmax is an
integer variable and smjt are boolean variables that evaluate
to true if job j starts on machine m at time t. The model
formulation for minimizing the makespan is given by:

minimize Tmax subject to
H∨
t=0

smjt ∀m ∈M, j ∈ J (1)

smjt →
∧

t′∈T\{t},

¬smjt′

∀m ∈M, j ∈ J, t ∈ T (2)

smjt →
t+dmj∧
t′=t

¬smj′t′

∀j, j′ ∈ J, j ≤ j′,m ∈M, t ∈ T\{0} (3)
smjt → Tmax ≥ t+ dmj

∀m ∈M, j ∈ J, t ∈ T\{0} (4)

xoji−1jt
→

t+d
o
j
i−1

j∧
t′=0

¬xoji jt′

∀i = 2, . . . , k, j ∈ J, t ∈ T\{0} (5)

Equations (1) and (2) ensure that start time for each
operation occurs only once; equation (3) prevents other
operations to start on a machine while it is already executing
one; equation (4) defines the variable used in the objective
function; equation (5) models precedence among the opera-
tions of a job: if the (i − 1)th operation of job j starts at
time-step t, the ith operation of the same job cannot start
before time-step t+ doji−1j

.

IV. TIME-INDEX MODEL WITH BIT-VECTORS

This model formulation is based on the time-index model
presented in the previous subsection; instead of having
boolean variables for each time-step and operation, there is a
fixed sized bit-vector for each operation, whose size is given
by H .

A bit-vector of size n is an element ~b = (bn−1, . . . , b0) ∈
Bn. The index i maps the (i)th component of the vector, i.e.
b[i] = bi. Conversion from (to) a integer number is defined by
int : Bn → Z (bv : Z → Bn) with Z = [−2n−1, 2n−1) ⊂ Z
and int(~b) := −2n−1 +

∑n−2
i=0 bi · 2i (bv := int−1).

Constraints can be defined by using bit-vector operations
as well as arithmetic and logic operations. Let ~a,~b ∈ Bn

be two-bit vectors. Then, the bit-vector operation ◦ ∈
{∧,∨, · · · } is defined by ~a ◦ ~b := (~a[0] ◦ ~b[0], · · · ,~a[n −
1] ◦~b[n− 1]).

In the following model, some of the constraints are defined
based on bit-vector manipulation formulas presented in [15].

The decision variables are defined as follows:



• ~smj is a bit-vector variable of size H that has exactly
one bit set. The position of such bit defines the step at
which job j starts on machine m;

• ~wmj is a bit-vector variable of size H that has as many
bits set as time-steps the job j takes to be executed on
machine m. The rightmost bit in the trail corresponds
to the bit set on the variable ~smj ;

• ~emj is a bit-vector variable of size H that has all bit
sets from the time-step the operation is completed until
the last position on the vector.

• Tmax is a bit-vector variable of size H .
Also, ~dmj is a bit-vector constant of size H whose leftmost

bits are set based on the duration of job j on machine m.

maximize Tmax subject to

~smj 6= 0 ∀j ∈ J,m ∈M (6)
~smj ∧ (~smj − 1) = 0 ∀j ∈ J,m ∈M (7)

~wmj =

dmj∨
i=0

(~smj � i) ∀j ∈ J,m ∈M (8)

~emj = ¬~wmj ∧ (~wmj − 1) ∀j ∈ J,m ∈M (9)

~sjm ∧ ~dmj = 0 ∀j ∈ J,m ∈M (10)
¬~emoji−1

∧ ~smoji
= 0 ∀j ∈ J,m ∈M, i = 2 . . . k (11)∧

j,j′∈J
j≤j′

(~wmj ∧ ~wmj′) = 0 ∀m ∈M (12)

Tmax =
∨
j∈J
m∈M

~emojk
(13)

Equation (6) makes sure that at least one bit is set and
(7) makes sure that at most one bit is set for the bit-vector
modeling the starting time for job j on machine m. Thus
together they guarantee that each job will start exactly once
on each machine. This is achieved by forcing the bit-vector
to be a power of two; equations (8) and (9) are used to
define the variables ~wmj and ~emj ; equation (10) sets the
latest start time for each operation: since a time horizon is
given, operation cannot start too late, otherwise they will not
be completed within the given number of steps; equation (11)
sets the precedence constraint among operations belonging to
the same job; equation (12) sets the objective function as the
bit-wise operation ∨ among the ~emj operations occupying
the last position in the sequence for each job: the larger the
value of such vectors, the sooner the operation is completed,
therefore the problem is a maximization one; finally equation
(13) is taking care of non-overlapping constraint by setting
the conjunction of the ~wmj variables representing operations
using the same machine equal to zero.

A. Example on the use of bit-vectors
In order to make the concept about fixed sized bit-vector

variables and constants clearer, we provide a short example
on how the values are assigned: Let the time horizon be set
to 10 time-steps. This implies that the size of the vectors
will be of 10 bits. Let’s assume that for the operation of job
j visiting machine m the starting time is set (by the solver)
on the 5-th time-step and that such operation has a duration

equal to three time-steps. Therefore, the variables for such
operation will be set as follows:

~smj 0 0 0 0 1 0 0 0 0 0
~wmj 0 0 0 0 1 1 1 0 0 0
~emj 0 0 0 0 0 0 0 1 1 1
~dmj 0 0 0 0 0 0 0 0 1 1

The variable ~smj has the 5th left most bit set, the variable
~wmj has as many bits set as time-steps in the duration of the
operation, starting from the 5th left most bit, the variable ~emj

has all bits set form the time-step the operation is completed.
Finally, the constant ~dmj has as many bits set as time-steps
in the duration of the operation minus one, starting from the
right most bit. This constant is required to set the constraint
about the latest start of an operation. In the model, constraints
(6) to (9) are needed to define the variables and constraint.

Here are given some examples of how constraints are
enforced: In the following, the black x represent the possible
assignments for the variables, while the red ones point out
the forbidden assignments.

~smj x x x x x x x x x x
~dmj 0 0 0 0 0 0 0 0 1 1

Constraint (10) prevents an operation from starting too late
by imposing the bit-wise operation ∧ equal to zero between
the variable ~smj and its duration constant ~dmj .

~e
mo

j
i−1

0 0 0 0 0 0 0 1 1 1

¬~e
mo

j
i−1

1 1 1 1 1 1 1 0 0 0

~s
mo

j
i

x x x x x x x x x x

Constraint (11) sets the precedence constraints by allowing
the following operation to start only after the previous one is
completed. Assuming operation oji−1 is completed at time-
step 7, operation oji cannot start until that time-step.

~e
mo

j
k

0 0 0 0 0 0 0 1 1 1

~e
mo

j′
k

0 0 0 0 0 0 1 1 1 1

~e
mo

j′′
k

0 0 0 0 1 1 1 1 1 1

Tmax 0 0 0 0 1 1 1 1 1 1

The objective function is set as the bit-disjunction of the
variable ~emj for the last operation in each job. Maximizing
Tmax means having the latest operation completed as early
as possible.

~wmj 0 0 0 0 1 1 1 0 0 0
~wmj′ x x x x x x x x x x

Constraint (13) prevents operations employing the same
machine to overlap, as shown in the example, where the red
crosses define the forbidden execution times for the operation
belonging to job j’

Finally, the result is presented as a bit-vector whose set bits
represent the steps left before the time horizon is reached,
since the last operation was completed. The integer value that
represents the makespan to the JSP is given by the bit-vector
Tmax as

H − number of bits set in Tmax



Since the duration of an operation is positive we can con-
clude that not all operations could be finished at time 0,
meaning that the left-most bit in Tmax has to be 0. From how
Tmax is defined we know that it will have a sequence of zeros
followed by a sequence of ones. Thus, with an increasing
number of ones the signed/unsigned interpretation of Tmax

will result in a larger value. To minimize the makespan we
will thus maximize Tmax.

B. Bit-vector manipulation

In general, one must be careful when performing op-
erations on bit-vectors since some of them will produce
a different result, depending on whether the bit-vector is
signed or not. The right-shift operation, for instance, comes
in two different versions; other operators are unaffected by
the interpretation: the bit-wise operators.

In this work, the actual value of the number represented
by a bit-vector is not of interest, since we are only interested
in the bit-patterns (the sequence of zeros and ones in a bit-
vector) to represent time-steps: if the left-most bit of a bit-
vector of size four is set, we are not interested in its value in
decimals (it would be 8 for a signed and -8 for unsigned), it
tells us that something is happening at time-step 0. Only in
constraint (13) we are interested in the actual value of Tmax,
since this is the value that is maximized. For Tmax it would
make a difference to have signed or unsigned bit-vectors only
if we were to set its leftmost bit. This, in turn, could only
happen if it was possible to complete all jobs at time-step
zero, which is by definition impossible, since operations have
a duration larger than 0. Hence, the constraint is valid.

Also, the difference between signed and unsigned bit-
vectors lies in the interpretation of bit-patterns and the tricks
used to manipulate the bit-vectors are designed to set and
unset bits regardless of the interpretation. In fact, they involve
bit-wise operators such as ∧, ∨ and ¬ with the exception
of constraints (7) and (9): in both cases a subtraction is
performed. However, subtracting a bit-vector means to add
its negation plus one; since addition and negation both
work independently of the interpretation, there is no risk of
producing invalid results, as long as the operands involved
in the subtraction are positive. This is always the case, since
one of them is the value one and the other, wmj , is inferred
from smj , which is always positive because of constraints
(6) and (7).

V. MODELS SIZE

The formulations presented in the previous sections,
though similar in many aspects, lead to a significant dif-
ference in the model size. The reason for such difference
lies in the way the time horizon, H , is handled by the two
models: in the BV model the time horizon is used only to
define the size of the bit-vector variables; therefore, equations
(6)-(10) in the BV model only generates nk constraints (n
jobs, k machines), while equation (11) generates nk(k − 1)
constraints, equation (12) generates k constraints and (13)
generates one. Also, the length of the constraints, in terms
of number of clauses for each constraint, is short: only one
clause for constraints (6), (7), (9), (10) and (11). For the
constraints expressed by equation (8), the number of clauses
depends of the duration of job j visiting machine m, for

equation (12), the length is n2
/2, and for equation (13), the

length is nk.

On the other hand, in the BL model, there is one variable
for each job, machine and time-step. Therefore constraints
are dependent on the time horizon as well, i.e. equation (1)
generates nk constraints, each of length H . Equation (2)
generates nkH constraints each of length H , since for each
machine m, job j and time-step t, it is necessary to iterate the
∧ connective over all time-steps but t. Equation (3) generates
the largest amount of constraints, since it iterates over any
two jobs j and j’, for each machine m and time-step t. Also,
for each value of these indexes, the ∧ connector has to be
iterated for as many times as the duration of operation j on
machine m, leading to n2

/2 · kH constraints each of length
dmj . Equation (4) generates nkH constraints of length one
and, finally, equation (5) generates one constraint for each
machine, job and time-step, and within each constraint an
additional iteration of the ∧ connective for as many times as
the duration of operation j on machine m is required, leading
to nkH constraints, each of length dmj .

Given these premises, we can infer that:

BL model size: Given a JSP, with n jobs and k
machines with time horizon H, the number of variables
for the BL model is nkH , the number of constraints is
proportional to O(n2kH) and their length in number of
clauses is O(H).

BV model size: Given a JSP with n jobs and k
machines, the number of decision variables for the BV model
is 3nk, and the size of each variable is H bits, thus the total
size is proportional to nkH . The number of constraints is
O(nk2) and their length in number of clauses is O(n2).

Note that H is typically much larger than k and n.
Therefore the number of constraints, as well as their length
is expected to be significantly larger for the BL model. The
favorable size of BV models compared to BL models is
confirmed empirically in the following section.

Fig. 1: Performance comparison between bit-vector (BV) and boolean (BL) time-index
models over the generated instances using Z3 and OptiMathSAT. The maximum time
allowed for each instance is 1200 seconds.



TABLE I: Comparison of models implemented using Z3 and OptiMathSAT. The time showed in the table is the geometric mean calculated over all the instances belonging to
the category they refer to. For each class the number of solved instances (out of the total number of instances belonging to such class) is given. The symbol ’-’ means that no
instance has been solved. The model size is also reported in Megabytes.

Problems
Model Size Z3-BV Z3-BL Opti-BV Opti-BL

BV BL Time Opt Time Opt Time Opt Time Opt

3x3 0.009 0.243 0.13 5/5 0.13 5/5 0.25 5/5 32.3076 2/5
4x4 0.016 0.900 0.49 5/5 0.94 5/5 0.25 5/5 - -
5x5 0.027 2.050 1.83 5/5 5.05 5/5 0.64 5/5 - -
6x6 0.040 3.837 4.06 5/5 20.88 5/5 1.47 5/5 - -
7x7 0.058 6.739 13.05 5/5 68.51 5/5 4.22 5/5 - -
8x8 0.079 11.526 32.50 5/5 203.31 5/5 13.12 5/5 - -
9x9 0.104 18.696 176.15 5/5 - - 71.69 5/5 - -

10x10 0.132 24.818 609.07 4/5 - - 410.21 5/5 - -
11x11 0.168 37.307 1117.60 1/5 - - 740.85 3/5 - -
12x12 0.205 48.927 - - - - - - - -
13x13 0.249 69.687 - - - - - - - -

VI. COMPUTATIONAL ANALYSIS

We evaluate the properties of the two models by generat-
ing problem instances using the Taillard instance generator
specification [16]. In total 55 problems are generated from
size 3x3 to 13x13 with 5 problems of each size.

A. Experimental setup

The solvers whose performance were compared are Z3-
4.8.7 and OptiMathSAT-1.5.1. The time limit is 1200 sec-
onds. Solvers are run in their default setting. All the experi-
ments were performed on an Intel Core i7 6700K, 4.0 GHZ,
32GB RAM running Ubuntu-18.04 LTS.

Since finding a good upper bound for the model is beyond
the scope of this paper, and the optimum is known for all
instances evaluated, we used as a value for H the optimum
increased by 10%.

Since both Z3 and OptiMathSAT can read input in the
SMT standard language [17], it has been possible to translate
the models into such language and then run the solvers
directly from the terminal, to avoid delays due to the API’s
use. Also, this allows to run the solvers on exactly the same
models, and to keep track of the models size for comparison.
The implementation of the scheduler is available at [18].

B. Experimental Results

Table I summarizes the results of the computational anal-
ysis: instances are sorted by size (5 instances for each class)
and for each different combination of model and solver, the
number of solved instances is reported as well as the average
time to find the optimum of the solved ones. We decided to
employ the geometric mean to reduce the effect of outliers.
The average model size for both the BL and BV model is
also shown for each class.

The evaluation of the BV model implemented with Z3
showed that all instances could be solved within the time-
limit up to size 9x9, while only 4 of size 10x10 and 1 of
size 11x11 could be solved to optimality; no larger instance
is solved within 1200 seconds. The performance of BV
implemented with OptiMathSAT is significantly better, being
OptiMathSAT roughly twice as fast as Z3 and able to solve
all instances of size 10x10 and 3 of size 11x11. When

it comes to the BL model, Z3 outperforms OptiMathSAT
by more than one order of magnitude, being able to solve
instances up to size 8x8 in a relatively short time: less than
a second for size 3x3 and 4x4, 5 seconds for size 5x5 and
respectively 20, 70 and 200 for the remaining sizes. On the
other hand, the BL model implemented with OptiMathSAT
is only able to solve 2 instances out of 55 (of size 3x3) and
it still takes 30 seconds to do so.

When it comes to the model size, it turns out (as ex-
pected) that the BL model quickly scales up, going from 0.2
Megabytes for instances of size 3x3 to almost 70 MB for the
larger ones. On the other hand, the BV model size is barely
affected by the instance size, being still largely under 1MB
for the larger instances. The time required to generated the
model may be strictly dependent on the implementation, but
it is still related to the model size, so the larger the model,
the slower the generation time. With our implementation,
the time to generate the BV model for the instances of size
13x13 was still below three seconds, while for the BL model
it was around 600 seconds.

C. Results Discussion

The Computational Analysis proves the BV model to be
faster than the BL model regardless of the solver it is imple-
mented with, as shown in Figure 1; the best combination of
solver-model is OptiMathSAT running the BV model, while
the solver that showed the best performance when running
the BL model was Z3. The reason for this behaviour lies not
only in the efficiency of the underlying SAT engine within
the SMT solver, but also in the way the particular theory
the model belongs to [19]: some solvers simply bit-blast the
model, meaning that they generate boolean variables to be
able to handle it with Propositional Logic (eager approach),
while others combine the SAT solver with a Theorem Prover
to use specific Procedures to check feasibility (lazy ap-
proach). The latter method can, in some cases, save a lot of
computational effort, increasing the efficiency of the overall
approach. So, depending on the strategy employed by each
solver (eager or lazy) and the efficiency of the procedure for
the specific theory, one solver can be very good at solving
one model, while being rather slow for another.



Fig. 2: Comparison between model sizes of the bit-vector and The boolean implemen-
tations of the time-index model, over the generated instances.

Another interesting result is the model size: the BV model
proved to be extremely compact, increasing only linearly
with the instance size (and with a very low coefficient), while
the BL model’s increase is roughly quadratic (see Figure
2). For other problem formulations, the model generation
can usually be neglected, since it requires a very short
time, compared to the solving time itself. But with time
discretization, the number of variables is much higher, and
the number of constraints generated out of them is even
higher.

VII. CONCLUSION

In this paper we have presented a new approach to
implement the time-index model for the Job Shop Problem
using bit-vectors. We benchmarked two state-of-the-art SMT
solvers over a set of instances generated according to a
standard method and the resulting model turned out to
be more efficient than the existing one based on boolean
variables, regardless of the solver employed. We also showed
that the more compact formulation leads to a drastic decrease
in the model size, which in turn affects the model generation
time (a bottleneck for the time-index model).

Since the time-index model is widely employed both in
industry and academia to deal with the JSP, this contribution
can improve the performance in many applications.

REFERENCES

[1] I. A. Chaudhry and A. A. Khan, “A research survey:
Review of flexible job shop scheduling techniques,”
International Transactions in Operational Research,
vol. 23, no. 3, pp. 551–591, 2016.

[2] R. Sebastiani and P. Trentin, “Pushing the envelope
of optimization modulo theories with linear-arithmetic
cost functions,” in International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems, Springer, 2015, pp. 335–349.

[3] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “νZ-an
optimizing SMT solver,” in International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems, Springer, 2015, pp. 194–199.

[4] S. F. Roselli, K. Bengtsson, and K. Åkesson, “SMT
solvers for job-shop scheduling problems: Models
comparison and performance evaluation,” in 2018
IEEE 14th International Conference on Automa-
tion Science and Engineering (CASE), IEEE, 2018,
pp. 547–552.

[5] S. F. Roselli, K. Bengtsson, and K. Åkesson, “SMT
solvers for flexible job-shop scheduling problems:
A computational analysis,” in 2019 IEEE 15th In-
ternational Conference on Automation Science and
Engineering (CASE), IEEE, 2019.

[6] L. De Moura and N. Bjørner, “Z3: An efficient SMT
solver,” in International conference on Tools and Al-
gorithms for the Construction and Analysis of Systems,
Springer, 2008, pp. 337–340.

[7] E. H. Bowman, “The schedule-sequencing problem,”
Operations Research, vol. 7, no. 5, pp. 621–624, 1959.

[8] A. S. Manne, “On the job-shop scheduling problem,”
Operations Research, vol. 8, no. 2, pp. 219–223, 1960.

[9] E. G. Birgin, P. Feofiloff, C. G. Fernandes, E. L.
De Melo, M. T. Oshiro, and D. P. Ronconi, “A MILP
model for an extended version of the flexible job
shop problem,” Optimization Letters, vol. 8, no. 4,
pp. 1417–1431, 2014.

[10] L. Jin, Q. Tang, C. Zhang, X. Shao, and G. Tian,
“More MILP models for integrated process planning
and scheduling,” International Journal of Production
Research, vol. 54, no. 14, pp. 4387–4402, 2016.

[11] K. Thörnblad, A.-B. Strömberg, M. Patriksson, and T.
Almgren, “Scheduling optimisation of a real flexible
job shop including fixture availability and preventive
maintenance,” European Journal of Industrial Engi-
neering, vol. 9, no. 1, pp. 126–145, 2015.

[12] J. Van den Akker, C. A. Hurkens, and M. W.
Savelsbergh, “Time-indexed formulations for machine
scheduling problems: Column generation,” INFORMS
Journal on Computing, vol. 12, no. 2, pp. 111–124,
2000.

[13] R. Wille, D. Große, M. Soeken, and R. Drechsler,
“Using higher levels of abstraction for solving opti-
mization problems by boolean satisfiability,” in 2008
IEEE Computer Society Annual Symposium on VLSI,
IEEE, 2008, pp. 411–416.

[14] R. Sebastiani and P. Trentin, “OptiMathSAT: A tool
for optimization modulo theories,” Journal of Auto-
mated Reasoning, pp. 1–38, 2018.

[15] H. S. Warren, Hacker’s delight. Pearson Education,
2013.

[16] E. Taillard, “Benchmarks for basic scheduling prob-
lems,” European Journal of Operational Research,
vol. 64, no. 2, pp. 278–285, 1993.

[17] C. Barrett, A. Stump, C. Tinelli, et al., “The SMT-
LIB standard: Version 2.0,” in Proceedings of the
8th international workshop on satisfiability modulo
theories (Edinburgh, England), vol. 13, 2010, p. 14.

[18] Benchmark code, https : / / github . com /
sabinoroselli / Job _ Shop . git, Accessed:
2020-07-06.

[19] D. Kroening and O. Strichman, Decision procedures
- An Algorithmic Point of View. Springer, 2016.


