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Abstract— Corrective interventions while a robot is learning
to automate a task provide an intuitive method for a human
supervisor to assist the robot and convey information about
desired behavior. However, these interventions can impose
significant burden on a human supervisor, as each intervention
interrupts other work the human is doing, incurs latency
with each context switch between supervisor and autonomous
control, and requires time to perform. We present LazyDAgger,
which extends the interactive imitation learning (IL) algorithm
SafeDAgger to reduce context switches between supervisor and
autonomous control. We find that LazyDAgger improves the
performance and robustness of the learned policy during both
learning and execution while limiting burden on the supervisor.
Simulation experiments suggest that LazyDAgger can reduce
context switches by an average of 60% over SafeDAgger on
3 continuous control tasks while maintaining state-of-the-art
policy performance. In physical fabric manipulation experi-
ments with an ABB YuMi robot, LazyDAgger reduces context
switches by 60% while achieving a 60% higher success rate
than SafeDAgger at execution time.

I. INTRODUCTION

Imitation learning allows a robot to learn from human
feedback and examples [3, 4, 33]. In particular, interactive
imitation learning (IL) [24, 45, 53], in which a human
supervisor periodically takes control of the robotic system
during policy learning, has emerged as a popular imitation
learning method, as interventions are a particularly intuitive
form of human feedback [45]. However, a key challenge in
interactive imitation learning is to reduce the burden that
interventions place on the human supervisor [24, 53].

One source of this burden is the cost of context switches
between human and robot control. Context switches incur
significant time cost, as a human must interrupt the task
they are currently performing, acquire control of the robot,
and gain sufficient situational awareness before beginning
the intervention. As an illustrative example, consider a robot
performing a task for which an action takes 1 time unit
and an intervention requires two context switches (one at
the start and one at the end). We define latency L as
the number of time units associated with a single context
switch. For instance, L � 1 for a human supervisor who
will need to pause an ongoing task and walk over to a robot
that requires assistance. If the supervisor takes control 10
times for 2 actions each, she spends 20L + 20 time units
helping the robot. In contrast, if the human takes control 2
times for 10 actions each, she spends only 4L + 20 time
units. The latter significantly reduces the burden on the
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Fig. 1: LazyDAgger learns to cede control to a supervisor in states in
which it estimates that its actions will significantly deviate from those of
the supervisor. LazyDAgger reduces context switches between supervisor
and autonomous control to reduce burden on a human supervisor working
on multiple tasks.

supervisor. Furthermore, prior work suggests that frequent
context switches can make it difficult for the supervisor to
perform other tasks in parallel [46] or gain enough situational
awareness to provide useful interventions [39].

We present LazyDAgger (Figure 1), an algorithm which
initiates useful interventions while limiting context switches.
The name LazyDAgger is inspired by the concept of lazy
evaluation in programming language theory [29], where
expressions are evaluated only when required to reduce
computational burden. As in SafeDAgger [53], LazyDAgger
learns a meta-controller which determines when to con-
text switch based on the estimated discrepancy between
the learner and supervisor. However, unlike SafeDAgger,
LazyDAgger reduces context switching by (1) introducing
asymmetric switching criteria and (2) injecting noise into
the supervisor control actions to widen the distribution of
visited states. One appealing property of this improved meta-
controller is that even after training, LazyDAgger can be
applied at execution time to improve the safety and reliability
of autonomous policies with minimal context switching. We
find that across 3 continuous control tasks in simulation,
LazyDAgger achieves task performance on par with DAg-
ger [40] with 88% fewer supervisor actions than DAgger and
60% fewer context switches than SafeDAgger. In physical
fabric manipulation experiments, we observe similar results,
and find that at execution time, LazyDAgger achieves 60%
better task performance than SafeDAgger with 60% fewer
context switches.
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II. BACKGROUND AND RELATED WORK

Challenges in learning efficiency and reward function
specification have inspired significant interest in algorithms
that can leverage supervisor demonstrations and feedback for
policy learning.

Learning from Offline Demonstrations: Learning from
demonstrations [3, 4, 33] is a popular imitation learning
approach, as it requires minimal supervisor burden: the
supervisor provides a batch of offline demonstrations and
gives no further input during policy learning. Many methods
use demonstrations directly for policy learning [20, 35, 36,
49], while others use reinforcement learning to train a policy
using a reward function inferred from demonstrations [1,
9, 15, 17, 54]. Recent work has augmented demonstrations
with additional offline information such as pairwise prefer-
ences [10, 11], human gaze [42], and natural language de-
scriptions [50]. While offline demonstrations are often simple
to provide, the lack of online feedback makes it difficult to
address specific bottlenecks in the learning process or errors
in the resulting policy due to covariate shift [40].

Learning from Online Feedback: Many policy learning
algorithms’ poor performance stems from a lack of online
supervisor guidance, motivating active learning methods such
as DAgger, which queries the supervisor for an action in
every state that the learner visits [40]. While DAgger has
a number of desirable theoretical properties, labeling every
state is costly in human time and can be a non-intuitive
form of human feedback [27]. More generally, the idea of
learning from action advice has been widely explored in
imitation learning algorithms [5, 21, 22, 28]. There has also
been significant recent interest in active preference queries
for learning reward functions from pairwise preferences over
demonstrations [7, 10, 13, 19, 34, 41]. However, many forms
of human advice can be unintuitive, since the learner may
visit states that are significantly far from those the human
supervisor would visit, making it difficult for humans to
judge what correct behavior looks like without interacting
with the environment themselves [38, 45].

Learning from Supervisor Interventions: There has
been significant prior work on algorithms for learning poli-
cies from interventions. Kurenkov et al. [26] and Xie et al.
[52] leverage interventions from suboptimal supervisors to
accelerate policy learning, but assume that the supervisors are
algorithmic and thus can be queried cheaply. Nolan Wagener
[32], Saunders et al. [43], and Thananjeyan* et al. [47]
also leverage interventions from algorithmic policies, but for
constraint satisfaction during learning. Amir et al. [2], Kahn
et al. [23], Kelly et al. [24], Mandlekar et al. [30], Spencer et
al. [45], and Wang et al. [51] instead consider learning from
human supervisors and present learning algorithms which
utilize the timing and nature of human interventions to update
the learned policy. By giving the human control for multiple
timesteps in a row, these algorithms show improvements
over methods that only hand over control on a state-by-state
basis [6]. However, the above algorithms assume that the
human is continuously monitoring the system to determine

when to intervene, which may not be practical in large-scale
systems or continuous learning settings [12, 14, 25, 46]. Such
algorithms also assume that the human knows when to cede
control to the robot, which requires guessing how the robot
will behave in the future. Zhang et al. [53] and Menda et
al. [31] present imitation learning algorithms SafeDAgger
and EnsembleDAgger, respectively, to address these issues
by learning to request interventions from a supervisor based
on measures such as state novelty or estimated discrepancy
between the learner and supervisor actions. These methods
can still be sample inefficient, and, as we discuss later,
often result in significant context switching. By contrast,
LazyDAgger encourages interventions that are both easier
to provide and more informative. To do this, LazyDAgger
prioritizes (1) sustained interventions, which allow the su-
pervisor to act over a small number of contiguous sequences
of states rather than a large number of disconnected intervals,
and (2) interventions which demonstrate supervisor actions
in novel states to increase robustness to covariate shift in the
learned policy.

III. PROBLEM STATEMENT

We consider a setting in which a human supervisor is
training a robot to reliably perform a task. The robot may
query the human for assistance, upon which the supervisor
takes control and teleoperates the robot until the system
determines that it no longer needs assistance. We assume
that the robot and human policy have the same action space,
and that it is possible to pause task execution while waiting
to transfer control. We formalize these ideas in the context
of prior imitation learning literature.

We model the environment as a discrete-time Markov
decision process (MDP) M with states s∈ S, actions a∈A,
and time horizon T [37]. The robot does not have access
to the reward function or transition dynamics of M but
can cede control to a human supervisor, who executes some
deterministic policy πH : S→A. We refer to times when the
robot is in control as autonomous mode and those in which
the supervisor is in control as supervisor mode. We minimize
a surrogate loss function J(πR) to encourage the robot policy
πR : S→A to match that of the supervisor (πH ):

J(πR) =
T

∑
t=1
Est∼dπR

t
[L(πR(st),πH(st))] , (III.1)

where L(πR(s),πH(s)) is an action discrepancy measure
between πR(s) and πH(s) (e.g., the squared loss or 0-1
loss), and dπR

t is the marginal state distribution at timestep t
induced by executing πR in MDP M.

In interactive IL we require a meta-controller π that
determines whether to query the robot policy πR or to query
for an intervention from the human supervisor policy πH ;
importantly, π consists of both (1) the high-level controller
which decides whether to switch between πR and πH and (2)
the low-level robot policy πR. A key objective in interactive
IL is to minimize some notion of supervisor burden. To this
end, let mI(st ;π) be an indicator which records whether a
context switch between autonomous (πR) and supervisor (πH )



modes occurs at state st (either direction). Then, we define
C(π), the expected number of context switches in an episode
under policy π , as follows: C(π) = ∑

T
t=1Est∼dπ

t
[mI(st ;π)],

where dπ
t is the marginal state distribution at timestep t

induced by executing the meta-controller π in MDP M.
Similarly, let mH(st ;π) indicate whether the system is in
supervisor mode at state st . We then define D(π), the
expected number of supervisor actions in an episode for the
policy π , as follows: D(π) = ∑

T
t=1Est∼dπ

t
[mH(st ;π)].

We define supervisor burden B(π) as the expected time
cost imposed on the human supervisor. This can be expressed
as the sum of the expected total number of time units spent in
context switching and the expected total number of time units
in which the supervisor is actually engaged in performing
interventions:

B(π) = L ·C(π)+D(π), (III.2)

where L is context switch latency (Section I) in time units,
and each time unit is the time it takes for the supervisor
to execute a single action. The learning objective is to find
a policy π that matches supervisor performance, πH , while
limiting supervisor burden to lie within a threshold Γb, set by
the supervisor to an acceptable tolerance for a given task. To
formalize this problem, we propose the following objective:

π = argmin
π ′∈Π

{J(π ′R) | B(π ′)≤ Γb}, (III.3)

where Π is the space of all meta-controllers, and π ′R is the
low-level robot policy associated with meta-controller π ′.

IV. PRELIMINARIES: SAFEDAGGER

We consider interactive IL in the context of the objective
introduced in Equation (III.3): to maximize task reward while
limiting supervisor burden. To do this, LazyDAgger builds
on SafeDAgger [53], a state-of-the-art algorithm for inter-
active IL. SafeDAgger selects between autonomous mode
and supervisor mode by training a binary action discrepancy
classifier f to discriminate between “safe” states which have
an action discrepancy below a threshold βH (i.e., states
with L(πR(s),πH(s))< βH ) and “unsafe” states (i.e. states
with L(πR(s),πH(s))≥ βH ). The classifier f is a neural
network with a sigmoid output layer (i.e., f (s) ∈ [0,1]) that
is trained to minimize binary cross-entropy (BCE) loss on
the datapoints (st ,πH(st)) sampled from a dataset D of
trajectories collected from πH . This is written as follows:

LS(πR(st),πH(st), f ) =− f ∗(πR(st),πH(st)) log f (st)

−(1− f ∗(πR(st),πH(st))) log(1− f (st)),
(IV.1)

where the training labels are given by f ∗(πR(st),πH(st)) =
1{L(πR(st),πH(st))≥ βH}, and 1 denotes the indicator
function. Thus, LS(πR(st),πH(st), f ) penalizes incorrectly
classifying a “safe” state as “unsafe” and vice versa.

SafeDAgger executes the meta-policy π which selects
between πR and πH as follows:

π(st) =

{
πR(st) if f (st)< 0.5
πH(st) otherwise,

(IV.2)

Algorithm 1 LazyDAgger
Require: Number of epochs N, time steps per epoch T , intervention

thresholds βH , βR, supervisor policy πH , noise σ2

1: Collect D,DS offline with supervisor policy πH
2: πR← argminπR E(st ,πH (st ))∼D [L(πR(st),πH(st))] . Eq. (III.1)
3: f ← argmin f E(st ,πH (st ))∼D∪DS

[LS(πR(st),πH(st), f )] . Eq. (IV.1)
4: for i ∈ {1, . . .N} do
5: Initialize s0, Mode ← Autonomous
6: for t ∈ {1, . . .T} do
7: at ∼ πR(st)
8: if Mode = Supervisor or f (st)≥ 0.5 then
9: aH

t = πH(st)
10: D←D∪{(st ,aH

t )}
11: Execute ãH

t ∼N (aH
t ,σ2I)

12: if L(at ,aH
t )< βR then

13: Mode ← Autonomous
14: else
15: Mode ← Supervisor
16: else
17: Execute at

18: πR← argminπR E(st ,πH (st ))∼D [L(πR(st),πH(st))]
19: f ← argmin f E(st ,πH (st ))∼D∪DS

[LS(πR(st),πH(st), f )]

where f (st) < 0.5 corresponds to a prediction that
L(πR(st),πH(st)) < βH , i.e., that st is “safe.” Intuitively,
SafeDAgger only solicits supervisor actions when f predicts
that the action discrepancy between πR and πH exceeds the
safety threshold βH . Thus, SafeDAgger provides a mecha-
nism for querying the supervisor for interventions only when
necessary. In LazyDAgger, we utilize this same mechanism
to query for interventions but enforce new properties once
we enter these interventions to lengthen them and increase
the diversity of states observed during the interventions.

V. LAZYDAGGER

We summarize LazyDAgger in Algorithm 1. In the initial
phase (Lines 1-3), we train πR and safety classifier f on
offline datasets collected from the supervisor policy πH . In
the interactive learning phase (Lines 4-19), we evaluate and
update the robot policy for N epochs, ceding control to the
supervisor when the robot predicts a high action discrepancy.

A. Action Discrepancy Prediction

SafeDAgger uses the classifier f to select between πR
and πH (Equation (IV.2)). However, in practice, this often
leads to frequent context switching (Figure 3). To mitigate
this, we make two observations. First, we can leverage that
in supervisor mode, we directly observe the supervisor’s

Fig. 2: LazyDAgger Switching Strategy: SafeDAgger switches between
supervisor and autonomous mode if the predicted action discrepancy is
above threshold βH . In contrast, LazyDAgger uses asymmetric switching
criteria and switches to autonomous mode based on ground truth action
discrepancy. The gap between βR and βH defines a hysteresis band [8].



Fig. 3: MuJoCo Simulation Results: We study task performance (A), ablations (B), online supervisor burden (C), and total bidirectional context switches
(D) for LazyDAgger and baselines over 3 random seeds. For Columns (A)-(D), the x-axis for all plots shows the number of epochs over the training
dataset, while the y-axes indicate normalized reward (A, B), counts of supervisor actions (C, log scale), and context switches (D) with shading for 1
standard deviation. We find that LazyDAgger outperforms all baselines and ablations, indicating that encouraging lengthy, noisy interventions improves
performance. Additionally, LazyDAgger uses far fewer context switches than other baselines while requesting far fewer supervisor actions than DAgger.

actions. Thus, there is no need to use f , which may have
approximation errors, to determine whether to remain in
supervisor mode; instead, we can compute the ground-truth
action discrepancy L(πR(st),πH(st)) exactly for any state
st visited in supervisor mode by comparing the supplied
supervisor action πH(st) with the action proposed by the
robot policy πR(st). In contrast, SafeDAgger uses f to
determine when to switch modes both in autonomous and
supervisor mode, which can lead to very short interventions
when f prematurely predicts that the agent can match the
supervisor’s actions. Second, to ensure the robot has returned
to the supervisor’s distribution, the robot should only switch
back to autonomous mode when the action discrepancy falls
below a threshold βR, where βR < βH . As illustrated in
Figure 2, LazyDAgger’s asymmetric switching criteria create
a hysteresis band, as is often utilized in control theory [8].
Motivated by Eq. (III.3), we adjust βH to reduce context
switches C(π) and adjust βR as a function of βH to increase
intervention length. We hypothesize that redistributing the
supervisor actions into fewer but longer sequences in this
fashion both reduces burden on the supervisor and improves
the quality of the online feedback for the robot. Details on
setting these hyperparameter values in practice, the settings
used in our experiments, and a hyperparameter sensitivity
analysis are provided in the Appendix.

B. Noise Injection

If the safety classifier is querying for interventions at state
st , then the robot either does not have much experience
in the neighborhood of st or has trouble matching the
demonstrations at st . This motivates exploring novel states
near st so that the robot can receive maximal feedback on the

correct behavior in areas of the state space where it predicts
a large action discrepancy from the supervisor. Inspired by
prior work that has identified noise injection as a useful
tool for improving the performance of imitation learning
algorithms (e.g. Laskey et al. [27] and Brown et al. [9]),
we diversify the set of states visited in supervisor mode
by injecting isotropic Gaussian noise into the supervisor’s
actions, where the variance σ2 is a scalar hyperparameter
(Line 11 in Algorithm 1).

VI. EXPERIMENTS

We study whether LazyDAgger can (1) reduce super-
visor burden while (2) achieving similar or superior task
performance compared to prior algorithms. Implementation
details are provided in the supplementary material. In all
experiments, L measures Euclidean distance.

A. Simulation Experiments: MuJoCo Benchmarks

Environments: We evaluate LazyDAgger and baselines
on 3 continuous control environments from MuJoCo [48],
a standard simulator for evaluating imitation and reinforce-
ment learning algorithms. In particular, we evaluate on
HalfCheetah-v2, Walker2D-v2 and Ant-v2.

Metrics: For LazyDAgger and all baselines, we report
learning curves which indicate how quickly they can make
task progress in addition to metrics regarding the burden
imposed on the supervisor. To study supervisor burden, we
report the number of supervisor actions, the number of
context switches, and the total supervisor burden (as defined
in Eq. (III.2)). Additionally, we define L∗ ≥ 0 to be the
latency value such that for all L > L∗, LazyDAgger has a
lower supervisor burden than SafeDAgger. We report this



Fig. 4: Fabric Smoothing Simulation Results: We study task performance measured by final fabric coverage (A), total supervisor actions (B), and total
context switches (C) for LazyDAgger and baselines in the Gym-Cloth environment from [44]. The horizontal dotted line shows the success threshold for
fabric smoothing. LazyDAgger achieves higher final coverage than Behavior Cloning and SafeDAgger with fewer context switches than SafeDAgger but
more supervisor actions. At execution time, we again observe that LazyDAgger achieves similar coverage as SafeDAgger but with fewer context switches.

L∗ value, which we refer to as the cutoff latency, for all
experiments to precisely study the types of domains in which
LazyDAgger is most applicable.

Baselines: We compare LazyDAgger to Behavior
Cloning [49], DAgger [40], and SafeDAgger [53] in terms
of the total supervisor burden and task performance. The
Behavior Cloning and DAgger comparisons evaluate the
utility of human interventions, while the comparison to
SafeDAgger, another interactive IL algorithm, evaluates the
impact of soliciting fewer but longer interventions.

Experimental Setup: For all MuJoCo environments, we
use a reinforcement learning agent trained with TD3 [16]
as an algorithmic supervisor. We begin all LazyDAgger,
SafeDAgger, and DAgger experiments by pre-training the
robot policy with Behavior Cloning on 4,000 state-action
pairs for 5 epochs, and similarly report results for Behavior
Cloning after the 5th epoch. To ensure a fair comparison,
Behavior Cloning uses additional offline data equal to the
average amount of online data seen by LazyDAgger during
training. All results are averaged over 3 random seeds.

Results: In Figure 3, we study the performance of
LazyDAgger and baselines. After every epoch of training,
we run the policy for 10 test rollouts where interventions are
not allowed and report the task reward on these rollouts in
Figure 3. Results suggest that LazyDAgger is able to match
or outperform all baselines in terms of task performance
across all simulation environments (Figure 3A). Additionally,
LazyDAgger requires far fewer context switches compared to
SafeDAgger (Figure 3D), while requesting a similar number
of supervisor actions across domains (Figure 3C): we observe
a 79%, 56%, and 46% reduction in context switches on
the HalfCheetah, Walker2D, and Ant environments respec-
tively. LazyDAgger and SafeDAgger both use an order of
magnitude fewer supervisor actions than DAgger. While
SafeDAgger requests much fewer supervisor actions than
LazyDAgger in the Ant environment, this limited amount
of supervision is insufficient to match the task performance
of LazyDAgger or any of the baselines, suggesting that
SafeDAgger may be terminating interventions prematurely.
We study the total supervisor burden of SafeDAgger and
LazyDAgger as defined in Equation (III.2) and find that in
HalfCheetah, Walker2D, and Ant, the cutoff latencies L∗ are

0.0, 4.3, and 7.6 respectively, i.e. LazyDAgger achieves lower
supervisor burden in the HalfCheetah domain for any L as
well as lower burden in Walker2D and Ant for L > 4.3 and
L > 7.6 respectively. The results suggest that LazyDAgger
can reduce total supervisor burden compared to SafeDAgger
even for modest latency values, but that SafeDAgger may be
a better option for settings with extremely low latency.

Ablations: We study 2 key ablations for LazyDAgger
in simulation: (1) returning to autonomous mode with f (·)
rather than using the ground truth discrepancy (LazyDAgger
(-Switch to Auto) in Figure 3), and (2) removal of noise
injection (LazyDAgger (-Noise)). LazyDAgger outperforms
both ablations on all tasks, with the exception of ablation 1
on Walker2D, which performed similarly well. We also ob-
serve that LazyDAgger consistently requests more supervisor
actions than either ablation. This aligns with the intuition that
both using the ground truth action discrepancy to switch back
to autonomous mode and injecting noise result in longer but
more useful interventions that improve performance.

B. Fabric Smoothing in Simulation

Environment: We evaluate LazyDAgger on the fab-
ric smoothing task from [44] (shown in Figure 4) using
the simulation environment from [44]. The task requires
smoothing an initially crumpled fabric and is challenging
due to the infinite-dimensional state space and complex
dynamics, motivating learning from human feedback. As in
prior work [44], we utilize top-down 100× 100× 3 RGB
image observations of the workspace and use actions which
consist of a 2D pick point and a 2D pull vector. See [44] for
further details on the fabric simulator.

Experimental Setup: We train a fabric smoothing policy
in simulation using DAgger under supervision from an
analytic corner-pulling policy that leverages the simulator’s
state to identify fabric corners, iterate through them, and
pull them towards the corners of the workspace [44]. We
transfer the resulting policy for a 16×16 grid of fabric into
a new simulation environment with altered fabric dynamics
(i.e. lower spring constant, altered fabric colors, and a higher-
fidelity 25×25 discretization) and evaluate LazyDAgger and
baselines on how rapidly they can adapt the initial policy to
the new domain. As in [44], we terminate rollouts when



Fig. 5: Physical Fabric Manipulation Task: Left: We evaluate on a 3-stage fabric manipulation task consisting of smoothing a crumpled fabric, aligning
the fabric so all corners are visible in the observations, and performing a triangular fold. Right: Rollouts of the fabric manipulation task, where each frame
is a 100 × 100 × 3 overhead image. Human supervisor actions are denoted in red while autonomous robot actions are in green. Rollouts are shaded to
indicate task progress: blue for smoothing, red for alignment, and green for folding. SafeDAgger ends human intervention prematurely, resulting in poor
task performance and more context switches, while LazyDAgger switches back to robot control only when confident in task completion.

Algorithm Task Successes Task Progress Context Switches Supervisor Actions Robot Actions Failure Modes
(1) (2) (3) A B C D

Behavior Cloning 0/10 6/10 0/10 0/10 N/A N/A 119 2 1 7 0
SD-Execution 2/10 6/10 4/10 2/10 53 34 108 5 0 0 3
LD-Execution 8/10 10/10 10/10 8/10 21 43 47 0 0 0 2

TABLE I: Physical Fabric Manipulation Experiments: We evaluate LazyDAgger-Execution and baselines on a physical 3-stage fabric manipulation task
and report the success rate and supervisor burden in terms of total supervisor actions and bidirectional context switches (summed across all 10 trials). Task
Progress indicates how many trials completed each of the 3 stages: Smoothing, Aligning, and Folding. LazyDAgger-Execution achieves more successes
with fewer context switches (L∗ = 0.28). We observe the following failure modes (Table I): (A) action limit hit (> 15 total actions), (B) fabric is more than
50% out of bounds, (C) incorrect predicted pick point, and (D) the policy failed to request an intervention despite high ground truth action discrepancy.

we exceed 10 time steps, 92% coverage, or have moved
the fabric more than 20% out of bounds. We evaluate
performance based on a coverage metric, which measures
the percentage of the background plane that the fabric covers
(fully smooth corresponds to a coverage of 100).

Results: We report results for the fabric smoothing
simulation experiments in Figure 4. Figure 4 (A) shows
the performance of the SafeDAgger and LazyDAgger poli-
cies during learning. To generate this plot we periodically
evaluated each policy on test rollouts without interventions.
Figure 4 (B) and (C) show the number of supervisor actions
and context switches required during learning; LazyDAg-
ger performs fewer context switches than SafeDAgger but
requires more supervisor actions as the interventions are
longer. Results suggest that the cutoff latency (as defined
in Section VI-A) is L∗ = 1.5 for fabric smoothing. Despite
fewer context switches, LazyDAgger achieves comparable
performance to SafeDAgger, suggesting that LazyDAgger
can learn complex, high-dimensional robotic control policies
while reducing the number of hand-offs to a supervisor.
We also evaluate LazyDAgger-Execution and SafeDAgger-
Execution, in which interventions are allowed but the policy
is no longer updated (see Section VI-C). We see that in
this case, LazyDAgger achieves similar final coverage as

SafeDAgger with significantly fewer context switches.

C. Physical Fabric Manipulation Experiments

Environment: In physical experiments, we evaluate on
a multi-stage fabric manipulation task with an ABB YuMi
robot and a human supervisor (Figure 5). Starting from a
crumpled initial fabric state, the task consists of 3 stages:
(1) fully smooth the fabric, (2) align the fabric corners with
a tight crop of the workspace, and (3) fold the fabric into a
triangular fold. Stage (2) in particular requires high precision,
motivating human interventions. As in the fabric simulation
experiments, we use top-down 100×100×3 RGB image ob-
servations of the workspace and have 4D actions consisting
of a pick point and pull vector. The actions are converted to
workspace coordinates with a standard calibration procedure
and analytically mapped to the nearest point on the fabric.
Human supervisor actions are provided through a point-and-
click interface for specifying pick-and-place actions. See the
supplement for further details.

Experimental Setup: Here we study how interventions
can be leveraged to improve the final task performance
even at execution time, in which policies are no longer
being updated. We collect 20 offline task demonstrations
and train an initial policy with behavior cloning. To prevent



overfitting to a small amount of real data, we use stan-
dard data augmentation techniques such as rotating, scaling,
changing brightness, and adding noise to create 10 times
as many training examples. We then evaluate the behavior
cloning agent (Behavior Cloning) and agents which use the
SafeDAgger and LazyDAgger intervention criteria but do
not update the policy with new experience or inject noise
(SafeDAgger-Execution and LazyDAgger-Execution respec-
tively). We terminate rollouts if the fabric has successfully
reached the goal state of the final stage (i.e. forms a perfect
or near-perfect dark brown right triangle as in Hoque et al.
[18]; see Figure 5), more than 50% of the fabric mask is
out of view in the current observation, the predicted pick
point misses the fabric mask by approximately 50% of the
plane or more, or 15 total actions have been executed (either
autonomous or supervisor).

Results: We perform 10 physical trials of each technique.
In Table I, we report both the overall task success rate and
success rates for each of the three stages of the task: (1)
Smoothing, (2) Alignment, and (3) Folding. We also report
the total number of context switches, supervisor actions, and
autonomous robot actions summed across all 10 trials for
each algorithm (Behavior Cloning, SafeDAgger-Execution,
LazyDAgger-Execution). In Figure 5 we provide represen-
tative rollouts for each algorithm. Results suggest that Be-
havior Cloning is insufficient for successfully completing
the alignment stage with the required level of precision.
SafeDAgger-Execution does not improve the task success
rate significantly due to its inability to collect interven-
tions long enough to navigate bottleneck regions in the
task (Figure 5). LazyDAgger-Execution, however, achieves
a much higher success rate than SafeDAgger-Execution
and Behavior Cloning with far fewer context switches than
SafeDAgger-Execution: LazyDAgger-Execution requests 2.1
context switches on average per trial (i.e. 1.05 interven-
tions) as opposed to 5.3 switches (i.e. 2.65 interven-
tions). LazyDAgger-Execution trials also make far more task
progress than the baselines, as all 10 trials reach the folding
stage. LazyDAgger-Execution does request more supervisor
actions than SafeDAgger-Execution, as in the simulation
environments. LazyDAgger-Execution also requests more
supervisor actions relative to the total amount of actions
due to the more conservative switching criteria and the
fact that successful episodes are shorter than unsuccessful
episodes on average. Nevertheless, results suggest that for
this task, LazyDAgger-Execution reduces supervisor burden
for any L> L∗= 0.28, a very low cutoff latency that includes
all settings in which a context switch is at least as time-
consuming as an individual action (i.e. L≥ 1).

In experiments, we find that SafeDAgger-Execution’s short
interventions lead to many instances of Failure Mode A
(see Table I), as the policy is making task progress, but not
quickly enough to perform the task. We observe that Failure
Mode C is often due to the fabric reaching a highly irregular
configuration that is not within the training data distribution,
making it difficult for the robot policy to make progress. We
find that SafeDAgger and LazyDAgger experience Failure

Mode D at a similar rate as they use the same criteria
to solicit interventions (but different termination criteria).
However, we find that all of LazyDAgger’s failures are due
to Failure Mode D, while SafeDAgger also fails in Mode A
due to premature termination of interventions.

VII. DISCUSSION AND FUTURE WORK

We propose context switching between robot and human
control as a metric for supervisor burden in interactive imita-
tion learning and present LazyDAgger, an algorithm which
can be used to efficiently learn tasks while reducing this
switching. We evaluate LazyDAgger on 3 continuous control
benchmark environments in MuJoCo, a fabric smoothing
environment in simulation, and a fabric manipulation task
with an ABB YuMi robot and find that LazyDAgger is
able to improve task performance while reducing context
switching between the learner and robot by up to 79%
over SafeDAgger. In subsequent work, we investigate more
intervention criteria and apply robot-gated interventions to
controlling a fleet of robots, where context switching can
negatively impact task throughput.

VIII. ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC Berkeley in affili-
ation with the Berkeley AI Research (BAIR) Lab, and the CITRIS “People
and Robots” (CPAR) Initiative. This research was supported in part by
the Scalable Collaborative Human-Robot Learning (SCHooL) Project, NSF
National Robotics Initiative Award 1734633. The authors were supported
in part by donations from Google, Siemens, Toyota Research Institute,
Autodesk, Honda, Intel, and Hewlett-Packard and by equipment grants
from PhotoNeo, Nvidia, and Intuitive Surgical. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the sponsors. We
thank colleagues Lawrence Chen, Jennifer Grannen, and Vincent Lim for
providing helpful feedback and suggestions.

REFERENCES
[1] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-

forcement learning”, in Proceedings of the twenty-first international
conference on Machine learning, 2004, p. 1.

[2] O. Amir, E. Kamar, A. Kolobov, and B. J. Grosz, “Interactive
Teaching Strategies for Agent Training”, in Proc. of the International
Joint Conference on Artificial Intelligence (IJCAI), 2016.

[3] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration”, Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[4] S. Arora and P. Doshi, “A survey of inverse reinforcement
learning: Challenges, methods and progress”, arXiv preprint
arXiv:1806.06877, 2018.

[5] A. Balakrishna*, B. Thananjeyan*, J. Lee, F. Li, A. Zahed, J. E.
Gonzalez, and K. Goldberg, “On-Policy Robot Imitation Learning
from a Converging Supervisor”, in Conference on Robot Learning
(CoRL), PMLR, 2019.
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IX. APPENDIX

Here we provide further details on our MuJoCo exper-
iments, hyperparameter sensitivity, simulated fabric experi-
ments, and physical fabric experiments.

A. MuJoCo

As stated in the main text, we evaluate on the HalfCheetah-
v2, Walker2D-v2, and Ant-v2 environments. To train the
algorithmic supervisor, we utilize the TD3 implementa-
tion from OpenAI SpinningUp (https://spinningup.
openai.com/en/latest/) with default hyperparame-
ters and run for 100, 200, and 500 epochs respectively. The
expert policies obtain rewards of 5330.78 ± 117.65, 3492.08
± 1110.31, and 4492.88 ± 1580.42, respectively. Note that
the experts for Walker2D and Ant have high variance, result-
ing in higher variance for the corresponding learning curves
in Figure 3. We provide the state space dimensionality |S|,
action space dimensionality |A|, and LazyDAgger hyperpa-
rameters (see Algorithm 1) for each environment in Table II.
The βH value in the table is multiplied with the maximum
possible action discrepancy ||ahigh− alow||22 to become the
threshold for training f (·). In MuJoCo environments, ahigh =
~1 and alow =−~1. The βH value used for SafeDAgger in all
experiments is chosen by the method provided in the paper
introducing SafeDAgger [53]: the threshold at which roughly
20% of the initial offline dataset is classified as “unsafe.”

For LazyDAgger and all baselines, the actor policy πR(·)
is a neural network with 2 hidden layers with 256 neurons
each, rectified linear unit (ReLU) activation, and hyperbolic
tangent output activation. For LazyDAgger and SafeDAgger,
the discrepancy classifier f (·) is a neural network with 2
hidden layers with 128 neurons each, ReLU activation, and
sigmoid output activation. We take 2,000 gradient steps per
epoch and optimize with Adam and learning rate 1e-3 for
both neural networks. To collect D and DS in Algorithm 1
and SafeDAgger, we randomly partition our dataset of 4,000
state-action pairs into 70% (2,800 state-action pairs) for D
and 30% (1,200 state-action pairs) for DS.

Environment |S| |A| N T βH βR σ2

HalfCheetah 16 7 10 5000 5e-3 βH / 10 0.30
Walker2D 16 7 15 5000 5e-3 βH / 10 0.10
Ant 111 8 15 5000 5e-3 βH / 2 0.05

TABLE II: MuJoCo Hyperparameters: |S| and |A| are aspects of the Gym
environments while the other values are hyperparameters of LazyDAgger
(Algorithm 1). Note that T and βH are the same across all environments,
and that βR is a function of βH .

B. LazyDAgger Switching Thresholds

As described in Section V-A, the main LazyDAgger
hyperparameters are the safety thresholds for switching to
supervisor control (βH ) and returning to autonomous control
(βR). To tune these hyperparameters in practice, we initialize
βH and βR with the method in Zhang et al. [53]; again, this
sets the safety threshold such that approximately 20% of the
initial dataset is unsafe. We then tune βH higher to balance
reducing the frequency of switching to the supervisor with

Fig. 6: LazyDAgger βR and βH sensitivity heatmaps across the 3 MuJoCo
environments. The x-axis denotes βH and the y-axis denotes βR. Note that
βR is a function of βH . Each of the 3 environments was run 9 times with
the different settings of βR and βH . As in Figure 3 we plot test reward,
number of supervisor actions, and number of context switches.

allowing enough supervision for high policy performance.
Finally we set βR as a multiple of βH , starting from βR = βH
and tuning downward to balance improving the performance
and increasing intervention length with keeping the total
number of actions moderate. Note that since these parameters
are not automatically set, we must re-run experiments for
each change of parameter values. Since this tuning results
in unnecessary supervisor burden, eliminating or mitigating
this requirement is an important direction for future work.

To analyze sensitivity to βR and βH , we plot the results of
a grid search over parameter values on each of the MuJoCo
environments in Figure 6. Note that a lighter color in the
heatmap is more desirable for reward while a darker color
is more desirable for actions and switches. We see that the
supervisor burden in terms of actions and context switches
is not very sensitive to the threshold as we increase βH but
jumps significantly for the very low setting (βH = 5×10−4)
as a large amount of data points are classified as unsafe.
Similarly, we see that reward is relatively stable (note the
small heatmap range for HalfCheetah) as we decrease βH but
can suffer for high values, as interventions are not requested
frequently enough. Reward and supervisor burden are not as
sensitive to βR but follow the same trends we expect, with
higher reward and burden as βR decreases.

C. Fabric Smoothing in Simulation

1) Fabric Simulator: More information about the fabric
simulator can be found in Seita et al. [44], but we review
the salient details here. The fabric is modeled as a mass-
spring system with a n× n square grid of point masses.
Self-collision is implemented by applying a repulsive force
between points that are sufficiently close together. Blender
(https://blender.org/) is used to render the fabric in
100×100×3 RGB image observations. See Figure 4 for an
example observation. The actions are 4D vectors consisting

https://spinningup.openai.com/en/latest/
https://spinningup.openai.com/en/latest/
https://blender.org/


of a pick point (x,y) ∈ [−1,1]2 and a place point (∆x,∆y) ∈
[−1,1]2, where (x,y) = (−1,−1) corresponds to the bottom
left corner of the plane while (∆x,∆y) is multiplied by 2 to
allow crossing the entire plane. In simulation, we initialize
the fabric with coverage 41.1± 3.4% in the hardest (Tier
3) state distribution in [44] and end episodes if we exceed
10 time steps, cover at least 92% of the plane, are at least
20% out of bounds, or have exceeded a tearing threshold in
one of the springs. We use the same algorithmic supervisor
as [44], which repeatedly picks the coordinates of the corner
furthest from its goal position and pulls toward this goal
position. To facilitate transfer to the real world, we use
the domain randomization techniques in [44] to vary the
following parameters:
• Fabric RGB values uniformly between (0, 0, 128) and

(115, 179, 255), centered around blue.
• Background plane RGB values uniformly between (102,

102, 102) and (153, 153, 153).
• RGB gamma correction uniformly between 0.7 and 1.3.
• Camera position (x,y,z) as (0.5+δ1,0.5+δ2,1.45+δ3)

meters, where each δi is sampled from N (0,0.04).
• Camera rotation with Euler angles sampled from

N (0,90°).
• Random noise at each pixel uniformly between -15 and

15.
For consistency, we use the same domain randomization in
our sim-to-sim (“simulator to simulator”) fabric smoothing
experiments in Section VI-B.

2) Actor Policy and Discrepancy Classifier: The actor
policy is a convolutional neural network with the same
architecture as [44], i.e. four convolutional layers with 32
3x3 filters followed by four fully connected layers. The
parameters, ignoring biases for simplicity, are:
policy/convnet/c1 864 params (3, 3, 3, 32)
policy/convnet/c2 9216 params (3, 3, 32, 32)
policy/convnet/c3 9216 params (3, 3, 32, 32)
policy/convnet/c4 9216 params (3, 3, 32, 32)
policy/fcnet/fc1 3276800 params (12800, 256)
policy/fcnet/fc2 65536 params (256, 256)
policy/fcnet/fc3 65536 params (256, 256)
policy/fcnet/fc4 1024 params (256, 4)
Total model parameters: 3.44 million

The discrepancy classifier reuses the actor’s convolutional
layers by taking a forward pass through them. We do not
backpropagate gradients through these layers when training
the classifier, but rather fix these parameters after training
the actor policy. The rest of the classifier network has three
fully connected layers with the following parameters:
policy/fcnet/fc1 3276800 params (12800, 256)
policy/fcnet/fc2 65536 params (256, 256)
policy/fcnet/fc3 1024 params (256, 4)
Total model parameters: 3.34 million

3) Training: Due to the large amount of data required
to train fabric smoothing policies, we pretrain the actor
policy (not the discrepancy classifier) in simulation. The
learned policy is then fine-tuned to the new environment
while the discrepancy classifier is trained from scratch.
Since the algorithmic supervisor can be queried cheaply,

Fig. 7: Behavior Cloning and DAgger performance across 10 test episodes
evaluated every 10 epochs. Shading indicates 1 standard deviation. The first
100 epochs (left half) are Behavior Cloning epochs and the second 100
(right half) are DAgger epochs.

we pretrain with DAgger as in [44]. To further accelerate
training, we parallelize environment interaction across 20
CPUs, and before DAgger iterations we pretrain with 100
epochs of Behavior Cloning on the dataset of 20,232 state-
action pairs available at [44]’s project website. Additional
training hyperparameters are given in Table III and the
learning curve is given in Figure 7.

Hyperparameter Value
BC Epochs 100
DAgger Epochs 100
Parallel Environments 20
Gradient Steps per Epoch 240
Env Steps per Env per DAgger Epoch 20
Batch Size 128
Replay Buffer Size 5e4
Learning Rate 1e-4
L2 Regularization 1e-5

TABLE III: DAgger Hyperparameters. After Behavior Cloning, each
epoch of DAgger (1) runs the current policy and collects expert labels for
20 time steps in each of 20 parallel environments and then (2) takes 240
gradient steps on minibatches of size 128 sampled from the replay buffer.

4) Experiments: In sim-to-sim experiments, the initial
policy is trained on a 16x16 grid of fabric in a range of colors
centered around blue with a spring constant of k = 10,000.
We then adapt this policy to a new simulator with differ-
ent physics parameters and an altered visual appearance.
Specifically, in the new simulation environment, the fabric
is a higher fidelity 25x25 grid with a lower spring constant
of k = 2,000 and a color of (R, G, B) = (204, 51, 204)
(i.e. pink), which is outside the range of colors produced
by domain randomization (Section IX-C.1). Hyperparameters
are given in Table IV.

D. Fabric Manipulation with the ABB YuMi

1) Experimental Setup: We manipulate a brown 10” by
10” square piece of fabric with a single parallel jaw gripper
as shown in Figure 1. The gripper is equipped with reverse
tweezers for more precise picking of deformable materials.
Neural network architecture is consistent with Section IX-C.2
for both actor and safety classifier. We correct pick points
that nearly miss the fabric by mapping to the nearest point on



Hyperparameter Value
N 10
T 20
βH 0.001
βR βH
σ2 0.05
Initial |D| 1050
Initial |DS| 450
Batch Size 50
Gradient Steps per Epoch 200
π Learning Rate 1e-4
f Learning Rate 1e-3
L2 Regularization 1e-5

TABLE IV: Hyperparameters for sim-to-sim fabric smoothing experiments,
where the first 5 rows are LazyDAgger hyperparameters in Algorithm 1.
Initial dataset sizes and batch size are in terms of images after data
augmentation, i.e. scaled up by a factor of 15 (see Section IX-D.4). Note
that the offline data is split 70%/30% as in Section IX-A.

the mask of the fabric, which we segment from the images
by color. To convert neural network actions to robot grasps,
we run a standard camera calibration procedure and perform
top-down grasps at a fixed depth. By controlling the width
of the tweezers via the applied force on the gripper, we can
reliably pick only the top layer of the fabric at a given pick
point. We provide LazyDAgger-Execution hyperparameters
in Table V.

2) Image Processing Pipeline: In the simulator, the fabric
is smoothed against a light background plane with the same
size as the fully smoothed fabric (see Figure 4). Since the
physical workspace is far larger than the fabric, we process
each RGB image of the workspace by (1) taking a square
crop, (2) rescaling to 100× 100, and (3) denoising the image.
Essentially we define a square crop of the workspace as
the region to smooth and align against, and assume that the
fabric starts in this region. These processed images are the
observations that fill the replay buffer and are passed to the
neural networks.

3) User Interface: When the system solicits human in-
tervention, an interactive user interface displays a scaled-up
version of the current observation. The human is able to
click and drag on the image to provide a pick point and pull
vector, respectively. The interface captures the input as pixel
locations and analytically converts it to the action space of
the environment (i.e. a ∈ [−1,1]4) for the robot to execute.
See Figure 8 for a screen capture of the user interface.

4) Data Augmentation: To prevent overfitting to the small
amount of real data, before adding each state-action pair to
the replay buffer, we make 10 copies of it with the following
data augmentation procedure, with transformations applied in
a random order:
• Change contrast to 85-115% of the original value.
• Change brightness to 90-110% of the original value.
• Change saturation to 95-105% of the original value.
• Add values uniformly between -10 and 10 to each

channel of each pixel.
• Apply a Gaussian blur with σ between 0 and 0.6.
• Add Gaussian noise with σ between 0 and 3.
• With probability 0.8, apply an affine transform that

(1) scales each axis independently to 98-102% of its
original size, (2) translates each axis independently by
a value between -2% and 2%, and (3) rotates by a value

Fig. 8: The user interface for human interventions. The current observation
of the fabric state from the robot’s perspective is displayed, with an overlaid
green arrow indicating the action the human has just specified.

between -5 and 5 degrees.

Hyperparameter Value
βH 0.004
βR βH
|D| 875
|DS| 375
Batch Size 50
Gradient Steps per Epoch 125
π Learning Rate 1e-4
f Learning Rate 1e-3
L2 Regularization 1e-5

TABLE V: Hyperparameters for physical fabric experiments provided in
the same format as Table IV. Since this is at execution time, N, T and σ2

hyperparameters do not apply.
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