
  

  

Abstract— The issue of Additive Manufacturing (AM) energy 

consumption attracts attention in both industry and academia, 

as the increasing trend of AM technologies being employed in 

the manufacturing industry. It is crucial to analyze, understand, 

and manage the energy consumption of AM for better efficiency 

and sustainability. The energy consumption of AM systems is 

related to various correlated attributes in different phases of an 

AM process. Existing studies focus mainly on analyzing the 

impacts of different processing and material attributes, while 

factors related to design and working environment have not been 

paid enough attention to. Such factors involve features with 

various dimensions and nested structures that are difficult to 

handle in the analysis. To tackle these issues, a feature-level data 

fusion approach is proposed to integrate heterogeneous data in 

order to build an AM energy consumption model to uncover 

energy-relevant information and knowledge. A case study using 

real-world data collected from a selective laser sintering (SLS) 

system is presented to validate the proposed approach, and the 

results indicate that the fusion strategy achieves better 

performances on energy consumption prediction than the 

individual ones. Based on the analysis of feature importance, the 

geometry relevant features are found to have significant impacts 

on AM energy consumption. 

I. INTRODUCTION 

Additive manufacturing (AM), also referred to as rapid 
prototyping [1], creates physical objects from a geometrical 
representation by successive addition of materials [2]. Due to 
its unique production paradigm, AM technologies have been 
increasingly used for mass customization, production of any 
types of open-source designs in the field of agriculture, 
healthcare, automotive industry, and aerospace industries [3]. 
Comparing to conventional manufacturing, AM shows higher 
efficiency and flexibility, leading to its increasing adoption in 
the industry. However, the Life Cycle Analysis (LCA) 
indicates that the energy consumption of AM systems tends to 
have a significant effect on the environment [4]. This drives 
AM energy consumption analytics to a crucial research topic 
of AM sustainability as the number of AM systems being 
employed keeps growing. AM is regarded as a complex 
manufacturing system of which the energy consumption can 
be different due to various AM technologies, such as selective 
laser sintering (SLS), Stereolithography (SLA), and electron 
beam melting (EBM). Hence, discovering and understanding 
the relationship between AM processes and energy 
consumption can significantly contribute to the improvement 
of energy management.  
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The energy consumption is correlated with various 
subsystems and factors, showing a large difference in terms of 
different working principles and main material supplies [5-8]. 
Most researchers have been focusing on investigations of the 
relationships between processing attributes, material 
properties, and energy consumption, while the impacts of 
design-relevant and working environmental attributes have not 
been paid enough attention to. Several factors related to design 
models and working environment, such as the volume of part 
envelopes [8], part geometry [9], platform temperature [10], 
have been identified to have strong relationships with energy 
consumption in AM processes. However, to comprehensively 
analyze and understand the impacts of these correlated factors 
is still challenging. With the advancement of data collection 
and storage technologies, data-driven approaches have been 
increasingly adopted to investigate and discover the hidden 
knowledge in digital manufacturing systems such as AM. In 
general, data is generated from different sources and 
subsystems of AM processes, such as building chambers, 
operation, and control systems. This data is rarely independent 
but nested to capture the complexity of various factors that are 
correlated with energy consumption. Hence, it is crucial to 
jointly analyze these correlated factors for improving the 
energy management of AM systems. 

This paper proposed a feature-level data fusion approach 
for AM energy consumption analytics through design-relevant 
and working environment data. Section II reviews the studies 
of analysis for AM energy consumption and the applications 
of data fusion techniques in manufacturing. In Section III, a 
feature-level data fusion approach is proposed to integrate the 
features extracted from design models and working 
environment data for energy consumption prediction. Section 
IV presents a case study of energy consumption prediction and 
analytics on an SLS system. Results are compared and 
discussed the performance of the proposed approach. The 
impacts of features are analyzed based on the predictive model 
and the statistical correlation coefficient. In Section V, the 
benefits and restrictions of the proposed methods are 
concluded. 

II. LITERATURE REVIEW 

A. Energy Consumption Analysis for AM Systems 

The energy consumption of AM systems is affected by 
different attributes. Different researches that focus on various 
energy consumption relevant features in AM processes are 
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shown in Table . These features can be classified into four 
categories in terms of product design, processing, working 
environment, and material. However, the impacts of these 
attributes on AM energy consumption are inconsistent which 
is largely due to different working principles of AM systems 
and inadequate factors that were explored. Thus, it is hard to 
identify and measure all the correlated factors in AM processes 
from a single study and experiment. For instance, processing 
attributes have been investigated in several studies. 
Sreenivasan and Bourell [7] calculated the energy 
consumption of the target SLS system by adopting a basic 
function in which the main inputs are the average current 
flowing and line voltage. Their results showed that the 
chamber heater was the largest energy consumer and scan 
speed, laser power rate, road width size, and material density 
were also correlated with energy consumption in the target 
SLS system. Ma et al. [11] developed a multi-objective 
optimization of process attributes model considering energy 
consumption and material cost. In this study, scan speed, gap 
distance, and layer thickness were taken into account and 
found to have significant impacts on energy consumption in 
the target AM system. Besides processing attributes, Watson 
and Taminger [8] also investigated the impacts of design-
relevant attributes, such as the volume of deposited material 
and volume defined by the part envelope, on AM energy 
consumption. However, their suggested computational energy 
consumption model was not validated by experiments. A 
mathematical model for AM energy consumption of SLA-
based processes was proposed by Yang et al. [12]. The author 
calculated total energy consumption of the target system from 
three subsystems which were categorized as ultraviolet curing 
process, building platform movement, and cooling system. 
The impacts of orientation, layer thickness, the curing time for 
stable layers and transition rate on energy consumption were 
analyzed.  

Besides the processing and material attributes, a few 
design-relevant and working environmental features have 
been investigated in previous studies. Liu et al. [9] analyzed 
AM energy consumption from machine level and process level, 
suggesting that energy consumption can be reduced by 
improving the capacity utilization to dilute the energy 
consumed in the preheating and cooling down process. 
Moreover, in situ temperature monitoring is considered critical 
for understanding the heat loss and energy flow during the AM 
process by the author. This reveals that the attributes of the 
working environment, e.g., chamber temperature and gas flow, 
are closely correlated with the thermal history of the substrate 
and AM energy consumption. In the scope of big data and IoT 
applications, Qin et al. [10] proposed a data analytics model 
for predicting AM energy consumption based on artificial 
neural networks. The prediction model integrates data from 
design-relevant, process operation, working environment, and 
material, which tended to cover the entire data generation 
stages during an AM process. The results showed that the 
design-relevant and working environment attributes had 
significant impacts on AM energy consumption based on the 
weights of neurons. However, the relationship between 
features and energy consumption was not analyzed, of which 
further investigation is needed. 

According to previous studies, researchers mainly focused 
on investigating the impacts of processing and material 

attributes on AM energy consumption, while the impacts of 
product design and working environment attributes have not 
been fully explored. Hence, it is crucial to analyze and 
understand the factors related to the design and working 
environment. In the next section, the applications of data 
fusion techniques in manufacturing are discussed.  

TABLE  I.    ENERGY CONSUMPTION RELATED ATTRIBUTES OF AM 

SYSTEMS IN LITERATURE 

B. Data Fusion in Manufacturing 

The data fusion is defined as a framework [13], fit by an 
ensemble of tools, for the joint analysis of data from multiple 
sources or modalities to uncover information not recoverable 
by the individual ones. In general, data fusion techniques are 
commonly categorized into three levels: data-level, feature-
level, and decision-level [14]. Data-level fusion is directly 
combining and integrating data collected from multiple 
sources to build a model, while features are required to be 
extracted from raw data for integration in feature-level fusion. 
Decision-level fusion is to combine the output of several 
models into one model for improving decisions. Initially, data 
fusion techniques are used to fuse data from multiple sensors 
and related information from the associated database since it 
provides significant advantages over single-source data. With 
the fast development of IoT and advanced data analytics 
techniques, it is increasingly used for studying complex 
systems in the industry, especially tackling issues and 
challenges in manufacturing systems. 

A feature-level data fusion approach was proposed by Wu 
et al. [15] for predicting surface roughness in fused deposition 
modeling (FDM) processes. In this paper, features were 
extracted from the real-time monitoring data collected from 
multi-sensors, including temperature and vibration of the build 
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plate, the temperature and vibration of the extruder, and the 
temperature of the deposited material. These features were 
fused as input for building the predictive model of surface 
roughness and showed high accuracy. The author also 
considered that using feature-level fusion for modeling is 
better than data-level fusion in terms of computational 
efficiency. However, only signal data collected from multiple 
sensors were fused for modeling by the author, and similar 
methods of fusion are explored in these studies [16-18]. 

When dealing with massive, correlated, and multi-
dimensional data, data fusion techniques show their 
advantages in discovering hidden knowledge and information 
by jointly analyzing. Vandone et al. [19] developed a 
comprehensive data fusion approach, extracting features from 
sensor signals, image data, 3D geometry, and machine files, to 
model AM process and provide process control strategy. 
However, only laser power and tool velocity were selected as 
process parameters and the control strategy was not validated 
by experiments. Cai et al. [20] proposed a framework of fusing 
manufacturing data and sensory data into developing “digital-
twins” virtual machine tools based on the data fusion approach, 
which aimed to improve the accountability and capabilities for 
cyber-physical manufacturing. The characteristics profile of a 
machine tool was constructed by the key features extracted 
from the manufacturing process and sensory data, such as feed 
rate, spindle current, and acceleration. However, only one 
milling machine tool and a limited number of machining 
sensory data were implemented in this paper, further work on 
comprehensively formatting characteristics profiles of the 
virtual machine tool by fusing more extracted features is 
needed. A hybrid approach was proposed by Zhang et al. [21] 
to fuse image data collected from cameras and sensor data for 
identifying items in smart refrigerators. Besides features-level 
fusion, the author also adopted multi-model fusion based on 
neural networks to improve the accuracy of recognition. The 
results showed that the accuracy of the fused model was 5% 
higher than the individual model. 

According to previous studies, researchers benefit from 
using data fusion techniques for modeling or analyzing 
complex processes and systems. Multiple sensors and IoT 
applications enable researchers to acquire more information 
and data generated from the production chain in manufacturing 
systems. However, as the collected data and information 
become more diverse, massive, and irregular, it is difficult to 
simply combine and fuse data especially when the data is 
nested and hierarchical. For AM systems, data is generated 
with different dimensions and structures, building up barriers 
to conventional data analysis methods. Thus, it is significant 
to fuse the data sources and integrate the collected data. In the 
next section, a feature-level fusion based analytics model is 
proposed, which focuses on analyzing the correlated features 
on AM energy consumption. 

III. METHODOLOGY 

A.  Data Sensing and Collection 

The data used for analyzing the relationship between the 
design-relevant, the working environment, and the energy 
consumption are primarily collected from the design models, 
the systems monitoring files, and different sensors. This 
collected data are generated from the AM process during 
different builds. The design-relevant data is collected from 

design models and analyzed by using AM software where the 
information of features such as the geometries, part locations, 
and orientations can be obtained. The machine embedded 
sensors and IoT applications are used for collecting working 
environment data automatically [22]. Information on 
temperature, humidity, and gas concentration, etc., can be 
obtained. After data collection, feature extraction and selection 
techniques are applied before fusion into the predictive model. 
Then, the features are analyzed based on the feature 
importance ranking. Statistical correlation coefficient analysis 
is a prevailing method in measuring the linear correlation 
between variables. This method is adopted in this study to 
measure the strength of the associations between the factors 
and energy consumption from the statistical perspective. The 
framework of the proposed methodology is illustrated in 
Figure 1. 

Figure 1. The framework of the proposed methodology 

 

B. Feature-level Data Fusion 

AM energy consumption is correlated with various 

attributes and factors. It is difficult to analyze and understand 

these factors separately. Data fusion techniques provide 

effective ways to uncover hidden knowledge through joint 

analysis. During an AM process, the data is generated with two 

different levels, layer-level and build-level. As the data 

remains the same during an AM process and is collected once 

in a build, the design-relevant data is classified into the build-

level. For the working environment, the data collected from 

sensors keeps changing all the time as the parts are 

manufactured layer by layer. Therefore, the working 

environment data is usually collected once per layer and 

should be classified as layer-level data.  

Considering that the types and levels of this generated 

data are various, it is difficult to fuse the raw data for modeling 

and analyzing directly. Hence, a feature-level data fusion 

method is adopted to fuse these data sources. It is effective to 

extract features from raw data which aims to reduce data 



  

dimensions without losing significant information. 

Additionally, the raw data collected from sensors normally has 

massive volume and contains noise data. The predictive model 

based on feature-level fusion is more computationally efficient 

as it processes extracted features that are more informative 

than raw data. In the build-level, the design-relevant features 

are analyzed and extracted by using AM software. In the layer-

level, different time-domain features are extracted from 

working environment data. In this study, time-domain features 

in Ref. [23] are considered, including standard deviation, 

minimum, maximum, mean, and amplitude values. After 

features are extracted from the raw data, a feature selection 

process is employed to select a subset of features from the 

input features. Feature selection could largely reduce negative 

impacts from noise or irrelevant features [24]. Moreover, these 

selected features with crucial information can effectively 

describe the input features and improve the prediction 

performance.  

Following this, the time-domain features related to the 

working environment are extracted from layer-level data and 

can be fused with design-relevant features at build-level for 

modeling and analyzing. 

C. Predictive Model for Energy Consumption Analytics 

Machine learning technologies and data fusion strategies 
have demonstrated their capabilities of finding patterns in data 
and applying this knowledge in industrial scenarios. Hence, a 
machine learning method has been developed to model this 
nonlinear system, providing insights into the highly 
complicated relationships. The design-relevant features and 
the time-domain features extracted from the working 
environment data are integrated and fed into the machine 
learning model for analysis. The output of the model is the unit 
energy consumption which is described in section D. 

 To tackle with massive data and obtain relatively high 
accuracy of predictions, a predictive model for AM energy 
consumption was developed based on Light Gradient Boosting 
Machine (LightGBM) [25]. LightGBM is an open-source 
promotion framework based on the Gradient Boosting 
Decision Tree (GBDT) algorithm that strengthens weak 
learners into a strong one and mainly tackles classification and 
prediction tasks. For GBDT algorithm, when trains a dataset 
{(x1,y1),(x2,y2),...,(xn,yn)}, where x represents data instances 
and y represents the target to be predicted and the estimated 
function is represented by F(x), the optimization goal of 
GBDT is to minimize the loss function L(y, F(x)): 

 arg min ( , ( ))xy
F

F E L y F x=                    () 

The loss function is minimized by iteration in line search: 

1( ) ( ) ( )m m m mF x F x h x−= +                     (2) 

where hm(x) represents the base decision tree, m is the iteration 

number, and 11
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LightGBM adopts a histogram-based decision tree 

algorithm and leaf-wise leaf growth strategy with depth 

limitation, largely reducing the storage and computational 

costs and ensuring high accuracy at the same time. The split 

points are determined by calculating variance gain in 

LightGBM which adopts gradient-based one-side sampling 

(GOSS). Additionally, to tackle sparse features, LightGBM 

employs exclusive feature bundling (EFB) to avoid additional 

computational and memory overhead by converting features to 

a multi-dimensional one-hot feature. As LightGBM is an 

ensemble model of decision trees, the final model FM (x) can 

be obtained through a weighted combination. 

1
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M
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m
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=
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The model developed in this paper integrates the features 
extracted from design-relevant and working environment data 
for predicting AM energy consumption. 

D. Validation of the Predictive Model 

It is known that the energy consumption of an AM 

process largely depends on the building time for 

manufacturing parts. In other words, for the same process, the 

longer the building time is, the more energy is consumed. 

Hence, the energy consumption level is evaluated by using the 

unit energy consumption EU (kWh/kg) of each printed build 

in this study.  
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U
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=                                   (4) 

In equation (4), EB represents the energy consumption of 

a total build, and MB is the weight of a total build. Model 

Correlation Coefficient (MCC) [26] is adopted to evaluate the 

accuracy of the prediction.  MCC is calculated as: 
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In equation (5) and (6), ai is the actual data value anda is the 

average value of the whole data, pi is the predicted value of 

data, p is the average value of predicted data. The 5-fold 

cross-validation is used for evaluating the MCC performance. 

IV. CASE STUDY 

In this case study, the data was collected from August 2016 
to October 2019 from an SLS machine (EOS P700). Data and 
information of more than a hundred production processes with 
thousands of produced parts were included in the datasets. The 
parts were designed by different designers with various shapes 
and geometries.  

A. Data Pre-processing 

The design-relevant and working environment data was 
collected from each build in the target AM system. The design-
relevant data was collected from CAD models which contain 
significant information about product design. Design-relevant 
features, such as the number of printed parts (NumPart), the 
height of the printed build (BuildHeight), the ratios between 
length, width, and height of the printed parts and builds, were 
extracted from CAD models using the AM analysis software, 
called Autodesk Netfabb. There were 12 design features that 
were extracted for describing the geometric information and 
spatial proportion information. For example, the filling 
degrees of the printed parts and builds were calculated for 
describing the utilization of the build chamber space. The 
working environment data was automatically collected once 



  

per layer by various system-embedded sensors. Attributes 
such as chamber temperature, frame temperature, platform 
temperature, and oxygen level are included in the data file 
where there are 9 attributes in total. The time-domain features 
were extracted from the working environment data and 45 
features were finally obtained. A variance thresholding feature 
selection process was adopted to remove features that rarely 
changed in the datasets and the 21 features were finally 
selected. 

B. Results and Discussion 

In this case study, the results focused on the validation of 
the proposed data fusion approach and analyzing the impacts 
of product design and working environment on AM energy 
consumption. Support Vector Regression (SVR), k-Nearest 
Neighbors (k-NN), and Random Forests (RFs) are introduced 
as benchmarks for comparison and to verify the performances 
of the proposed fusion method. The importance of each feature 
contributing to energy consumption was calculated and 
analyzed. Besides, the statistical correlation coefficient was 
adopted to describe the relationship between features and 
energy consumption.  

The MCC results of LightGBM, SVR, k-NN, and RFs are 
shown in Figure 2. The performances of using three different 
datasets, i.e., the design-relevant, the working environment, 
and the combination of the entire datasets, for predicting 
energy consumption are presented. In general, the best MCC 
result was obtained respectively in four models by fusing the 
design-relevant and working environment data sources as 
input, while the lowest results are obtained by only using the 
working environment dataset as input. Specifically, the best 
result (0.65) was obtained by the proposed LightGBM model 
and is slightly higher than the result (0.63) of the RFs model.  

TABLE II.    DESCRIPTION OF THE TOP 10 MOST IMPORTANT FEATURES IN 

FEATURE IMPORTANCE RANKING 

 
The ranking of features is obtained based on the proposed 

LightGBM model by calculating the average information gain 
in 5 predictions and processed with normalization, illustrated 
in Figure 3. The features rank in the top 10 of the feature 
importance ranking are described in Table II. In general, the 
entire impact of design-relevant features (75%) is significantly 

larger than that of working environment features (25%), which 
indicates that product design is strongly correlated with the 
unit energy consumption of the AM system. Specifically, the 
three most important features are FillingDegBuild, 
AverFillingDegPart, and AverRatioL-WBuild. The filling 
degree of the whole printed build has a strong impact on 
energy consumption (over 35%), indicating that the utilization 
of the build chamber space is crucial. Besides, the changes in 
the temperature of the chamber also strongly correlated with 
energy consumption which possibly due to the heating process 
and heat transfer with materials. It is interesting that the height 
of the printed build and the number of printed parts appear not 
to have significant impacts on unit energy consumption which 
can be caused by various factors, such as different geometries, 
different filling degrees, and so on.  

Figure 2. Comparison of MCC of the proposed model and benchmarks.  

 

Figure 3. The feature importance ranking 

 

The features rank in the top 10 of the feature importance 
ranking are selected for correlation coefficient analysis, 
illustrated in Figure 4. In general, the FillingDegBuild and 
AverFillingDegPart show strong linear correlations (-0.57 and 
-0.28) with energy consumption in the target SLS system, 
which is consistent with the results of the feature importance 
analysis. Specifically, except for the AverRatioL-WBuild, 
AverRatioL-WPart, O2LevelMax, and AverRatioL-WPart, 
the remaining features show negative linear correlations with 
energy consumption. For instance, energy consumption tends 
to decrease when FillingDegBuild and BottomArea increase. 
The number of printed parts shows a negative correlation with 

Feature Description 

FillingDegBuild The filling degree of the whole printed build (%) 

AverFilling 

DegPart 

The average filling degree of the single printed part 

(%) 

AverRatio 
L-WBuild   

The ratio of length to width of the whole printed build 
(%) 

AverPartHeight The average height of the printed parts (mm) 

AverRatio 

L-HPart 

The average ratio of length to height of the single 

printed part (%) 

Chamber 

TemSD 

The standard deviation of the temperature value of 

the building chamber (℃) 

O2LevelMax 
The maximum value of oxygen percentage in the 

working chamber during a build (%) 

AverRatioL-

WPart 

The average ratio of length to width of the single 

printed part (%) 

BottomArea The area of the bottom (mm2) 

NumPart The number of printed parts 



  

energy consumption which is possibly due to the increase of 
the utilization of build chamber space. The energy 
consumption tends to increase while the temperature of the 
chamber with less fluctuation. Further exploration and 
investigation are needed to explain this phenomenon. 

Figure 4. Statistical correlation coefficient analysis for the top 10 most 
important features 

 

V. CONCLUSIONS 

In this paper, a feature-level data fusion approach is 

developed for analyzing the features related to the design and 

working environment on AM energy consumption. The 

LightGBM model adopted in this paper can effectively 

explain the importance of features based on the information 

gain. An experimental study on an SLS system was 

implemented and the results indicated that better 

performances of prediction were obtained by integrating 

features as input in the predictive models. The feature 

importance analysis illustrated that the filling degree of the 

whole printed build had the highest impact (over to 35%) on 

AM energy consumption among 21 selected features. In 

addition, the results also indicated that the entire impacts of 

design-relevant features (more than 70%) on AM energy 

consumption were significant. 

In future work, more design-relevant features will be 

extracted and factors such as material and processing 

attributes will also be taken into consideration for uncovering 

energy-relevant information and improving prediction 

accuracy. Energy consumption of different industrial AM 

systems such as SLM will be investigated in the future. 
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