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Abstract— This paper presents a method for vibration 

analysis and a simple test bench analogue for the solder pumping 

system in an industrial wave-soldering machine at a Siemens 

factory. A common machine fault is caused by solder build-up 

within the pipes of the machine. This leads to a pressure drop in 

the system, which is replicated in the test bench by restricting 

the flow of water through the use of a gate valve. The pump’s 

vibrational response is recorded using an accelerometer. The 

captured data is passed through a Bayesian Change point 

Detection algorithm, to detect the point at which the change in 

flow rate affects the pump, and thus the machine output. This 

information can be used to isolate the vibrational response 

indicative of the machine fault, which can then inform 

maintenance procedures. 

I. INTRODUCTION 

This paper describes a non-disruptive technique to detect a 

machine fault in a wave-soldering machine in PCB 

manufacturing. The fault in question is solder build-up in the 

machine pipes, which was considered the most common 

recurring machine fault in the wave-soldering process by 

Siemens Congleton. The system maintains a constant flow of 

solder in order to provide a set wave height for PCB soldering. 

Over time, solder dross builds up in the pipes and results in 

reduced wave height, leading to unsoldered products that 

require repairs or touch-ups. Once this is detected, pump 

power is manually increased to raise the wave height, 

compensating for the reduced pressure. After the power is 

raised over a threshold, the machine is turned off and 

maintenance is performed. This is a reactive process repeated 

on a weekly to monthly basis, depending on the length of 

machine uptime and quality of solder. The project brief set by 

Siemens requires a non-disruptive and low-cost solution. The 

goal is to improve the fault detection rate and reduce the 

number of unsoldered products. 

Knowledge about the machine state can feed into predictive 

maintenance decisions. Early and accurate fault detection is 

key to minimising machine downtime and overall 

maintenance costs [1]. Additional value has been added by the 

current industrial push towards I4.0 and connected factories: 

using an Industrial Internet of Things (IIoTs) allows for 

greater abilities to gather and process machine data [2]. 

Despite this, the time and cost of replacing machines can 

dissuade companies from upgrading. Instead, retrofitting and 

a “wrap and re-use” attitude is considered preferable [3]. This 

is a key motivator for this paper and the proposed 
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methodology - the minimal disruption to existing machines 

and processes allows for the extraction of new data from the 

available resources, without any requirement for machine 

downtime. 

Pump vibrations are used for the vibration analysis in this 

paper because other data cannot realistically be collected from 

the wave-soldering machine non-disruptively. Pump 

vibration monitoring is not unique, and many examples can 

be found in literature [4], [5]. Techniques include comparing 

recorded pump vibrations against a model of the expected 

vibrations [6] and using pump vibrations to predict cavitation 

by training an Artificial Neural Network (ANN) [7]. 

Similarly, time-frequency analysis of vibrations have been 

used to diagnose wear in pump valve plates [8]. These 

analyses are effective at detecting issues such as cavitation, 

resonance and misaligned or warped components, and 

notifying operators when pump maintenance needs to take 

place. 

However, pump vibration analysis is not (to the author’s 

knowledge) used to monitor general system health and predict 

faults that occur outside of the pump itself. This is largely 

assessed using pipe vibrations [9], [10], which can provide 

insights into general system performance, or be used to locate 

discrete blockages downstream of pumps [11]. In the 

motivating scenario, access to the pipes is unavailable, and 

solder build-up does not form a localized blockage. Any 

solution needs to have low complexity so that it can be 

implemented on a low-cost microcontroller. Additionally, 

there is no pre-existing vibration data with which to establish 

baseline readings. 

This paper uses Bayesian Change point Detection (BCD) 

to fulfill these requirements and assesses its suitability on a 

test bench. The use case fault can be presented as an 

unsupervised segmentation problem as the machine 

transitions from a functional to a non-functional state. BCD is 

particularly suitable for this type of problem [12]. It provides 

a measurement of the probability that, based on the collected 

information, a change in behaviour has occurred at a certain 

point [13], [14]. This can then be used to isolate the 

vibrational response of the pump at the point where the solder 

build-up is affecting the flow rate, or directly notify machine 

operators of the machine state. In rare cases where the 

deterioration of the pipe state is instantaneous rather than 
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gradual, the change in vibrational response will still be able 

to inform machine operators of the need for maintenance. 

Successful applications in literature include the assessment of 

climate records to locate change points in climate regimes 

[14], detecting faults and failures in valves in an Unmanned 

Aerial Vehicle (UAV) fuel system [15], and detecting 

changes in the behaviour of a user of a text-messaging service 

[13]. BCD has also been used for online signal segmentation 

of epileptic brain activity [16] as well as activity recognition 

in a home [17]. The variety of applications demonstrates the 

flexibility of BCD. Alongside the number of change points, 

BCD can also provide an indication of the size of the changes 

[14], which can highlight significant events. The drawback of 

this approach is a sensitivity to the prior distribution assigned 

to the change points present in the system. 

II. METHODOLOGY 

The research methodology as illustrated in Fig.1 aims to 

use data analytics for improved process control in wave 

soldering. The data analytics approach is based on non-

disruptive data extraction and processing using Bayesian 

Change point Detection. A test bench setup has been 

developed to replicate the wave-soldering machine behavior 

as the industrial machine and environment is not suitable for 

development. To keep it manageable in a laboratory 

environment, water is used instead of solder. The difference 

between the vibrational characteristics of water and solder 

should not affect the results of the BCD so long as the 

deterioration of the pipe leads to a change in measured 

vibrations that the BCD can detect. The experimental set-up 

and data collection are discussed in sections A and B, and the 

BCD formulation is discussed in section C. 

A. Test Bench Setup 

The test bench presented in this paper considers the 

behaviour of a pump moving water through a closed system.  

The flow rate is controlled by a gate valve, which is closed in 

discrete increments, from 0 (completely open) to 25 

(completely closed). It mimics the effects of solder dross 

build up in a wave soldering machine, which takes place over 

several weeks. As such, the steady state behaviour of the 

pump is the most relevant to this investigation. The schematic 

for this can be seen in Fig. 2, with a photo of the realised test 

bench in Fig. 3.  

As the valve is closed, the change in the fluid’s flow rate is 

monitored using the flow rate sensor YF-S201, connected to 

an Arduino. The vibration of the pump is recorded, using an 

accelerometer (LSM9DS1), at each increment to build up its 

response profile. This data is then processed at a Raspberry Pi 

3B, and the results can be displayed in real time or uploaded 

to online networks, including any available IIoTs. 

B. Data Collection from the Test Bench 

The change in flowrate as the valve is closed is shown in 

Fig. 4. There is a small drop in the flow rate from states 0-16 

before a transition period, and an almost linear drop to no flow 

from states 21-25. The minimal initial change is a result of the 

low flow rates used in this experiment, mimicking the low 

flow rates used in the wave-soldering machine. Pump 

vibrations are recorded with a sampling rate of 350Hz. At 

each valve state, 10 samples of 10,000 data points have been 

collected. The accelerometer has a range of ±2g, a sensitivity 

Figure 1. Wave Soldering Machine process diagram. Dotted arrows represent 

the movement of data. Solid arrows represent the movement of physical 

parts. The green box represents the non-disruptive paper contribution. 
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of 0.061 mg/LSB, and collects samples in the X, Y and Z axis. 

This is then converted into the absolute acceleration.  

A fast Fourier transform (FFT) algorithm is used to extract 

the frequency and amplitude data from the vibrations [4]. Fig. 

5 and Fig. 6 show the results of the FFT on the vibration data 

at valve states 0 and 25 respectively. The difference between 

the two is clearly visible, as the peak frequency shifts to the 

left. Additionally, it is clear that a lot of noise is present in the 

system – as would be present in an industrial setting. The 

solder in the use case might result in different vibrational 

characteristics. Despite this, the solder blockage should still 

result in a change in the recorded vibrations over time, which 

can be detected by the BCD algorithm. This is a significant 

benefit of the proposed methodology: as long as the input 

changes in a way that can be detected, the BCD algorithm will 

be able to assess the probability that a change point has 

occurred at a given point in time. This reduces the need for 

calibration procedures, which can be expensive and time 

consuming. 

C. Bayesian Change Point Detection 

Fig. 7 presents the pump data gathered by the 
accelerometer. Analysis of the time-domain vibration data has 
shown that it is not suitable for the analysis – it does not vary 
significantly enough across the different valve states to be a 
useful feature for predicting the current state. The mean of the 
amplitude of the time-domain data is shown to remain roughly 
constant throughout. However, the plotted features extracted 
from the FFT (peak frequency and maximum amplitude) can 
be seen to respond to the change in valve state. As such, these 
are the features used in the BCD algorithm presented in this 
paper. 

Since both the peak frequency and the maximum 
amplitudes are used for the BCD in an identical fashion, the 
formulation is only shown for the maximum amplitude. The 
initial step requires choosing a model for the distribution of the 
collected data. This data can fall into three classifications: 
discrete, continuous and mixed. The chosen distribution has to 
be able to represent the data [11]. In this case, the amplitude 
(A) of the vibration data is continuous and samples are 
collected over the range of valve states, V, such that A = { 
A1,…,AV}v=1,..,V. It is safe to assume that any given sample for 
A will have a value that falls within a normal distribution: 

𝐴𝑉~𝑁(𝜇, 𝜎)         (1) 

It is then assumed that over the range of valve states there 
is a single change point, τ, during which µ changes to a 
different value – corresponding to the point where the mean 
amplitude changes and the pipe state deteriorates enough to 
significantly affect the flow rate. This leads to two µ 
parameters, one before τ and one for the rest of the remaining 
observation period: 

𝐴𝑉 = {
𝑁(𝜇1, 𝜎) 𝑓𝑜𝑟 𝑣 < 𝜏

𝑁(𝜇2, 𝜎) 𝑓𝑜𝑟 𝑣 ≥ 𝜏
      (2) 

Since only the observed data is known, but no information 

about its distribution is available, the change point and 

probability distribution have to be inferred purely from the 

measurements. This can be expressed using Bayes' theorem: 

𝑃(𝜇1, 𝜇2, 𝜎, 𝜏|𝐴) =  
𝑃(𝐴|𝜇1,𝜇2,𝜎,𝜏)𝑃(𝜇1,𝜇2,𝜎,𝐴)

𝑃(𝐴)
   (3) 

An analytical solution to (3) can be found in [18], which 
marginilises the equation with respect to μ1, μ2, and σ to 
provide an analytical solution for the posterior probability 
distribution P(τ|A). The posterior probability is a model 
parameter inferred by the observed data – in this case, the 
inferred probability that a change point τ occurred when the 
maximum amplitude had a value of A. However, in many 
practical cases a numerical method is employed to obtain this 
probability distribution because analytical solutions can 
become mathematically intractable [13]. This requires prior 
distributions to be assigned to the unknown parameters P(µ1), 
P(µ2), P(σ), and P(τ). Based on the observed data, the 
following prior distributions are assigned: µ1 ~ 
Uniform(100,200), µ2 ~ Uniform(100,200), σ ~ 
Uniform(0,100), and τ ~ Discrete, Uniform(0,25). Since the 
actual values for µ1, µ2 and σ are unknown, their prior 
distributions are assumed to be uniform over a range informed 
by the observed data. The value of τ is also unknown, but is 

Figure 4. Flow rate against valve state 

Figure 5. FFT of vibration data at state 0 

Figure 6. FFT of vibration data at state 25 



  

known to be discrete as it has to be one of the tested valve 
states. Uniform distributions have been assigned to all the 
parameters to avoid biasing the BCD. However, other 
distributions can be used based on knowledge about the system 
in question. 

 Once the distributions have been assigned, this problem is 
solvable using readily available tools: in this case, PyMC3 is 
used because of its flexibility and power [13], [19]. It uses 
Markov Chain Monte Carlo (MCMC) methods, which 
generate samples from the given prior distributions and 
compares them to the existing data in order to generate the 
posterior distributions. In this case, the method used is 
adaptive slice sampling [20], chosen because of its suitability 
for sampling from discrete data distributions. Multiple MCMC 
chains are used to improve the quality of the results [21], with 
the first set of samples being discarded as part of the “burn-in 
period” which occurs before convergence. With this done, the 
distribution of τ, µ1, µ2 and σ can be plotted with simple 
functions of PyMC3. The plot of τ shows the likelihood of the 
change point occurring at any given valve state. 

 

III. RESULTS AND DISCUSSION 

From Fig. 4, it can be seen that flowrate reduction because 

of pressure drop is minimal until valve state 18 – 

approximately 75% closed. After this point, the flow rate 

reduction appears to be linear. 

Fig. 8 shows the plotted distributions of τ, µ1, µ2 and σ when 

applying the algorithm to the extracted maximum amplitudes. 

The higher value of µ2 over µ1 confirms that a change point 

has occurred and the amplitude of the pump vibrations 

increased as the valve was shut. The lack of an overlap 

between the values increases the certainty in the result [13]. 

The τ plot shows that the probability of the change point 

occurring is highest at valve state 19, although it does indicate 

a possibility of a change point as early as state 17. This 

corresponds with the flow rate plot in Fig. 4. This information 

can then be plotted back onto the original amplitude reading 

to show the expected values based on the change point 

probabilities (Fig. 9). 

Performing a similar analysis using the peak frequency 

gives the results plotted in Fig. 10. In this case µ1 is greater 

than µ2 as the frequency drops as the valve closes. τ indicates 

the change point is most likely to have occurred at valve state 

23, with lower chances of it being at state 22 and 24. Plotting 

this against the original frequency readings shows that it 

follows the frequency change very closely (Fig. 11).  

This data analysis has shown that it is possible to use pump 

vibrations to assess the state of a system. It is possible to 

generate two different sources of data, which can then be used 

by the BCD algorithm to identify the points at which the flow 

rate begins to decrease. The predicted change points can be 

plotted against the recorded flow rate to demonstrate the 

effectiveness of the BCD based on the information it used 

(Fig. 12). Using the amplitude leads to earlier detection, 

which is valuable in situations where the processes involved 

are sensitive to any change. Using frequency leads to later 

detection, useful in processes which are less sensitive to 

changes and do not require immediate maintenance. In this 

case, the wave soldering machine chosen as a use case is 

sensitive to rapid changes in flow rate, so earlier detection is 

desirable. 

IV. CONCLUSIONS 

This paper presents a new methodology for detecting an 

industrial fault in a wave-soldering machine. A BCD 

formulation is used to identify the point at which flowrate 

reductions happen as a result of the pressure drop caused by 

solder build-up in a pipe. It is assessed on a test bench 

analogous to a pump system in an industrial wave-soldering 

machine. A low-cost, non-disruptive monitoring device is 

used to collect pump vibration data to monitor machine states. 

The BCD then successfully generates the likelihood of a 

Figure 7. Data extraction from recorded pump vibrations at each valve state 



  

change point occurring when the flow rate is reduced. This 

information can help machine operators better identify 

machine states and inform maintenance procedures. 

Future work will use data collected directly from the wave-

soldering machine, assessing the suitability of the chosen 

methods and the test bench with regards to actual industrial 

environments – especially with regards to industrial noise. 

Additionally, using an accelerometer capable of a faster 

sampling rate would help to identify whether the current setup 

is suitably sensitive or whether it needs to be improved. 

Adapting the algorithm to run online will also allow for live 

updates on IIoT and cloud platforms.  
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