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RepAtt: Achieving Swarm Coordination through Chemotaxis

Simon O. Obute!, Philip Kilby?, Mehmet R. Dogar! and Jordan H. Boyle?

Abstract— Swarm foraging is a common test case application
for multi-robot systems. In this paper we present a novel
algorithm for improving coordination of a robot swarm by
selectively broadcasting repulsion and attraction signals. Robots
use a chemotaxis-inspired search behaviour based on the
temporal gradients of these signals in order to navigate towards
more advantageous areas. Hardware experiments were used
to model and validate realistic, noisy sound communication.
We then show through extensive simulation studies that our
chemotaxis-based coordination algorithm significantly improves
swarm foraging time and robot efficiency.

I. INTRODUCTION

Swarm robotics applies intelligent coordination behaviours
observed in natural swarms to solve multi-robot problems
[1]. Swarms in nature have the impressive ability of ac-
complishing complex tasks by following simple rules. For
example, ants are able to forage food from locations that
are beyond their individual sensory capabilities by following
pheromone trails which other ants have laid. An individual
agent in the group does not have access to global knowledge
of the world and relies only on interaction with its immediate
environment (and sometimes memory of previous experi-
ence) to make autonomous control decisions. The swarm
paradigm presents a means of using decentralized control,
local communication and sensing to allow multi-robot sys-
tems automate tasks that are inefficient or impossible for
single robots. The actions of individual agents collaborating
with other swarm members produces emergent behaviours
that solve tasks such as aggregation, clustering, exploration,
navigation and foraging among others in robust, scalable and
flexible ways [2].

Foraging is a canonical test case for swarm robotics
which involves collective search and transport of objects to
a specific deposit site known as the nest [3]. It has diverse
potential real-world applications for automating farming pro-
cesses, planetary exploration, hazardous waste clean-up or
search and rescue [4]. It also integrates within a single
agent robotic tasks such as vision, exploration, manipulation,
communication and transport. In this paper we introduce
the Repulsion-Attraction (RepAtt) algorithm, which uses
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simple communication and a chemotaxis-inspired behaviour
to improve coordination in a swarm of foraging robots.
Our approach emphasizes extreme algorithmic simplicity and
demonstrates the power of minimalist bio-inspired search
algorithms. By foregoing complex communication systems,
the algorithm lends itself to simple, low cost hardware
implementations.

Section II reviews coordination in swarm foraging, while
our RepAtt algorithm is introduced in Section III. In Sec-
tion IV we present work on optimizing RepAtt parameters,
demonstrate that the algorithm still works well with realistic,
imperfect communication signals and show that RepAtt
scales well with swarm size. Finally, concluding remarks and
future directions are presented in Section V.

II. REVIEW OF COORDINATION FOR SWARM FORAGING

A key means of achieving cooperation among swarm
members during foraging is through communication. This
has mostly been realized through a shared memory, the
environment or direct communication [1].

In shared memory implementations, all robots have access
to a shared medium to write and read information, which
gives swarm robots a global means of communication. In
[5], robots that locate attractants (objects to forage) use
the shared medium to notify all swarm members of the
target’s location. Ref. [6] used the global knowledge of
percentage of targets found and environment covered by
the swarm to adapt the foraging strategy. Major drawbacks
of this approach are issues related to scalability, increased
complexity of individual robots and inconsistency with the
swarm paradigm of local sensing and communication. A
closely related approach is the use of a central nest as
means of exchanging information among the swarm, where
only robots within a limited range of the nest are able to
communicate [7], [8].

Achieving cooperation using the environment as a com-
munication medium involves modification of the search
space using “markers” or “beacons” to provide information
that guides the search behaviour of foraging robots. This
approach is largely inspired by stigmergy based coordination
mechanisms, such as pheromones observed in ant colonies.
The work in [9] used robots to form stationary beacon
networks that broadcast hop counts of their proximity to the
nest and target locations, thereby forming a gradient to be
used by foraging robots to locate and transport targets to
the nest. In [10], pre-deployed flying robots were used to
form beacon networks that communicated target locations
to ground robots. Swarm robots in [11] used pheromone
information on RFID tags placed at crossroads to optimise



their paths while performing waste management within a
model city. Ref. [12] used an LCD screen platform, where
light intensity was used to display pheromone level for
robots to sense with a downward-facing camera. A major
challenge for this communication approach is finding an
effective and scalable means of “marking” the environment
beyond controlled laboratory environments.

In direct communication, robots adapt their behaviour to
improve foraging efficiency based on information exchanged
with neighbouring robots. For example, in [9], robots used
range sensors to control their distance from their neighbours
while maintaining a foraging front around the nest. In
[13], robots used light to communicate locations of found
targets. In [14] and [15], robots communicated their foraging
success to other swarm members to improve the swarm’s
performance. In [16], robots applied repulsive “force” to
nearby agents when searching for targets and reduced this
force when transporting targets. Direct communication faces
design challenges regarding the type of information robots
should exchange, handling interactions with multiple neigh-
bours simultaneously, and robustness and reliability of the
communication media. Our approach shows that an analogue
signal that degrades with distance and relies on the natural
physics of the environment to handle multiple signals simul-
taneously can be used as a simple but effective means of
direct communication among a swarm of foraging robots.

The biological foundation for our approach is the chemo-
taxis behaviour observed in micro-organisms such as the
Escherichia coli bacterium [17] and Caenorhabditis ele-
gans nematode [18], whose motions are characterized by
near-linear runs (‘swimming’ mode) with occasional turns
(‘tumbling’ mode) that randomise the organism’s next run
direction. The probability that an individual E. coli or C.
elegans will perform a tumble at any given moment depends
on the change in concentration of chemical attractant (or
repellent) it senses during exploration of the environment. If
conditions are improving (increase in attractant or decrease
in repellent chemical) the organism suppresses tumbles in
favour of swimming, whereas worsening conditions lead to
increased probability of tumbling. The simple but elegant
approach of responding to the change over time means
that a non-directional analogue sensor is sufficient for the
organisms to aggregate around regions of high attractant con-
centrations or disperse to low repellent areas. In our proposed
swarm algorithm, the robots themselves selectively propagate
repellent and attractant signals that degrade exponentially
with increasing distance to provide a flexible coordination
mechanism to improve foraging efficiency of swarm robots.
Furthermore, the robots sense and broadcast these signals
selectively depending on the state they are in, thereby cre-
ating a dynamic sensory landscape. These properties make
our approach different from the biological foundations of our
algorithm and its previous robotic implementations in [17]
for localising sound source and in [19], where swarm robots
foraged energy from light spots in their environment.

III. SWARM COORDINATION
A. Communication Model

RepAtt is based on the use of a communication mechanism
whose intensity decreases smoothly with increasing distance
from the source. The exponentially degrading signal of
Equation 1 [20] was used, where Afj is the strength of signal
type k sensed by robot 4, located d;; metres away from signal
source j. Ag is the signal strength at the source, while «
and A, are the attenuation factor and mean ambient sound
level - properties dependent on environment condition. Total
signal strength sensed by a robot, I¥(t), at any location in
the world is the sum of same-type signals at that location
(Equation 2), where n is the total number of robots and k
is the signal type. We consider two signal types that robots
can sense and broadcast: repulsion (k = r) and attraction
(k = a) signals. To sense increase or decrease of attraction
and repulsion signals, robots compute the difference in signal
intensity between two time steps (Equation 3). It is important
to note that RepAtt does not consider the nature of signal
degradation (logarithmic, linear, exponential, inverse square
law) or the size of signal’s change. RepAtt uses only the
sign of the change (that is, whether it is positive or negative
change).
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The parameters of Equation 1 were obtained through exper-
iments using Turtlebot2 hardware platforms, speakers and
omnidirectional microphones as described in our previous
work [20]. These parameters are: Ag = 299.18, a = 0.12
and A. = 48.18. To test RepAtt’s robustness to noisy
communication, the experiments also quantified noise in
the sound signals, which was found to average 6% of
signal intensity. This noise was then modelled as a normal
distribution with mean of 0 and deviation of 0.06 as shown
in Equation 4.

B = A}, (1- N (0,0.06%)) @)

An average filter was introduced to RepAtt to make it
robust to noisy communication. This simple filtering system
involved each robot maintaining a limited queue size of
attraction and repulsion signals. The robot then uses the
average of the signals in its queue as its current signal
intensity level and compares this value with a previously
computed average to determine the change in signal inten-
sity. An equivalent effect could be easily implemented in
hardware through electronic low-pass filtering. The notation
for this is Nz-Qy, which represent x% noise level and
y time-step filter queue size. Thus NO-QI1, represents 0%
noise and instantaneous signal measurements, while N100-
Q40 represent 100% (of the experimentally-obtained value)
noise level and queue size of 40 signal measurements. This
modifies Equations 2 and 3 to Equations 5 and 6 respectively.



Algorithm 1 Swarm Foraging Algorithm

1: Initialize Parameters: tumble probability P,, robot capacity
cap, attraction multiplier a,,, attraction divisor aq, repulsion
multiplier 7., repulsion divisor r4, tumble mean u, tumble
deviation o

2: while true do

3: if obstacle encountered then

4: Enter Obstacle Avoidance State

5: else if cap == 0 then

6: Go home and drop collected targets
7: else

8: P=P,G =1,G, =1

9: if found == 0 then

10: Broadcast Repulsion A7

11: else if found > cap then

12: Broadcast Attraction Aj

13: if AI] > 0 then

14: Gr=rm

15: else if AI{ < 0 then

16: G, = 1/7‘d

17: if AI* > 0 then

18: Go=1/aq

19: else if Al < 0 then

20: Go=am

21: P, =P, x G, x Gq
22: if found > 0 then

23: Go and pick up closest target
24: else if rand(0,1) < P, then

25: make random turn of A (i, o)
26: else

27: make straight motion
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B. Repulsion-Attraction Algorithm (RepAtt)

The task for RepAtt is to improve coordination of swarm
robots with limited capacity searching for targets in an
unknown environment and returning them to a central nest.
Algorithm 1 is a pseudocode description of RepAtt. The
coordination behaviour executed by a robot at each time step
depends on whether the robot is in the searching, acquiring,
homing or obstacle avoidance states, which are described in
the subsequent paragraphs.

Obstacle Avoidance State (3 - 4) is used by robots
to avoid static (nest and walls) and dynamic (other robots)
obstacles when it bumps into them. It turns 45° to the left
for obstacles on its right (or to the right for obstacles on its
left) and random angle greater than 90° for obstacles in its
front. It then makes a random linear motion between 0 and
1m before transitioning to either the searching, acquiring or
homing states.

Homing State (5 - 6) is activated when the robot’s
capacity, cap, is full. In this state, the robot heads to
the nest (it is assumed that the nest broadcasts a homing
signal) and deposits the collected targets. The robot ignores

attraction and repulsion signals from nearby robots until it
has successfully offloaded all foraged targets at the nest.

The Acquiring State (22 - 23) is activated when a robot
detects target(s) within its visual range (found > 0). The
robot navigates to the nearest target to pick it up. During
this process, it broadcasts the attraction signal if it detects
more targets than its current carrying capacity, found > cap
(11 - 12). Thus searching robots within communication range
can sense the attraction and appropriately adapt their search
behaviour.

Searching State (24 - 27) is when a robot does not
sense any target item to forage within its visual range
(found = 0). The robot broadcasts a repulsion signal (9
- 10) to its neighbours while using random walk to search
for targets. Its goal in this state is to minimize the repulsion
(I") and maximize the attraction (/) signals it senses. This is
achieved by detecting the change in intensity of these signals
between two time steps (Equation 3 or 6). A robot increases
its turning probability (more tumbles) when moving in the
wrong direction, i.e. when AI" > 0 or AI* < 0. Doing
this increases a robot’s likelihood of reorienting itself in
the desired direction. On the other hand, when the robot
senses a positive gradient for attraction (AI® > 0) or
a negative repulsion gradient (A" < 0), it reduces its
turning probability (longer swims), which in turn helps the
robot to maintain its current direction for a longer period of
time and consequently approach a region that increases its
likelihood of finding a target. Lines 13 - 21 represent this
turn probability adaptation, where a,,, > 1, ag > 1, rp, > 1
and r4 > 1 are predefined constants.

In Algorithm 1, the Random Walk algorithm (RW) used
as a baseline in Section IV can be achieved by setting
am =1, a.- = 1, r,, = 1 and ry = 1. This disables
tumble probability adaptation by robots based on attraction
and repulsion gradients, making them explore with constant
probability of turning.

C. Adaptive Large Neighbourhood Search (ALNS)

The ALNS heuristic presented in [21] is a centralized,
offline route computation algorithm that has been shown
to be very effective in many transportation problems. We
modelled the target foraging task of the swarm using ALNS
to represent a centralized coordination approach to multi-
robot foraging.

In the ALNS approach, the robots’ foraging route is
computed offline, using the nest as drop-off location for
all robots with full capacity. The exact setup described in
[21] was implemented, where the simulated annealing route
optimization was performed for 25,000 iterations, with a
maximum of 50 or 100 visits removed in each iteration.
The searching state of RepAtt is replaced with the offline
simulated annealing optimization of the large neighbourhood
search. Robots used the optimized ALNS routes as waypoints
when foraging. This approach therefore gives a lower bound
on the total foraging time. However, it is not scalable or
robust to changes in target locations or swarm size.
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Fig. 1: (a) One50m, (b) Two50m, (c¢) Four50m, (d) Half50m, (e)
Uniform50m. Plot of initial world states, for 50 m x 50 m worlds.
Targets are purple, black ‘+’ is nest and yellow blob represent the
robots. For 100 m x 100 m worlds, target and robot locations
were kept constant, while world width and length dimensions were
doubled.

The Random Walk and ALNS approaches are used to
allow comparison of the RepAtt coordination mechanism’s
performance against two extremes: absence of coordination
(Random Walk); and a near-optimal solution based on com-
plex centralized coordination with perfect knowledge of the
environment (ALNS).

1V. EXPERIMENTS AND RESULTS
A. Simulation Setup

The Gazebo Simulation platform was used to simulate
robots under 5 target distributions, 2 world sizes, variable
parameter settings and swarm sizes, under noiseless and
noisy communication settings. A simulation time step of
25ms was used and each simulation was repeated 30 times.
The number of targets used was 200 and the swarm task was
to locate and pick up 90% of these targets in each world
setup (sample setups are shown in Figure 1). Each robot in
the swarm moved with velocity of 0.605 m/s and spent 5
seconds stationary to process each target it finds to simulate
the target pick up process. Other algorithm parameters are:
P, = 0.0025 applied at every time step, robot targets capacity
5, target detection distance of 3 metres, © = 180" and
o = 90°. The p and o values were chosen to mimic the
approximate 180° turns observed in chemotactic behaviour
of biological organisms such as C. elegans.

B. Chemotaxis Gains Optimization

The attraction and repulsion gains, a,,, a4, 7, and r4 play
significant roles in the performance of RepAtt because they
affect the responsiveness of robots to changes in communi-
cated signals. To investigate their effects and find the best
combinations for swarm foraging robots, a,, and r,, were
selected from 1, 2, 4, 6, 8, 10 while a4 and r4 were selected
from 1, 10, 50, 100, 1000. This resulted in 900 different
combinations of these gains. Each gain combination was
used by robots performing RepAtt in the 10 world setups,
with each simulation experiment repeated 30 times under
noiseless (NO-Q1) and noisy (N100-Q40) communication.
Thus, 540,000 simulations were performed (900x30x10x 2)
to search for best performing gain combinations. A specific
combination is represented as Aa,,magd—Rr,, mrgd.

In each simulation, the task was for a swarm of 36
robots with capacity of 5 targets to pick up 180 targets in
the world. The performance of each of the 900 parameter
combinations was then sorted and assigned scores such that

the combination with the shortest mean time had score of 1
and longest mean time got score of 900. Total score was
computed by summing the scores across the 10 different
world setups, with the best parameter combination attaining
the lowest overall score (ultimately we used only the N100-
Q40 results to select the best parameters, because this
is the more realistic configuration). Sample results from
the ranking are shown in Fig. 2a and 2b, where foraging
times are normalized based on time taken by Random Walk
(Alm1d—R1mld). N100-Q40 data points were used to sort
the rankings, and the corresponding performance for NO-Q1
has also been included in the plots. The results indicate that
in clustered environments (for example Onel00m, Fig. 2a)
increasing parameters that aid attraction toward targets (i.e.
am and ag) and minimizing repulsion parameters (i.e. 7.,
and r4) produced better results. In addition, an a,, value of
4 performed better than 10 because of noise in the attraction
signal - when a.,, is too large, robots would make too many
turns and explore only a limited area due to inaccurate
gradient measure.

In less clustered environments (for example Uni-
form100m), only 74 played a major role in swarm per-
formance, where the best parameter combination was
Alm10d—R1Im100d. The results indicate that parameters
that helped robots to make more tumbles when moving in
the wrong direction (i.e. a,, and r,,) negatively impacted
RepAtt, while parameters that aided swimming (ag and rg)
positively affected RepAtt’s performance.

Overall, the best parameter combination was
A4m100d—R1m10d, which is clearly an integration of
the best parameters for clustered and uniform target
distributions. In addition, the difference between best
and worst performing combinations in OnelOOm (0.30
vs 1.95) compared to Uniform100m (0.74 vs 1.48)
indicates that communication has more significant impact
in highly clustered environments in comparison to uniform
environments.

C. Communication Noise Filtering

Moving from an idealised noiseless communication signal
(NO-Q1) to the realistic noisy model (N100-Q1) in our
simulated foraging task initially had an extremely detrimental
effect, making RepAtt’s performance only comparable to
Random Walk (RW) as shown in Fig. 2c, where the opti-
mized RepAtt gains of a,, = 4, aq = 100, r,, = 1 and
rq = 10 were used. However, including the average filter
with queue size of 8, 20, 40, 80, 120 improved RepAtt’s
performance. In addition, excessively large queue sizes (for
example 80 or 120) decreased RepAtt’s performance because
robots lost too much information to make the gradient
useful for its current location. Queue size of 40 gave best
performance across the 10 world setups in comparison to
other queue sizes when working with noisy communication.

D. Foraging Performance Results

The simulation results for the 5 target distributions in
50 m x50 m and 100 m x 100 m world sizes are shown
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Fig. 3: Time taken in seconds to pick up 90% of targets for different
world scenarios, normalised using the time taken by Random Walk.
Each bar represents the mean of 30 simulation repetitions (also
given numerically above each bar). The error bars represent 95%
confidence interval. The optimized RepAtt gains of an, = 4, aq =
10, 7, = 1 and r4 = 10 were used for NO-Q1 and N100-Q40.

in Figs. 3a and 3b respectively for a swarm size of 36
robots for Random Walk (RW), N100-Q40, NO-Q1 and
ALNS algorithms. The optimized RepAtt gains of a,, = 4,
aq = 100, r,,, =1 and r4 = 10 were used.

In comparison with Random Walk, RepAtt improved
swarm coordination and decreased the foraging time in all
target distributions for both world sizes. In the 50 m x 50 m
world size, this improvement was 77% in the One50m world,
which is more than half of the improvement offered by
ALNS (90%). Similarly, the remaining four distributions
recorded significant improvements in foraging time, with

the weakest effect (33% improvement) in the Uniform50m
world. For the 100 m x 100 m world size, where the
search space was quadrupled, RepAtt also achieved excellent
coordination to exploit target regions. Its improvements over
Random Walk were 83%, 63%, 37%, 71% and 32% for
the Onel00m, Twol00m, Four100m, Half100m and Uni-
form100m distributions respectively. This is compared to
ALNS’s values of 94%, 88%, 79%, 90% and 70% for the
respective distributions.

It is logical that coordination would have a greater ben-
eficial effect for highly clustered distributions. This is the
reason for large performance gaps between Random Walk
and ALNS in the One, Two and Half cluster distributions
and relatively smaller margins for the less clustered Four
and Uniform worlds. It is also for these distributions that
RepAtt gained the most improvements over Random Walk.

Comparing N100-Q40 and NO-QI, noise reduced the
effectiveness of RepAtt by 8% (in Uniform100m) to 43% (in
Onel00m). Nonetheless, N100-Q40 performed well under
the different target distributions with performance ranging
between 30% to 77% of the time taken by the Random Walk
algorithm compared to ALNS’s 6% to 31%.

These results indicate that this simple RepAtt algorithm
is an effective mechanism for achieving swarm coordination
when performing foraging tasks. They also show that the
presence of noise, distribution of targets and size of the world
can have positive and negative impacts on the algorithm’s
performance. The effectiveness of the algorithm is more
pronounced when targets are clustered in smaller regions.

E. Scalability of RepAtt

One advantage of swarm robotics is that it presents im-
proved efficiency in solving problems. We test the scalability
of RepAtt by comparing the efficiency improvements as the
number of robots varied from 1 to 100. Efficiency in this
foraging task is computed as shown Equation 7 where n is
swarm size, tp is number of targets picked up, 4, is time
to pick up tp targets and FE, is relative efficiency (Equation
8). Thus, n = 1 represents a relative efficiency of 1, while
E, > 1 and E, < 1 represent improvement and degradation
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Fig. 4a and 4b show that RepAtt exhibited good scalability
performance by improving relative efficiency by a factor
of 5.82 when there was no communication noise (NO-Q1).
With realistic noise, N100-Q40 always maintained efficiency
improvement of more than a factor of 2. However, Random
Walk was at best able to maintain swarm efficiency as one
would expect due to the lack of coordination. In Fig. 4c
and 4d, the lack of coordination in Random Walk caused
swarm efficiency to continuously degrade as swarm size
increased, while RepAtt was able to maintain good efficiency
improvement, especially for the Uniform100m world. In
general, swarm efficiency is expected to drop as swarm size
increases beyond some acceptable level. This is due to the
effects of robot-to-robot interference, size of the search area
and limited resources available for robots to forage.

V. CONCLUSION

We have presented RepAtt, a simple yet effective swarm
coordination algorithm. It significantly improves the effi-
ciency of the underlying test case application of swarm
foraging, even when using a realistic and far from ideal com-
munication model that is grounded in physical experiments
with un-optimised hardware. RepAtt is based on the concept
of selective broadcasting of simple analogue repulsion and
attraction signals among swarm agents, which they use to
adapt their turning probability while searching for targets.
The end result was a significant improvement in the swarm’s
coordination, which we measured by analysing the swarm’s
foraging time in 10 different world scenarios.

In future work, we will work on implementing better noise
filtering for the swarm to improve communication as well as
research alternative communication media that could be used
in place of sound. We will also test our full algorithm using
multiple physical robot platforms to further investigate and
validate this coordination mechanism for the swarm within
foraging and other applications.
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