
Miniature Robot Path Planning for Bridge
Inspection: Min-Max Cycle Cover-Based Approach

Michael Lin and Richard J. La
Department of Electrical and Computer Engineering

and the Institute for Systems Research
University of Maryland, College Park
{mlin1025, hyongla}@umd.edu

Abstract—We study the problem of planning the deployments
of a group of mobile robots. While the problem and formulation
can be used for many different problems, here we use a bridge
inspection as the motivating application for the purpose of
exposition. The robots are initially stationed at a set of depots
placed throughout the bridge. Each robot is then assigned a set of
sites on the bridge to inspect and, upon completion, must return
to the same depot where it is stored.

The problem of robot planning is formulated as a rooted min-
max cycle cover problem, in which the vertex set consists of
the sites to be inspected and robot depots, and the weight of
an edge captures either (i) the amount of time needed to travel
from one end vertex to the other vertex or (ii) the necessary
energy expenditure for the travel. In the first case, the objective
function is the total inspection time, whereas in the latter case, it
is the maximum energy expenditure among all deployed robots.
We propose a novel algorithm with approximation ratio of 5+ ε,
where 0 < ε < 1. In addition, the computational complexity of
the proposed algorithm is shown to be O

(
n2+2m−1n log(n+k)

)
,

where n is the number of vertices, and m is the number of depots.

I. INTRODUCTION

With aging infrastructure, ensuring the safety of existing
civil structures, such as bridges, roads and tunnels, is becoming
an important societal challenge. Inadequate monitoring of in-
frastructure can result in major incidents, such as the collapse
of bridges, e.g., the failure of Ponte Morandi bridge in Italy
in August 2018, which killed 43 people. According to a 2018
U.S. Federal Highway Administration (FHWA) report, more
than 47,000 bridges are deemed to be in “poor” condition out
of approximately 616,000 bridges, and nearly a half of all
bridges are found to be in “fair” condition [1].

Unfortunately, many segments of a bridge are not eas-
ily accessible, making it difficult for human inspectors to
perform frequent inspections. As a result, many bridges are
not inspected frequently enough to maintain their structural
health and safety, which is reflected in the U.S. FHWA report,
thereby raising the possibility of suffering another major
bridge collapse in the future.

Rapid advances in robotics technologies make it possible
to employ small mobile robots to help with the inspection of
different types of structures, including bridges. These robots
will likely be battery powered to improve their mobility,
thereby limiting their ranges and tasks that they can perform
before their battery needs to be recharged. For this reason, in

order to complete a bridge inspection as quickly as possible, it
is important to take into account their energy constraints when
employing the robots for inspection.

Fig. 1: Bridge inspection by mobile robots.

We study a robot planning problem in which a group of
battery-powered mobile robots are stored and recharged at a
set of depots, and are utilized for inspecting a set of sites.
These sites could, for instance, represent various points on a
bridge that need to be inspected (e.g., joints) by a robot. This
is illustrated in Fig. 1. In the figure, vertices represent the set
of sites on a bridge to be inspected by the robots, and edges
show paths robots can take to move between various points
on the bridge.

In our problem, we are interested in determining, for each
robot, (i) a depot where it is to be stored (and recharges its
battery) and (ii) a set of sites for the robot to inspect. We
require that, upon completing the inspection of all assigned
sites, the robot must return to the same depot where it is stored.

The problem is formulated as a rooted min-max cycle cover
problem. Each cycle in the cycle cover, which is rooted at a
depot, is assigned to a robot and determines a subset of sites
that the robot must inspect as well as the depot at which the
robot is to be stationed. We propose a new algorithm for the
rooted min-max cycle cover problem with approximation ratio
of 5 + ε (0 < ε < 1).

The rest of the paper is organized as follows. Section II
summarizes some of the most closely related studies in the
literature. Section III presents the model and formulation of
our problem. Our proposed algorithm is described in Sections
IV and V. We discuss the complexity of the proposed algo-
rithm in Section VI.

ar
X

iv
:2

00
3.

12
13

4v
1

 [
cs

.D
S]

 6
 M

ar
 2

02
0

II. RELATED WORK

The well-known traveling salesman problem (TSP) is NP-
hard. Since the TSP is a special case with one depot and one
agent, the general rooted min-max cycle cover problem is also
NP-hard. For this reason, researchers proposed approximation
algorithms for related problems over the years.

Even et al. [2] studied the min-max cycle cover problem in
the context of nurse station location problem. They proposed
algorithms for both rooted and unrooted (or rootless) min-max
tree cover problems with approximation ratio of 4+ ε (ε > 0).
This provides an 8+ ε approximation algorithm for the rooted
min-max cycle cover problem.

In a closely related study, Arkin et al. [3] also provided
a 4 + ε approximation algorithm for the unrooted min-max
tree cover problem. Khani and Salavatipour [4] improved the
approximation ratio to 3 + ε for unrooted min-max tree cover
problem, which in turn yields an approximation ratio of 6+ ε
for the unrooted min-max cycle cover problem.

Rather than starting with a tree cover problem, Jorati [5]
directly studied both rooted and unrooted min-max cycle cover
problems and proposed algorithms with approximation ratio of
5 1
3+ε and 7+ε for unrooted and rooted problem, respectively.

Similarly, in an independent study, Xu et al. [6] investigated
the same cycle cover problems and proposed algorithms with
approximation ratio of 5 1

3 + ε and 6 1
3 + ε for unrooted and

(uncapacitated) rooted min-max cycle cover problems, respec-
tively.1 In addition, Yu and Liu [7] proposed algorithms with
improved approximation ratio of 5+ ε and 6+ ε for unrooted
and rooted min-max cycle cover problems, respectively, by
utilizing the well-known Christofides algorithm [8] for the TSP
problem.

We point out that there are other studies on special cases
of the cycle cover problems with better approximation ratios,
e.g., [9], [10], [11], [12], [13]. For example, Frederickson et
al. [9] proposed a 2 1

2 + ε approximation algorithm for single
depot case. Finally, Xu and Wen [14] proved that, unless P =
NP , there exists no polynomial time (1 3

17 −ε)-approximation
algorithm for the min-max cycle cover problem with a single
root. This result is generalized by Xu et al. [15] who showed
that there does not exist a polynomial time algorithm for the
unrooted and rooted min-max cycle cover problems with an
approximation ratio less than 1 1

3 unless P = NP .
It is worth mentioning that, although our rooted min-max

cycle cover formulation is inspired by [6] and [7], our model
is slightly different: they only required the union of cycles
to cover all vertices, except for depots. In other words, the
depots need not be covered by the cycle cover. In our problem,
however, we require that all vertices, including depots, be
covered by the cycle cover.

Instead of investigating the unrooted min-max cycle cover
problem and applying the algorithm on the rooted version as
in many, if not most, of related studies, we directly tackle
the rooted min-max cycle cover problem. We propose an

1The authors of [6] also studied the capacitated rooted min-max cycle cover
problem and proposed an algorithm with approximation ratio of 7 + ε.

approximation algorithm that runs in polynomial time with
a fixed number of depots. The approximation ratio of 5+ ε is
comparable to the state-of-the-art algorithm for unrooted prob-
lem [7]. Moreover, even though our formulation is somewhat
different, our approximation ratio is better than the previous
best algorithm for rooted cycle cover problem [7].

III. MODEL AND FORMULATION

We formulate the problem of robot planning as a rooted
min-max cycle cover problem on a complete undirected graph
G = (V,E): the vertex set V consists of both (a) the sites to be
inspected by the robots and (b) the depots where the robots
are stored, and each undirected edge e in E has a weight
associated with it. The goal of the problem is to find a set
of cycles subject to following two constraints: (i) each cycle
is rooted at a depot in that it starts and ends at the same
depot, and (ii) the union of all cycles covers all vertices in V .
The interpretation is that each cycle found in the problem is
assigned to a unique robot and determines the set of sites to
be visited by the robot as well as the depot at which the robot
will be stored.

The weights assigned to the edges depend on our objective.
We consider two different choices of weights. Obviously, it is
possible to take a weighted sum of the two choices.

• Case I: The weight of an edge models the minimum
amount of time needed to travel from one end vertex to
the other vertex. In this case, the overall cost for a robot
is equal to the total travel time for the robot to visit all
assigned sites in the cycle and come back to the depot.
The objective of our problem is to minimize the total
amount of time needed for inspection, which is equivalent
to minimizing the maximum cost among all robots.2

• Case II: In the second case, the edge weight indicates
the necessary energy expenditure for the travel from one
end vertex to the other. The goal is then to minimize the
maximum energy expenditure among all robots for the
given assignments.

The second formulation allows us to determine whether
or not the battery-powered robots can perform the inspection
without having to recharge; if the optimal value of the opti-
mization problem is larger than the amount of battery energy
available to the robots, it suggests that recharging is necessary
for some robots.

These edge weights can be obtained from the weights we
can estimate from the physical structure. For example, Fig. 1
tells us the available paths between various points on the
bridge. Once we estimate the weights of these available paths
on the bridge, we can use a well-known algorithm, such
as Dijkstra’s algorithm [16], to compute the weights of the
shortest paths between any pair of vertices in V .

2Here, we implicitly assume that the amount of time it takes to inspect
the sites is negligible compared to the travel time. However, the case with
non-zero weights associated with vertices can be handled by constructing a
new graph with only edge weights as described in [15].

A. Rooted min-max cycle cover problem

Suppose (i) G = (V,E) is a complete undirected graph
described earlier, (ii) w : E → IR+ := [0,∞) is an edge
weight function, (iii) D ⊆ V is a set of depots (where the
robots are stored), and (iv) k is a positive integer (which
is equal to the number of robots in our problem). Given a
subgraph G′ of G, e.g., a cycle or a tree, let E(G′) and V(G′)
be the set of edges and the set of vertices, respectively, in G′.

Denote by Ck the set of all possible edge-disjoint, rooted
cycle covers of V with at most k cycles. In other words, an
element C = {C1, . . . , Cq} of Ck consists of q cycles in G
satisfying the following:

c1. q ≤ k;
c2. E(Ci) ∩ E(Cj) = ∅ for all i 6= j;
c3. for every cycle Cj ∈ C , |V(Cj) ∩D| = 1; and
c4. ∪qj=1V(Cj) = V .

Given a cycle cover C in Ck, we denote the number of cycles
in C by ξ(C).

The rooted min-max cycle cover problem we adopt is the
following optimization problem:3

Rooted Min-Max Cycle Cover Problem

minimizeC∈Ck max
j=1,...,ξ(C)

(∑
e∈E(Cj)

w(e)
)

(1)

where, with a little abuse of notation, Cj denotes the j-th cycle
in C . Therefore, the goal of the rooted min-max cycle cover
problem is to find q edge-disjoint cycles C = {C1, . . . , Cq}
such that (a) q ≤ k, (b) each cycle contains exactly one
depot in D, (c) the union of these cycles includes all vertices
in V , and (d) the maximum weight of cycles is minimized.
As mentioned earlier, a feasible solution we obtain from the
optimization problem in (1) also determines the (minimum)
number of robots that will be stored at each depot.

Throughout the paper, we assume that the edge weight
function w is a metric and, hence, satisfies symmetry and
triangle inequality: for all distinct vertices v1, v2, v3 ∈ V , we
have

w(v1, v2) ≤ w(v1, v3) + w(v3, v2).

This is a natural assumption for both choices of edge weights
discussed earlier.

Remark 1: Recall that the rooted min-max cycle cover
problem in (1) permits only edge-disjoint cycles. Our problem
of robot planning does not explicitly require that the cycles be
edge-disjoint. However, using the assumption that the edge
weight function w is a metric, one can easily show that the
following holds: given a feasible non-edge disjoint cycle cover
C , we can construct an edge-disjoint cycle cover C ed such
that the maximum cycle weight of C ed is less than or equal
to that of C . For this reason, without loss of generality, we

3In some cases, it may make sense to limit the number of robots that can
be stored at each robot. This would give rise to a capacitated rooted min-max
cover problem. Here, we assume no such constraints on depot sizes.

can focus on edge-disjoint cycle covers in the rooted min-max
cycle cover problem in (1).

Remark 2: It is clear from the constraints that, if k <
|D| =: m, then there is no feasible solution; since each
cycle can include only one depot (constraint c3), at most k
depots can be contained in the union ∪kj=1Cj and, as a result,
constraint c4 cannot be satisfied. Although this issue can be
dealt with by changing the formulation slightly, we assume
that there are more robots than the depots, i.e., k ≥ m. This
is a reasonable assumption for our problem as the number of
depots is expected to be small with each depot housing many
robots.

Remark 3: From the problem formulation in (1), the cycle
cover we are looking for must cover not only all the sites
of interest, but also all depots in D. In other words, we
require that at least one robot be stationed at each depot.
Although we make this assumption explicit, this is likely
to be satisfied in practice even without making it explicit;
depots should be spread out across the bridge for storage and
recharging, and sites close to each depot should be assigned
to robot(s) stationed at the depot. Otherwise, the depot should
be removed.

IV. PRELIMINARIES: KEY STEPS OF THE PROPOSED
ALGORITHM

The proposed algorithm (Algorithm 3 in Section V) consists
of several steps that we discuss in detail in this section. The
input to the algorithm comprises the information for the rooted
min-max cycle cover problem: (a) a complete undirected graph
G = (V,E), (b) a metric edge weight function w, (c) the
number of cycles k, and (d) the depot set D.

A. Step 1: Construction of a rooted spanning forest F ∗

(a) Depots (red) and other vertices
in V − (black).

(b) Merging of all depots into a
single vertex d̂ (red circle).

(c) Construction of a minimum
spanning tree T ′.

(d) Construction of a rooted span-
ning forest F ∗.

Fig. 2: Illustration of Step 1 for constructing a rooted spanning
forest.

The first step generates a rooted forest with m trees and
consists of the following two steps:4

4The forests we construct are in fact tree covers for G. For consistency,
we shall refer to them as forests in the remainder of the paper.

Step 1-i: First, we collapse all depots in D into a single
node, which we denote by d̂. This is shown in Fig. 2(b).
Second, we create an edge from d̂ to every vertex v in
V \D =: V − with an edge weight

w(d̂, v) = min
d∈D

w(d, v).

We denote the complete undirected graph with vertex set
V ′ := V − ∪ {d̂} by G′ = (V ′, E′). Third, we compute a
minimum spanning tree T ′ of G′, using Prim’s algorithm [16],
as shown in Fig. 2(c).

Step 1-ii: We uncouple the node d̂ back into the original
depots to create a forest F ∗ as follows: first, let F ∗ = T ′.
Second, add the depots in D and replace each edge (v, d̂), v ∈
V −, with an edge (d?, v), where d? ∈ argmind∈D w(d, v).
When | argmind∈D w(d, v)| > 1, we arbitrarily choose a
depot in the set. Finally, we remove d̂. The resulting rooted
forest F ∗ has exactly m trees in it, which are denoted by
T ∗1 , . . . , T

∗
m. This is illustrated in Fig. 2(d).

B. Step 2: Virtual Forest (F) and an Exhaustive Search

The second step takes F ∗ generated in Step 1 as the input
and produces a set of forests with trees that are created by
merging the trees in F ∗ in different ways. In particular, it
considers 2m−1 different possible ways in which the m trees
in F ∗ can be connected with each other. The reason for this
is to ensure that we consider at least one forest that will lead
to a rooted cycle cover with a provable upper bound on the
maximum cycle weight (Steps 3 and 4). Specifically, we want
to make sure that the forest described below is considered in
Steps 3 and 4 through an exhaustive search.

Step 2-i: Consider the construction of a spanning tree using
Algorithm 1 below, starting with the forest F ∗.

Algorithm 1 Construction of Edge Set E†

1: Let Ftmp = F ∗ and E† = ∅
2: while there is more than one tree in Ftmp do
3: Find an edge ec ∈ E that joins two distinct trees T1

and T2 in Ftmp with the smallest weight
4: Add ec to E†

5: Remove T1 and T2 from Ftmp, and add the new tree
formed after connecting T1 and T2 with ec to Ftmp

6: end while

Note that the edge set E† produced by Algorithm 1 contains
m − 1 edges that connect the m trees in F ∗ into a single
spanning tree.

a) Forest Fopt: Suppose that C ∗ = {C∗1 , . . . , C∗q∗},
where q∗ ≤ k, is a solution to (1), i.e., an optimal cycle cover,
and the maximum weight of cycles in C ∗ is λ∗. Note that λ∗

is the optimal value of (1). Throughout the remainder of the
paper, with a little abuse of notation, we denote the total weight
of edges in a subgraph G̃, such as trees and cycles, by w(G̃).

Assume for now that the optimal value λ∗ and the optimal
cycle cover C ∗ are known. We classify a tree T into three
categories on the basis of the optimal value λ∗:

T1. Heavy tree : w(T) ≥ λ∗.
T2. Light tree : w(T) < λ∗ and there exists a cycle C ∈ C ∗

such that V(C) ⊆ V(T), i.e., T contains all the vertices
in at least one cycle in the optimal cycle cover C ∗.

T3. Bad tree : w(T) < λ∗ and there is no cycle C ∈ C ∗

such that V(C) ⊆ V(T).
Based on this classification of trees, starting with the forest

F ∗, we perform a procedure in Algorithm 2 to eliminate bad
trees and construct a new forest free of bad trees.

Algorithm 2 Elimination of Bad Trees

1: Let Ftmp = F ∗

2: while there is at least one bad tree in Ftmp do
3: Choose a bad tree Tb in Ftmp

4: Pick an edge enew = (vnew, v
′
new) from E†(Tb) with

the smallest weight, where E†(Tb) := {(v, v′) ∈ E† | v ∈
V(Tb), v′ /∈ V(Tb)}

5: Connect Tb to Tc using edge enew to create a new tree
Tnew, where Tc is the tree in Ftmp which includes vertex
v′new

6: Remove Tb and Tc from Ftmp, and add the new tree
Tnew to Ftmp

7: end while

When we connect a bad tree Tb to Tc using edge enew in
Algorithm 2 (line 5), the possible types of the new tree Tnew
depend on the type of tree Tc.

P1 Tc is a heavy tree – When we connect Tb to a heavy
tree, the total weight of the new tree obviously exceeds
λ∗, and the new tree Tnew is a heavy tree.

P2 Tc is a light tree – After connecting the two trees,
Tnew can be either light or heavy, depending on its total
weight.

P3 Tc is a bad tree – When two bad trees are connected,
the resulting new tree Tnew could be any of the three
types (bad, light or heavy).

Note that a new tree Tnew can be a bad tree only if Tc is
also a bad tree (case P3).

The order in which we choose bad trees in Algorithm 2 is
not important. In addition, Algorithm 2 terminates after at most
m−1 rounds; when all m trees T1, . . . , Tm are combined into
a single spanning tree after at most m−1 rounds, the resulting
tree contains all vertices in V and, hence, cannot be a bad tree,
thereby terminating the algorithm.

Denote by Fopt the final forest Ftmp produced by Algo-
rithm 2. Let nLT ∈ {0, 1, . . . ,m} be the number of light trees
in Fopt.

Lemma 1: Suppose that Fh is the collection of heavy trees
in Fopt. Then,

w(Fh) ≤ (k − nLT)λ∗.

Proof A proof of the lemma can be found in Appendix A.

Step 2-ii: Unfortunately, in practice, we do not have access
to λ∗ or the optimal cycle cover C ∗. Hence, we cannot

determine which trees in the forest F ∗ are bad trees and
execute Algorithm 2.

For this reason, we consider all possible ways in which the
m trees in F ∗ can be connected to form a new forest, using
the edges in E†. Since

∣∣E†∣∣ = m− 1, the number of possible
forests we need to consider, including the case with a single
spanning tree, is equal to 2m−1, and one of these possible
forests coincides with Fopt. We denote by F the set of 2m−1

forests we consider, and use Fcand to refer to a forest in F .
We provide these 2m−1 forests in F as an input to Steps

3 and 4, one forest at a time. However, we are primarily
interested in the forest Fopt for finding an approximation ratio
for the proposed algorithm.

C. Step 3: Decomposition of Heavy Trees
In addition to the input to the proposed algorithm, namely

the information regarding the rooted min-max cycle cover
problem, Steps 3 and 4 described in this and following
subsections require another parameter λ. The output of these
two steps depends on whether or not the parameter λ is greater
than or equal to λ∗: if λ ≥ λ∗, they return a cycle cover with
at most k cycles and the maximum cycle weight less than or
equal to 5λ.

Suppose that the forest under consideration (out of 2m−1

possible forests in F) is Fcand, and λ is a constant satisfying
maxe∈E(Fcand) w(e) ≤ λ. We decompose the trees in Fcand

with the help of the following lemma.

Lemma 2 (Lemma 2 of [4]): Fix a tree T and λ ≥
maxe∈E(T) w(e). Then, the tree T can be decomposed into
subtrees T s1 , ..., T

s
ms

, such that (i) w(T si) < 2λ for all
i = 1, . . . ,ms, (ii) V(∪ms

i=1T
s
i) = V(T), and (iii) the number

of subtrees, ms, satisfies

ms ≤ max

(⌊
w(T)

λ

⌋
, 1

)
.

The goal of Step 3 is to construct a new forest F̂cand that
will be used in Step 4 to find a rooted cycle cover. In particular,
when Fcand = Fopt, the cycle cover found in Step 4 will
possess a provable upper bound on the maximum cycle weight.

To this end, we first put all trees in Fcand whose weight is
less than 2λ in F̂cand. Second, for trees whose weight is greater
than or equal to 2λ, we first decompose them into subtrees as
described in Lemma 2, using the algorithm proposed in [2],
and then put the subtrees in F̂cand.

The resulting forest F̂cand when Fcand = Fopt, which we
denote simply by F̂opt, has the following two properties. Given
a subgraph G′, we define wmax(G

′) := maxe∈E(G′) w(e) to
be the maximum edge weight in the subgraph.

Lemma 3: Suppose λ ≥ wmax(Fopt). Then, the maximum
weight of trees in F̂opt is at most 2λ.
Proof The lemma follows directly from Lemma 2 and the
construction of F̂opt.

Lemma 4: If λ ≥ λ∗, the number of trees in F̂opt is at most
k.
Proof Please see Appendix B for a proof of the lemma.

D. Step 4: Generation of a Rooted Cycle Cover

Recall that, even though every tree in forest Fcand contains
at least one depot, due to the decomposition of trees T with
w(T) ≥ 2λ in Step 3, some of the trees in F̂cand may not
include any depot. We partition the trees in the forest F̂cand

into two forests, F̂r and F̂nr. Forest F̂r consists of trees that
contain a depot, and F̂nr comprise trees that do not cover any
depot.

We connect each tree T in F̂nr to a nearest de-
pot d̃(T) in argmind∈D

(
minv∈V(T) w(d, v)

)
. Note that

mind∈D
(
minv∈V(T) w(d, v)

)
≤ λ∗/2; for every vertex in

V −, we have 2mind∈D w(v, d) ≤ λ∗ from the assumption
that the edge weight function w is a metric and the optimal
cycle cover must cover all vertices in V −. For each tree T in
F̂nr, we denote the resulting tree we obtain after connecting
it to a nearest depot by T+, and let F̂+

nr := {T+|T ∈ F̂nr}.
Note that some trees in F̂+

nr may share a depot with other trees
in F̂r or F̂+

nr.

(a) an Eulerian cycle of a tree (b) a cycle after short cutting

Fig. 3: An example of generating a cycle for a tree

Let us consider the case when F̂cand = F̂opt. Recall from
Lemma 4 that the number of trees in F̂+ := F̂r ∪ F̂+

nr does
not exceed k if λ ≥ λ∗. Each tree in F̂+ contains one depot,
and its weight is at most 2λ+ λ∗/2 from its construction. By
finding the Eulerian cycle and performing short cutting (as
shown in Fig. 3) for each tree in F̂+, we can find a cycle
cover Ccand. When F̂cand = F̂opt, the cycle cover Ccand has
the maximum cycle weight of at most 4λ+ λ∗.

Lemma 5: When Fcand = Fopt, for λ ≥ wmax(Fopt), Steps
3 and 4 together generate a cycle cover with the maximum
cycle weight of at most 4λ+λ∗. In addition, if λ ≥ λ∗, there
are at most k cycles in the cycle cover.

V. THE PROPOSED ALGORITHM

We are now ready to present our proposed algorithm for
(1). The pseudocode of the proposed algorithm is shown in
Algorithm 3. We denote the maximum cycle weight of a cycle
cover produced in Step 4 (line 12), namely Ccand, by Ocand. It
is clear from the pseudocode, if the number of trees in F̂cand

is larger than k, we do not need to execute Step 4 as it will
not yield a feasible solution.

Given a forest Fcand in F , a binary search for a suitable
value of λ (lines 8 - 26) is performed over the interval
[wmax(Fcand), (n+k)wmax(G)]. The goal of the binary search

Algorithm 3 Rooted Min-Max Cycle Cover Algorithm

Input: (i) a complete undirected graph G = (V,E); (ii) a
weight function w : E → IR+; (iii) depot set D ⊆ V ; (iv)
maximum number of cycles k; (v) constant ε ∈ (0, 1)

Output: A cycle cover with the maximum weight of cycles
less than (5 + ε)λ∗

1: Construct a rooted spanning forest F ∗ . (Step 1)
2: Find the edge set E† . (Step 2-i)
3: Generate F with 2m−1 possible forests
4: Set Ctmp = ∅ and Otmp =∞
5: for each forest Fcand in F do . (Step 2-ii)
6: `← 1
7: a` ← wmax(Fcand) and b` ← (n+ k)wmax(G)
8: while true do
9: λ` ← 0.5(a` + b`)

10: Construct forest F̂cand with λ = λ` . (Step 3)
11: if number of trees in F̂cand ≤ k then
12: Find a cycle cover Ccand . (Step 4)
13: if Ocand < Otmp then
14: Ctmp ← Ccand

15: Otmp ← Ocand

16: end if
17: a`+1 ← a` and b`+1 ← λ`
18: else
19: a`+1 ← λ` and b`+1 ← b`
20: end if
21: if b` − a` < 0.5ε a` then
22: Break . break out of while loop
23: else
24: `← `+ 1
25: end if
26: end while
27: end for

is not to find the smallest value of λ greater than or equal to
λ∗. Instead, it is to find a value of λ for which Step 3 produces
a feasible forest F̂cand with at most k trees (line 11) and the
termination condition in line 21 is satisfied.

Lemma 4 guarantees that our algorithm will produce at least
one feasible solution with at most k cycles as long as λ∗ lies in[
wmax(Fopt), (n+ k)wmax(G)

)
. Moreover, Lemma 5 ensures

that the maximum cycle weight of the cycle cover found by
the algorithm is at most 4λ + λ∗. Therefore, by selecting a
suitable value of λ, we can prove the approximation ratio of
5 + ε for the algorithm, where ε is a constant in the interval
(0, 1), which is an input to the algorithm we select.

Theorem 1: For fixed ε ∈ (0, 1), Algorithm 3 returns a
rooted cycle cover with at most k cycles and the maximum
cycle weight less than or equal to (5 + ε)λ∗.

Proof A proof of the theorem can be found in Appendix C.

VI. COMPLEXITY OF THE PROPOSED ALGORITHM

In this section, we study the complexity of the proposed
algorithm (Algorithm 3). For a fixed number of depots, m,
we will show that the overall complexity is O(n2), where n is
the number of vertices in V , by examining the computational
requirements of each step.

• Step 1: The Prim’s algorithm for finding a minimum
spanning tree T ′ (Step 1-i) has complexity of O(n2).
Step 1-ii simply requires finding the closest depot for
each vertex in V − and has complexity of O(n).

• Step 2: A naive way to find the edge set E† is to construct
a minimum spanning tree for G (using, for instance,
Prim’s algorithm [16]) and remove the edges in F ∗. This
has complexity O(n2).

• Step 3: For every forest Fcand in F , wmax(Fcand) ≥
wmax(F

∗). Hence, the while loop in lines 8 through
26 terminates after at most

log2

(
(n+ k)wmax(G)

0.5εwmax(F ∗)

)
= O

(
log2(n+ k)

)
+O

(
log2(1/ε)

)
+O
(
log2(wmax(G)/wmax(F

∗))
)

iterations. In addition, decomposing trees whose weight
is greater than or equal to 2λ using ‘splitting’ described
in [2], [4] has complexity of O(n).

• Step 4: Both connecting trees in F̂nr to the closest depots
and finding the Eulerian cycles and associated rooted
cycle cover have complexity of O(n).

From the above discussion, the overall complexity of
the proposed algorithm is O

(
n2
)

+ O
(
2m−1n log(n +

k)
)
+ O

(
n log(1/ε)

)
, provided that wmax(G)/wmax(F

∗) =
O
(
exp(n)

)
. In practice, we have k = O(n) and, as a

result, the complexity is in fact O(n2) +O
(
2m−1n log(n)

)
+

O
(
n log(1/ε)

)
. Therefore, when both the number of depots

(m) and ε are fixed, the complexity is O(n2). Furthermore,
since the 2m−1 possible forests in F can be considered
independently, the execution of the for loop in the algorithm
(lines 5 - 27) can be parallelized.

Finally, recall that F ∗ is a spanning forest consisting of m
trees, which are constructed from the minimum spanning tree
T ′ of G′ in Step 1-i and are rooted at the m depots. Hence,
unless all remaining n−m vertices get closer to the m depots
with increasing n, the assumption wmax(G)/wmax(F

∗) =
O
(
exp(n)

)
will hold. For instance, it is well known that

the longest edge of the minimum spanning tree covering n
independent and identically distributed points in a unit ball
in IRd, d ≥ 2, converges almost surely to c

(
log(n)/n

)1/d
as n goes to ∞, where c is some constant [17]. Hence,
for a random geometric graph G with d = 3, we have
wmax(G)/wmax(F

∗) = O
(
(n/ log(n))1/3

)
.

VII. CONCLUSION

We studied the problem of robot deployment planning for
inspection of civil structures, with an emphasis on bridges.

Each mobile robot is stationed at a depot where it recharges the
battery and is tasked with the inspection of a subset of points
or segments of the structure. The problem is formulated as
a (variant of the) uncapacitated rooted min-max cycle cover
problem. We proposed a new algorithm with approximation
ratio of 5 + ε.

Our formulation as an uncapacitated rooted min-max cycle
cover problem assumes that depots are large enough to house
as many robots as needed. We suspect that any good solution
will distribute the robots evenly across a bridge to minimize
the max cycle weight. In some cases, however, the depots may
have limited slots for the robots for housing and recharging.
This may require reformulating the problem as a capacitated
rooted min-max cycle cover, similar to that studied by the
authors of [6]. We are currently working on this problem.

ACKNOWLEDGMENT

This work was supported in part by an NSF grant ECCS
1446785 and a NIST grant 70NANB16H024.

APPENDIX A
PROOF OF LEMMA 1

Let Vh := V(Fh) be the set of vertices in Fh and F ∗h the
smallest subset of trees in F ∗, which covers Vh, i.e., Vh =
V(F ∗h). Similarly, we define C ∗h to be the smallest subset of
cycles in C ∗ such that the union of vertices in the cycles
contain Vh, i.e., Vh ⊆ ∪C∈C∗h

V(C) =: VC∗h
.

First, note that, by deleting an edge with the largest weight
in each cycle C ∈ C ∗h , we can obtain a rooted forest FC∗h
that covers VC∗h

and each tree in the forest contains a depot
in D because each cycle C ∈ C ∗h must be rooted at a
depot. Moreover, from the construction of F ∗ in Step 1
(subsection IV-A), F ∗h is a minimum weight rooted spanning
forest of Vh. Therefore, because Vh ⊆ VC∗h

, we have

w(F ∗h) ≤ w(FC∗h
)

= w(C ∗h)−
∑
C∈C∗h

wmax(C)

≤ (k − nLT)λ∗ −
∑
C∈C∗h

wmax(C),

where wmax(G
′) := maxe∈E(G′) w(e) for any subgraph G′,

and the second inequality follows from the fact that (i) there
are at most k−nLT cycles in C ∗h because at least nLT cycles
are covered by nLT light trees and (ii) for every cycle C in
C ∗h , w(C) ≤ λ∗.

In order to bound the total weight of the trees in Fh, in
addition to the bound for w(F ∗h), we need to account for the
weights of the edges that were introduced in the the trees of
Fh through the merging process of bad trees in F ∗h . For this,
we consider two cases based on how the heavy tree Th in Fh,
which does not belong to F ∗h , was created. Let Tb be the bad
tree that was connected to another tree to form Th.
C1. The bad tree Tb is a bad tree in F ∗h .
C2. The bad tree Tb is not a bad tree in F ∗h . In this case, Tb

must have been created as a result of merging at least

two bad trees in previous round(s) of connecting bad
trees.

Case C1: Let d be the depot covered by Tb, and choose a
cycle C∗d in C ∗h , which includes d. The existence of such a
cycle is guaranteed because the cycles in C ∗h must cover all
vertices in Vh, including depots in Vh.

Since Tb is a bad tree, there exists at least one vertex v∗

in C∗d which is not covered by Tb and instead belongs to a
different tree; otherwise, Tb would be a light tree. As a result,
there is at least one edge e′ that connects a vertex in Tb to
another tree and e′ belongs to C∗d . Since Algorithm 1 uses
an edge with the smallest weight to connect Tb to the rest of
spanning tree in the process of finding the edge set E†, the
edge e+ ∈ E† used to connect Tb to another tree (hence, is a
new edge introduced in Th) satisfies

w(e+) ≤ w(e′) ≤ wmax(C
∗
d). (2)

Case C2: We first consider the construction of the bad tree
Tb. Since Tb is a bad tree, it must have been produced as a
result of connecting two or more bad trees in F ∗h . Assume that
Tb is constructed as a result of L rounds of merging bad trees,
and for each ` = 1, . . . , L, let Tb` be the tree chosen to be
connected to another tree T ′b` for the `-th round of merging.
Furthermore, for each ` = 1, . . . , L, denote the edge chosen
to connect the two bad trees Tb` and T ′b` by e+` ∈ E†.

For each ` = 1, . . . , L, suppose that d` is a depot in Tb`
which has not been considered in the previous rounds, i.e.,
d` /∈ {d1, . . . , d`−1}, and a cycle C∗` in C ∗h covers d`. We can
always find a depot d` that meets the above condition because
Tb` contains at least r + 1 depots, where r is the number of
rounds of merging process needed to form Tb` before (hence,
Tb` includes at least r + 1 bad trees in F ∗h) and exactly r of
these depots were considered in the r rounds. This also implies
that C∗` 6= C∗l for all l = 1, . . . , ` − 1, because each cycle in
C ∗h contains exactly one depot.

Following the same argument used in the previous case
(C1), for each ` = 1, . . . , L, we can find an edge e′` in the
cycle C∗` , which connects a vertex in Tb` to another tree.
Consequently,

w(e+`) ≤ w(e
′
`) ≤ wmax(C

∗
`). (3)

Finally, the bad tree Tb is connected to another tree to form
the heavy tree Th. By the same argument used in case C1, we
can find a depot d in Tb such that d /∈ {d1, . . . , dL} and a
cycle C∗d containing d so that the weight of the edge e+ that
connects Tb to another tree to form Th satisfies

w(e+) ≤ w(e′) ≤ wmax(C
∗
d), (2)

where e′ is an edge in C∗d which connects Tb to another tree
as described in case C1.

Note from the above discussion that, for each added edge
e? during the construction of a heavy tree Th that is not in
F ∗h , we can find a distinct cycle in C ∗h such that the weight of
the new added edge is upper bounded by the maximum edge
weight of the cycle. Let E+(⊆ E†) denote the set of edges

that were added to connect trees in F ∗h to create Fh. Then,
we have

∑
e∈E+ w(e) ≤

∑
C∈C∗h

wmax(C) because no cycle
C ∈ C ∗h is considered more than once during the process.
Therefore, we have

w(Fh) = w(F ∗h) +
∑
e∈E+

w(e)

≤ (k − nLT)λ∗ −
∑
C∈C∗h

wmax(C) +
∑
e∈E+

w(e)

≤ (k − nLT)λ∗ −
∑
C∈C∗h

wmax(C) +
∑
C∈C∗h

wmax(C)

≤ (k − nLT)λ∗.

APPENDIX B
PROOF OF LEMMA 4

First, note that all nLT light trees in Fopt belong to F̂opt

since the weight of light trees is less than λ∗, which is less
than or equal to λ by assumption.

Order the heavy trees in Fh by decreasing weight:
T1, . . . , Tn1

, Tn1+1, . . . , Tn1+n2
, where n1 is the number of

heavy trees whose weight is greater than or equal to 2λ, i.e.,
w(Ti) ≥ 2λ for i = 1, . . . , n1, and λ∗ ≤ w(Ti) < 2λ for
i = n1 + 1, . . . , n1 + n2. Let F̂h be the set of trees in F̂opt

which come from the heavy trees in Fh.
Using Lemma 2, we can upper bound |F̂h| as follows.

|F̂h| ≤
n1∑
i=1

max

(⌊
w(Ti)

λ

⌋
, 1

)
+ n2

≤
n1∑
i=1

w(Ti)

λ
+ n2

=
w(Fh)−

∑n1+n2

i=n1+1 w(Ti)

λ
+ n2

≤ w(Fh)− n2λ∗

λ
+ n2,

where the last inequality follows from λ∗ ≤ w(Ti) for all
i = n1+1, . . . , n1+n2. Using the bound for w(Fh) in Lemma
1, we obtain

|F̂h| ≤
(k − nLT)λ∗ − n2λ∗

λ
+ n2

≤ (k − nLT)− n2 + n2

= k − nLT ,

where nLT is the number of light trees in Fopt, and the second
inequality is a consequence of the assumption λ∗ ≤ λ. Thus,
the number of trees in F̂opt can be upper bounded by k because
|F̂opt| = |F̂h|+ nLT ≤ k.

APPENDIX C
PROOF OF THEOREM 1

In order to prove the theorem, we only need to show that
at least one of the 2m−1 forests in F leads to a solution
that satisfies the approximation ratio in the theorem. To this
end, we consider the forest Fopt generated from the bad tree

elimination process (Algorithm 2) with an optimal cycle cover
C ∗. Recall that Fopt always belongs to F .

For forest Fopt, the binary search in Algorithm 3 is per-
formed over the interval [wmax(Fopt), (n + k)wmax(G)]. It
is clear that (n + k)wmax(G) > λ∗ since the optimal cycle
cover cannot have more than (n+k−m) edges. The following
lemma demonstrates that wmax(Fopt) is a lower bound on the
optimal value λ∗.

Lemma 6: The optimal value λ∗ is greater than or equal to
wmax(Fopt).
Proof: Let e∗ := (u, v) ∈ argmaxe∈E(Fopt) w(e).

We shall consider following two cases.
C-i e∗ ∈ E(F ∗) – Suppose that e∗ belongs to a tree T ∗ in

F ∗. Without loss of generality, we assume that, when
we remove e∗ from T ∗ and divide it into two subtrees,
vertex v belongs to the subtree with the depot in T ∗.
Suppose that the claim is false and w(e∗) > λ∗. Let Cu
be a cycle in the optimal cycle cover C ∗ which covers
vertex u and du be the depot in the cycle Cu. Denote by
eu the edge (u, du). Note that w(eu) ≤ λ∗/2 because
2w(eu) ≤ w(Cu) ≤ λ∗ because w satisfies the triangle
inequality.
Consider a new spanning forest F ′ we can generate by
replacing the edge e∗ in F ∗ with the edge eu. It is clear
that F ′ is also a rooted spanning forest of G since every
tree in F ′ includes exactly one depot and F ′ covers all
vertices in V . However,

w(F ′) = w(F ∗)− w(e∗) + w(eu) < w(F ∗),

because w(eu) < λ∗ < w(e∗). This contradicts the ear-
lier assumption that F ∗ is a minimum rooted spanning
forest.

C-ii e∗ /∈ E(F ∗) – This means that e∗ is an edge added
by Algorithm 2 during the bad tree elimination process.
From (2) and (3),

w(e∗) ≤ max
`=1,...,q∗

wmax(C
∗
`) ≤ max

`=1,...,q∗
w(C∗`) ≤ λ∗.

Since the claim of the lemma holds in both cases, this
completes the proof of the lemma.

An important observation is that, during the binary search
in Algorithm 3, the lower bound of the interval, a`, increases
for the next round only if the returned forest Fcand in the `-th
round has more than k trees (line 19). However, since Steps
3 and 4 guarantee a rooted cycle cover with at most k cycles
when λ ≥ λ∗ (Lemma 5) and a1 ≤ λ∗ by Lemma 6, we have
a` ≤ λ∗ for all ` = 1, 2,

Suppose that the process terminates after N rounds, i.e.,
bN − aN < ε aN/2. We denote the returned rooted cycle
cover after the N -th round by C ?. Using Lemma 5, we can
show that the weight of the cycle cover C ? is upper bounded
by (5 + ε)λ∗ as follows.

w(C ?) ≤ 4λN + λ∗ = 4(aN + bN)/2 + λ∗

< 2(aN + aN + ε aN/2) + λ∗

≤ (5 + ε)λ∗

The last inequality is a consequence of the earlier observation
that a` ≤ λ∗ for all ` = 1, 2, . . . , N . Obviously, the maximum
cycle weight of C ? is upper bounded by w(C ?). Therefore,
this proves the theorem.

REFERENCES

[1] https://www.fhwa.dot.gov/bridge/nbi/no10/condition18.cfm.
[2] G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha, “Min–max tree

covers of graphs,” Operations Research Letters, vol. 32, no. 4, pp. 309–
315, 2004.

[3] E. M. Arkin, R. Hassin, and A. Levin, “Approximations for minimum
and min-max vehicle routing problems,” Journal of Algorithms, vol. 59,
no. 1, pp. 1–18, 2006.

[4] M. R. Khani and M. R. Salavatipour, “Improved approximation algo-
rithms for the min-max tree cover and bounded tree cover problems,”
Algorithmica, vol. 69, no. 2, pp. 443–460, 2014.

[5] A. Jorati, Approximation algorithms for some min-max vehicle routing
problems. University of Alberta (Canada), 2013.

[6] W. Xu, W. Liang, and X. Lin, “Approximation algorithms for min-max
cycle cover problems,” IEEE Transactions on Computers, vol. 64, no. 3,
pp. 600–613, 2015.

[7] W. Yu and Z. Liu, “Improved approximation algorithms for some
min-max and minimum cycle cover problems,” Theoretical Computer
Science, vol. 654, pp. 45–58, 2016.

[8] N. Christofides, “Worst-case analysis of a new heuristic for the travelling
salesman problem,” tech. rep., Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group, 1976.

[9] G. N. Frederickson, M. S. Hecht, and C. E. Kim, “Approximation
algorithms for some routing problems,” in Foundations of Computer
Science, 1976., 17th Annual Symposium on, pp. 216–227, IEEE, 1976.

[10] B. Farbstein and A. Levin, “Min–max cover of a graph with a small
number of parts,” Discrete Optimization, vol. 16, pp. 51–61, 2015.

[11] H. Nagamochi, “Approximating the minmax rooted-subtree cover prob-
lem,” IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences, vol. 88, no. 5, pp. 1335–1338, 2005.

[12] H. Nagamochi and K. Okada, “Approximating the minmax rooted-tree
cover in a tree,” Information Processing Letters, vol. 104, no. 5, pp. 173–
178, 2007.

[13] S. Karakawa, E. Morsy, and H. Nagamochi, “Minmax tree cover in
the euclidean space,” in International Workshop on Algorithms and
Computation, pp. 202–213, Springer, 2009.

[14] Z. Xu and Q. Wen, “Approximation hardness of min–max tree covers,”
Operations Research Letters, vol. 38, no. 3, pp. 169–173, 2010.

[15] Z. Xu, D. Xu, and W. Zhu, “Approximation results for a min–max
location-routing problem,” Discrete Applied Mathematics, vol. 160,
no. 3, pp. 306–320, 2012.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. McGraw-Hill, second ed., 2001.

[17] M. D. Penrose, “A strong law for the longest edge of the minimal
spanning tree,” The Annals of Probability, vol. 27, no. 1, pp. 246–260,
1999.

https://www.fhwa.dot.gov/bridge/nbi/no10/condition18.cfm

	I Introduction
	II Related Work
	III Model and Formulation
	III-A Rooted min-max cycle cover problem

	IV Preliminaries: Key Steps of the Proposed Algorithm
	IV-A Step 1: Construction of a rooted spanning forest F*
	IV-B Step 2: Virtual Forest (F) and an Exhaustive Search
	IV-C Step 3: Decomposition of Heavy Trees
	IV-D Step 4: Generation of a Rooted Cycle Cover

	V The Proposed Algorithm
	VI Complexity of the Proposed Algorithm
	VII Conclusion
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Lemma ??
	Appendix C: Proof of Theorem ??
	References

