
Survivable Robotic Control through Guided Bayesian Policy Search
with Deep Reinforcement Learning

Sayyed Jaffar Ali Raza∗, Apan Dastider∗, and Mingjie Lin†

Abstract— Many robot manipulation skills can be repre-
sented with deterministic characteristics and there exist efficient
techniques for learning parameterized motor plans for those
skills. However, one of the active research challenge still remains
to sustain manipulation capabilities in situation of a mechanical
failure. Ideally, like biological creatures, a robotic agent should
be able to reconfigure its control policy by adapting to dynamic
adversaries. In this paper, we propose a method that allows
an agent to survive in a situation of mechanical loss, and
adaptively learn manipulation with compromised degrees of
freedom— we call our method Survivable Robotic Learning
(SRL). Our key idea is to leverage Bayesian policy gradient
by encoding knowledge bias in posterior estimation, which in
turn alleviates future policy search explorations, in terms of
sample efficiency and when compared to random exploration
based policy search methods. SRL represents policy priors
as Gaussian process, which allows tractable computation of
approximate posterior (when true gradient is intractable), by
incorporating guided bias as proxy from prior replays. We
evaluate our proposed method against off-the-shelf model free
learning algorithm (DDPG), testing on a hexapod robot plat-
form which encounters incremental failure emulation, and our
experiments show that our method improves largely in terms of
sample requirement and quantitative success ratio in all failure
modes. A demonstration video of our experiments can be viewed
at: https://sites.google.com/view/survivalrl

Index Terms— Survivable Robotic Control, Bayesian Learn-
ing, Guided Policy Search

I. INTRODUCTION
Reinforcement learning (RL) have recently demonstrated

promising performance in domain of robotic learning, solv-
ing problems like robot manipulation [1], motion plan-
ning [2] and robot control [3]. Moreover, RL methods
for robotics are expected to shift the automation paradigm
by exhibiting high tolerance or error resilience, thus ca-
pable of autonomously accomplishing tasks under complex
environments. However, such overwhelming vision equally
demands reduced training overhead and tractable compu-
tational requirements. One of the key challenges for RL
algorithms is there requirement of extensive interaction with
the environment, gathering experience to train policies that
solve new tasks [4]. This requirement, in particular grows
significantly in domain of high-dimensional robotic systems
where gathering experience from interactions is slow and
expensive. Moreover, the gathered experience could also be-
come less relevant if the composition of robotic system varies
over time—hence requiring to regather the samples [5],
[6]. Intuitively, a possible approach to address this challenge
could be defined by representing past gathered samples as a
generative representation of the model being learnt, allowing
the agent to reproduce or bootstrap parameters from past
experiences to alleviate sample requirements for learning

∗: Equal contribution. Correspondence: jaffar@knights.ucf.edu
†: Mingjie Lin is associate professor with the Department of Electrical and
Computer Engineering, Univ. of Central Florida, Orlando, FL 32826, USA

(a)

(b) (c)

Fig. 1: (a):18-DoF Hexapod used for experiments (b):Failure
shown as reduction in one DoF (c):Failure case where entire
limb is amputated, reducing three DoFs as well as the mass.

policy for future tasks. We study about how efficiently an
agent can adapt its learning towards task completion, when
encountered with adversaries like physical damage to joints
or random loss in degrees of freedom, mimicking mechanical
failure. Our proposed Survivable Robotic Learning (SRL)
framework enables the robot to learn and update its future
policy by inducing bias from prior behavioral samples. Given
a learned policy π for a deterministic robotic agent Fig.1.a,
our method aims at quickly adapting to sudden changes in
system dynamics or robotic agent itself as shown in Fig.1.b
and Fig.1.c respectively; for example, an agent in Fig.1.a
is deterministically trained, and is equipped with control
policy π assuming complete functionality, but unexpectedly
looses certain portion of its mobility or faces with unforeseen
occurrences; now would need to relearn a policy separately
in case of Fig.1.b and Fig.1.c. Mathematically, all these
scenarios can be formally abstracted as the loss in state space
S or action space A. As such, the goal of our SRL is to
compute a new optimal policy πnew considering the changes
in S and A, while doing generative exploitation of previously
learned samples from past policies.

Our key idea is to use parametric posterior estimation
(Bayesian RL) to guide the search direction of new pol-
icy while exploiting the base policy as much as possible
inspired by [7]. Technically, our proposed SRL exploits
Bayesian exploration strategy to wisely guide the exploration
of on-going learning policy by integrating the past learned
knowledge through prior distributions. Bayesian learning
not only stabilizes exploration-exploitation dilemma during

ar
X

iv
:2

10
6.

15
65

3v
1

 [
cs

.R
O

]
 2

9
Ju

n
20

21

https://sites.google.com/view/survivalrl
jaffar@knights.ucf.edu

gradient estimation, but also tackles the central challenges
of the explosion of sample-complexity imposed by off-the-
shelf Monte-Carlo based policy gradient approaches ([3],
[5], [8]). Thus, we can compute policy gradient and policy
integral (posterior) with Bayesian gradient estimation [9]
and the samples of its integrand distributions(a priori), while
avoiding the high parametric divergence of MC based update.

II. RELATED WORK

In this section, we will briefly discuss about existing work
that utilize RL methods for robotic applications, specially
achieving robotic control using probabilistic methods for
learning control policy through Bayesian estimation methods
that use prior distributions to bias parametric updates in
posterior inference.

Bayesian Reinforcement Learning— Bayesian method-
ology, which incorporates prior information into inference
algorithms, has been extensively studied to augment the
conventional reinforcement learning (RL) [10]. Such inte-
gration provides an elegant approach to account for prior
knowledge and learning uncertainty while effectively trading
between exploration and exploitation during action-selection.
Although the majority of recent literature on Bayesian RL
is model-based [10] (priors are expressed over the value
function or policy class), in robotics, because prior informa-
tion rarely can be accurately expressed as a parameterized
Markov model [7], [9], this paper will exclusively focus
on Bayesian methods for model-free RL, where priors are
expressed over the value function or policy class. Specifi-
cally, the study in [9] proposed a new actor-critic learning
model consisting of a Bayesian class of non-parametric
critics using Gaussian process temporal difference learning.
Recently in [7], Bayesian framework has been shown that
modeling the policy gradient as a Gaussian process can
significantly improve the efficiency of sample usage and
acquire uncertainty measurements almost free.

Damage recovery and sudden perturbation planning in
robotics— Previously, to mitigate the adverse effect due
to sudden malfunction, most robotics systems were pre-
loaded multiple contingency planes constructed beforehand.
As such, as soon as robotic damage occurs, the robot would
first conduct self-diagnosis, quickly assess its damage, and
subsequently select the best recovery plan [11]. Unfortu-
nately, such self-diagnosing robots are overly challenging
to design, because foreseeing all possible failure modes
is extremely difficult and providing all backup plans can
be prohibitively expensive. For example, in [12], a 4-leg
robot has been demonstrated to recover from a disabled
leg autonomously without pre-stored contingent policies by
continuous self-modeling. The main algorithm used in [12]
is based on the basic stochastic optimization that attempts to
explain the observed sensory-actuation causal relationship,
therefore largely heuristic-based. More recently, in [13], an
evolutionary algorithm has been developed that allows a six-
legged robot to adapt to unforeseen changes. The six-legged
mobile robot investigated used an intelligent trial-and-error
algorithm to tap into the experiences previously accumulated
and quickly find optimal compensating behaviours.

Key SRL differences— Compared with the prior studies,
our proposed SRL algorithm has at least two fundamental
distinctions. First, both [12] and [13] applied control system-
based methodology to tackle damage recovery in robotics
and these methods have been quite successful in various
domains, but here we wanted to exploit the most recent

development in deep RL for robotics. This is critical because
deep RL is proved not only to provide a mathematically
rigorous machine learning framework, but also is more
accurate to account for the continuous state and action space
for robotic control. Second, although the study [13] did
utilize a Bayesian-inspired prediction scheme, our proposed
methodology tightly incoorperate the Bayesian learning al-
gorithm with the most recent off-model and off-policy deep
reinforcement learning, thus much more capable and more
sophisticated. In many aspects, the Intelligent Trial and Error
algorithm (IT&E) proposed in [13] represent a rudimentary
form of basic tabular-based Q-learning [14],which is typi-
cally used for finite state and action spaces, while most of
the robotic platforms deal with continuously varying spaces.

III. PRELIMINARIES

We consider the standard RL setting represented as an
MDP (Markov decision process). We represent MDP node as
a tuple (s, a, p0, r, p, γ). An agent interacts with an stochastic
environment consisting of a set of states s ∈ S, a set
of actions a ∈ A, a distribution of initial states p(s0), a
reward function r : S × A → R, transition probabilities
p(st+1|st, at) : s× a→ s′, and a discount factor γ ∈ [0, 1].
The agent interacts with the environment to learn a policy
π(at|st) which is actually a mapping function representing
probability distribution function (PDF) of reward, taking
state and action as input random variables. An agent chooses
an action according to π(at|st) : S → P(A) such that long-
term expected sum of rewards, J = Eπ[

∑∞
t=0 γ

tr(st, at)],
can be maximized.

The quality of each action at sampled by current policy
π in a state st can be measured by a function Q(st, at) =
Eπ[J |st, at]. The sequence of state-action pairs in an episode
creates a trajectory ξ = (s0, a0, s1, a1, ..., sT−1, aT−1, sg)
in form of a Markov chain. The PDF of such Markov
chain followed by policy π is represented as P (ξπ) =
p(s0)

∏T−1
t=0 π(at|st)p(st+1|st, at), which is generated by

Monte-Carlo sampling. Also, the expected return for a
given ξ can be expressed as, η(π) = E[J(ξπ))] =∫
J(ξπ)P (ξπ)dπ.

A. Bottlenecks in Monte-Carlo Simulation
The policy search is performed by estimating the gra-

dient over expected return from a class of parameterized
stochastic policies {π(·|s, θ), s ∈ S, θ ∈ Θ} w.r.t pol-
icy parameters θ from observed system trajectories and
then improve the policy by adjusting the parameters in
the direction of gradient. For, any given set of trajecto-
ries ξ1, ξ2, . . . , ξM we can state Monte-Carlo (MC) esti-
mator as ∇̂ηMC(πθ) = 1

M

∑M
i=1 J(ξi)∇ logP (ξi|πθ) =

1
M

∑M
i=1 J(ξi)

∑Ti−1

t=0 ∇ log π(at,i | st,i, θ), where gradients
are defined as likelihood ratio. So, in MC based estimation,
policy gradients are defined over the expected values of
trajectories and the samples are drawn according to their
probability values. This policy gradient can be an unbiased
estimate of true gradient η(·) only when number of drawn
samples tend to infinity i.e M → ∞ and thus, variance
between ∇̂ηMC(πθ) and true gradient ∇η(πθ) diminishes
to zero. This condition makes MC based policy modeling
infeasible for robotic platforms, because gathering experi-
ences in robot learning is slow and expensive. Moreover,
MC estimation is fundamentally unsound as explained in [5],
because the estimator only depends on the values of sampling

distribution which are arbitrary choices, and are dependent on
stationary reward distributions. This dependence violates the
likelihood principle because the estimated gradient becomes
irrelevant if the reward distribution is likely to evolve with
time [9]. Therefore, for problems with temporally varying
distribution, classical policy gradient alone would yield non-
optimal performance.

B. Gradient Computation by Bayesian Quadrature
RL for robotic control typically deals with continuous

state and action spaces with extremely high dimensional-
ity, and environments and the associated robotic agent are
largely susceptible to uncertain changes due to inherent non-
stationarity in work-space and unwanted malfunction in the
agent’s structure itself. In Bayesian RL, the distribution of
unknown function f(·) which can be a representative for
robust control policy π(·|st) to tackle uncertainty mentioned
earlier, is modelled as a Gaussian Process (GP) by defining
a Gaussian distribution as prior distribution over functions.
The inferred posterior distribution from this prior will also
be a Gaussian normal. Therefore, the gradient of expected
return in terms of Bayesian quadrature is given by ηB(πθ) =∫
J(ξπ)P (ξπ, θ)dξ. We consider ηB(πθ) as a random vari-

able due to high variance (Bayesian uncertainty) in J(ξπ).
As such, the expected mean of a posterior distribution of
gradient is computed as

∇E[ηB(θ) | DM] = E[∇ηB(θ) | DM]

= E[

∫
J(ξπ)

∇P (ξπ, θ)

P (ξπ, θ)
P (ξπ, θ)dξ | DM],

(1)
where the set of samples DM = {(si, ŝi)}Mi=1 are provided
and ŝ is the noisy observation of f(s) : s × a → s′. The
integrand in Eq. (1) can be decomposed into a GP prior
function f(ξπ, θ) and its probability distribution p(ξπ, θ).
When computing posterior, the quadrature assumes p to be
known.

Despite of addressing the issue of high variance, calcu-
lating the gradient in Eq. (1) implicitly assumes that (i) the
behavior of prior moments can be aggregated into a policy
distribution which is a normal Gaussian process and (ii)
the parameter θ of prior can be embedded for determining
direction of posterior gradient. Therefore, we augmented the
policy learning with Bayesian optimization for exploiting the
past experiences and prior policy gradient updates to guide
new policy search in order to handle sudden perturbations in
state-space or action-space of the robotic agent.

IV. PROPOSED APPROACH

The major objective of our proposed SRL is enabling a
robotic agent to inherit, partially or entirely, a previously
learned motion policy in order to quickly evolve or adapt to a
new policy that optimally tackles unexpected sudden changes
in state dynamics, such as joint damages during run time. The
key intuition behind our SRL, which has been biologically
confirmed as well [12], is that, even if a robot is damaged,
its prior motion policy πB can still be partially utilized
to characterize behavior for both initializing the parameter
vector for πnew and determining the direction for making
gradient updates ∇πnew. Abstractly, to formalize our SRL
formulation, we defined two separate domain of operation–
healthy domain and unhealthy domain. At the beginning,
our SRL agent was assumed to be equipped with a well-
learned policy πB and a healthy model MB , where the

subscript B represents behavior— as we will use behavior
policy to learn target (new) policy. In our case, the robot
was initially intact with all available degree of freedoms
(DoFs) and zero malfunction. The knowledge learned in this
healthy domain can be encoded as a heuristic ensemble guide
that directs the exploration and parameter updates for future
unhealthy domain. Hence, learning in a new domain need not
to be initiated from absolute scratch, rather our SRL agent
strives to learn unknown tasks through performing a guided
exploration to explore states unknown to healthy domain.
When our SRL agent suffered from unknown functionality

Fig. 2: Overall learning framework of SRL.
loss in terms of its mobility remarked as unhealthy model
M+, naturally the previous healthy policy πB would under-
perform in M+ due to sudden changes in state space and
action-space. However, instead of totally disregarding the
learning trends in previous MB , our SRL agent can exploit
its prior locomotion policy by estimating state value similar-
ity between known MB and unknown M+ to quickly plan
new locomotion plans for maneuvering in new unhealthy
domain. Fig. 2 depicts the overall learning strategy for our
SRL agent. As such, we view the SRL problem as an
incremental estimation, where a new trajectory is suggested
by the πnew considering the old behaviors of the agent as
a set of advise to plan locomotion in the M+ domain. In
short, the objective of the SRL state estimation is to find
a continuous-valued posterior trajectory for M+ given an
ensemble prior distribution optimized by policy in MB .

Fig. 3: Algorithmic details for parametric updates in SRL

A. Behavior Policy: Healthy Ensembles
To formalize healthy ensemble attributes, we consider

infinite-horizon MDPs with stochastic transition dynamics
p(st+1|st, at), a set of terminal states GB ⊂ S, and a sparse
reward function rGB (sB) = 1(sB ∈ GB). For any stochastic
behavior policy πB , the state value function is

V πBGB
(
s(0,B)

)
= E

[∞∑
t=1

γtrGB (st,B)
]

B superscript specifies that these information are collected
from prior domain MB . By following behavior policy
πB , the agent creates a trajectory of state-action pairs as,
ξπB = (s0, a0, s1, a1, ...) where at ∼ πB(·|st) and st+1 ∼
p(·|st, at). Each trajectory either ends by reaching a goal

state sg or exhausts all allowed steps and fails to reach a
goal state. All trajectories can be clustered into two sets Xg
and XCg such as, all successful trajectories ξiπB ∈ Xg and
all failure states ξjπB ∈ X

C
g (where C represents cancelled

trajectories). For any goal state sgB ∈ GB , sgB is absorbing
with reward 1, then the value for sgB , is V πB (sgB) = 1

1−γ .
Now, any trajectory ξiπB ∈ Xg that ends being successful
within allowed time-steps tg , generates a return of γtg−1

1−γ and
all trajectories belonging to XCg returns always 0. Therefore,
the expected value function expression can be written as
expected discount sum of rewards for a trajectory ξπB as,

V πBGB
(
s(0,B)

)
= Eξ[R(ξπB)]

= P (ξπB ∈ Xg)Etg
[γtg−1

1− γ
]

The above expression of value function contains two impor-
tant attributes: (1) reaching a goal state from state s(0,B) with
higher certainty and (2) reaching the goal state quickly [4],
[15].

So when we build the prior healthy ensembles taking into
consideration the actions taken by policy πB and the effects
of those actions while computing the value functions for
any state s, we are taking two-fold advantages from prior
domains–how much probable this trajectory is for reaching
a goal state and how fast it converges to optimal solution,
i.e completion of task with highest return possible. Thus,
the value functions can be utilized to extend the ensemble
attributes, since value functions implicitly carry information
about past successful trajectories the agent created.

B. Behavior Policy: Partially Guidance

Based on the goal reaching probability and time based
healthy ensemble setting discussed above, the prior behavior
policy, in some known regions, would transit from one state
to another state as an optimal policy would reach quickly the
goal state from the new state. Thus, in that known region,
the behavior policy would offer partially useful advice for the
target policy π+ to tackle unhealthy domain M+. Let π∗+
denote the optimal policy and V ∗+G (s) denote the optimal
state value function, with respect to a fixed set of goals
G+. Then the behavior policy can only guide partially, if in
some non-empty strict subset sg ⊂ S,∀sg ∈ S, we have that
V ∗+G (ξB(sg, a)) > V ∗+G (sg), where ξB denotes the transition
generated with behavior policy πB . This is also visually
depicted in Fig. 3, showing that the partial guidance from πB
acts as behavior ensemble and helps the agent to model the
future policy fast by utilizing partial information of behavior
samples and computing ∇πnew gradient in direction of prior
ensembles.

C. Thompson Sampling

Exploitation of healthy ensemble needs to be balanced be-
tween those states whose utility is non-stationary or unknown
to behavior policy πB . We adapt Thompson Sampling [16],
which is widely accepted Bayesian method for maintaining
balance between exploration and exploitation, by modeling
the uncertainty as a posterior distribution for each policy.
Inspired by [4], we use Thompson sampling to model pos-
terior distribution over expected state-action values within
the critic network. The reason behind maintaining posterior
distribution, instead of q ∀Qφ estimates, the distribution is

maintained over network weights (parameters) and conse-
quently over Bayesian confidence. The weights are forward
passed to the controller (as shown in Fig. 3), which then
decides what action to take by evaluating action proposals
and corresponding values.

D. Controller
It is potentially possible that the behavior policy πB can

distract our SRL agent from optimal learning, especially in
those state-action choices which are unseen by πB . Addition-
ally, there is also a chance that our SRL agent formulates
a virtual local minima, and switches excessively between
V (φ) ∼ πB and V (θ) ∼ π∗+θ . To mitigate these risks, we
setup a controller (see Fig. 3), that compare the policy param-
eters for both θi and φi, selected at timestep ti, by performing
Thompson sampling process between (θi, φi) and (θi−i,
φi−i). The controller also utilizes posterior sampling to esti-
mate the probabilistic state-action values of actions suggested
by prior healthy ensemble as arg maxi∈1,...,N Q(s, ai), if
this value is larger than actor’s action proposal value, the
behavioral policy acts as the new policy at timestep i,
otherwise the agent acts with the previous policy. We present
more algorithm details in Algorithm 1

Algorithm 1: SRL Bayesian Inference Algorithm
Require:
πB : Behaviour Policy
St : Current Observation
A : Action Proposal

while epoch < maxEpoch do
for episode = {1, 2, ..., nepisodes} do

for steps = {1, 2, ..., nsteps} do
A ← [πθ(St) , πBφ (St)] #Observe Action Proposal
θt+1 v q(φ) # Posterior dist. sampling
TS(at)← argmaxi∈1,..N Qφ(s, a) # Thompson
Get probability of higher expected value b/w two timsteps
pa ← P[Qφ(St,TS(at)) > Qφ(St,TS(at−1))]
if Pa then

CNTRL : accept proposed action
choose at ← A

else
V (st)← value update E[Gt|st]
choose argmaxπθ (V (s, a))

CNTRL Update:
Loss: φ← φ−∇φLcritic(φ)
Loss: θ ← θ −∇θLactor(θ)
V (St)← value update
return(at) to agent

end
end

end

V. SYSTEM OVERVIEW AND EXPERIMENTS

In this section we describe our simulation and physical
frameworks that were utilized to conduct comparative testing
of SRL and DDPG [3].

A. Hardware Platform
As shown in Fig. 1, we used a Phantomx® AX Metal

Hexapod Mark III crawler robot to conduct our experiments.
It consists of six legs and each leg comprises of three
individually controlled joints named as “coxa”, “femur”,
and “tibia”. Altogether this crawler robot comprises 18
degrees of freedom (DOF), which make it versatile and
robust for conducting our experiments. To read and write
18 joint angles of all 6 legs of our hexapod, we opted to
use an U2D2 USB communication converter instead of a
more conventional Arduino compatible Arbotix controller
because the U2D2 allows faster data communication with the
dynamixel motors attached at each joint. We also integrated
a PID based position controller for each joint in order to

follow closed-loop feedback commands and shift within pre-
determined operating ranges.

B. Experiments overview
Video demo of our experiments can be viewed at:

https://sites.google.com/view/survivalrl.
Two pointers were placed in the workspace of our
experiments and were marked as “start” and “finish”. At
first, to define the baseline of our crawler’s movement,
our hexapod was programmed to crawl from the start
pointer to the finish pointer while following the tripod gait
movement pattern of a six-legged insect. Afterwards, as
depited in Fig. 1, the “tibia” joint of right middle leg was
removed manually to evaluate how the robot adapts to its
new structure and how well our proposed SRL learning
algorithm performs in completing its defined trajectory. At
last, the full right-middle leg of our hexapod was removed
from the body. As a result, our algorithm tried to discover
optimal policy to complete the full trajectory in a more
complicated circumstance of losing 3 DOF. The same
length trajectory was designed in the simulation profile for
the hexapod to follow. A similar tripod gait pattern was
implemented in the simulation profile to move the robot.
Eventually, one tibia joint and one full leg was disconnected
gradually from the simulation profile to evaluate the overall
performance and reward-return of our designed controller.
To testify the robustness and generalization of our algorithm
and implementation, later, different legs were kept as a
disconnected leg from the controller.

Along with random physical damage, we tested and val-
idated SRL on three different categories of test-cases, (i)
Task X, (ii) Task XY and (iii)Task P2P.
• Task X. In this easy mode, the agent’s goal is to cover

maximum distance along only X-axis, while its tibia
joint is inoperable, i.e the robotic agent loses 1 degree
of freedom as depicted in Fig. 4(b).

• Task Y. This is the medium difficulty mode where
the agent targets to exert smooth locomotion in 2-D
environments and travels maximum distance while the
one leg becomes totally damaged i.e it loses 3 DOF
randomly as shown in Fig.4(c).

• Task P2P In this hard difficulty mode, the objective
is to arrive at specific cordinates on a planar surface,
overcoming the maneuvering hindrance due to missing
one full leg randomly.

C. Simulation Environment
The algorithm was trained over generative sampling of

state-action sequences from simulation environment. We
utilized an integrated robot simulator that combines the 3D
simulator Gazebo and the ROS robotic interface for all of our
high-fidelity simulations. We adopted an open-source gazebo
simulation model for Phanomx AX Metal Hexapod Mark III
crawler robot (as shown in Fig. 4) that accurately models
both the mechanical structure and the system dynamics of
our target robot. Finally, the inter-process communication
protocol (IPC) was based on ROS ecosystem to control
parallel operation and ensure low latency feedback among
simulation platform, physical robot and our SRL controller.
The Gazebo model has been spawned as an independent ROS
node while its communication was synced at the minimum
rate of 20Hz to maintain handshaking message passing
protocol.

D. Algorithmic Implementation
We presented SRL technique that leverages past experi-

ence as probabilistic bias towards on-going learning. The
algorithmic implementation of our proposed method was
significantly inspired by DDPG learning method [3] which
is considered as one of well-established policy learning
techniques for continuous robotic control. Moreover, our
approach combines a probabilistic bias with conventional
DDPG and computes posterior out of behavior samples—
hence representing policies as Gaussian process instead of
parametric mapping function. This bias enables the agent
to exploit its existing policy as prior behavior ensemble
and quickly learns a target policy to adapt to unforeseen
domain setting. Technically, we introduced Bayesian poste-
rior conditioned over behavior policy, that can incrementally
estimate relevance between two domains, resulting in lesser
exploration requirement and faster gradient updates over
fewer samples.

We tested our approach on a hexapod robot with 18-DOF
as shown in Fig.1. The robot learns its behavior policy πB in
a healthy or undamaged domain and this well-learned policy
serves as the healthy ensemble to guide learning in unhealthy
domain. πB is generic tripod gait locomotion policy which
enables the agent to travel very smoothly according to three
different task trajectories mentioned in section V-B. In the
next step, we explicitly introduce adversary by amputating
random joints from the robot body to emulate random un-
healthy domain settings. Such random perturbations in state-
space or action-space is totally unknown to πB . In brief, the
robot gets damaged and loses its maneuvering capabilities—
turning πB into a sub-optimal policy modeling in damaged
domain. Both actor and critic network comprises of 4x1200
dense hidden layers, 1x600 hidden layer and a Bayesian
dropout layer [17]. We list additional training parameters in
the Table I below:

TABLE I: Training Parameters

Training Parameters
Max Episodes 7,000 Variance (0.9999)t

Steps/Episode 2500 Learning Rate 3e−2

Replay Buffer 1600 Optimizer 1 ADAM
MiniBatch Size 300 Optimizer 2 RMSProp

E. Result Analysis
Our experiments are developed to empirically investigate

following questions:
1) How SRL can utilize the behavior policy and healthy

ensemble knowledge to infer posterior distribution as
target policy?

2) How efficient SRL is when new domain differs signifi-
cantly from prior ensemble settings?

As shown in Fig. 5, our proposed SRL methodology
shows improved performance w.r.t sample efficiency (lesser
episodic requirements), depicted as episodic returns in all
three task scenarios compared to the baseline method. It can
also be observed by looking at the Fig. 5 that standalone
DDPG not only struggles to achieve optimality, but also it
dips as exploration, in turn learning rate, narrows down with
increasing number of episodes, trapping the baseline trend
into local minima. Moreover, our Bayesian augmented SRL
promisingly stabilizes the learning and exhibits less variance
than the baseline. The dotted line in the plots define oracle
reward threshold. This threshold can be marked as a finishing
point, if reached, then an episode ends with success. We

https://sites.google.com/view/survivalrl

(a) Hexapod Simulation Profile (b) Right middle leg joint ‘tibia’ removed from body (c) Right middle leg removed fully from body

Fig. 4: Simulation model of hexapod robot and level of damages by reducing numbers of DOF.

(a) (b) (c)

Fig. 5: Comparison between SRL and baseline for (a) Difficulty mode: Easy, Task: Task X; (b) Difficulty mode: Medium,
Task: Task Y; Difficulty mode: Hard, Task: Task P2P. 10 random seeds are used for each test.

can observe from the Fig. 5 that the SRL method is more
effective than the baseline for handling sudden disturbances
occurred to state-space of a robotic agent learning optimal
policy to preserve functionality.

VI. CONCLUSION

Robotic systems suffer from so called “policy fragility”,
meaning that a learned robotic control policy typically can
not effectively adapt to sudden changes in working environ-
ment or robotic agent itself. In sharp contrast, most living an-
imals can quickly recover and find a compensatory behaviour
when they are injured. Partially inspired by this observation,
we propose the Survivable Reinforcement Learning (SRL)
framework in order to construct optimized motion policy
for a robotic agent, through integrating Bayesian priors
as guided bias for future policy learning. We demonstrate
promising performance of our proposed approach as an
application for robotic agents working in a dynamically
constrained environment and encountering random failures.
In future research, we would like to apply the proposed SRL
algorithm for multi-robot agents with high DoFs operating
in same workspace with dynamic constraints and investigate
their autonomous adaptive capability with uncertain physical
damages to any agent operating in the environment.

REFERENCES

[1] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 3389–3396.

[2] S. J. A. Raza, A. Dastider, and M. Lin, “Survivable hyper-redundant
robotic arm with bayesian policy morphing,” in 2020 IEEE 16th
International Conference on Automation Science and Engineering
(CASE), 2020, pp. 1–7.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings, 2016.

[4] A. Kurenkov, A. Mandlekar, R. Martin-Martin, S. Savarese, and
A. Garg, “Ac-teach: A bayesian actor-critic method for policy
learning with an ensemble of suboptimal teachers,” arXiv preprint
arXiv:1909.04121, 2019.

[5] A. O’Hagan, “Monte carlo is fundamentally unsound,” The Statisti-
cian, pp. 247–249, 1987.

[6] D. Verma and R. P. Rao, “Goal-based imitation as probabilistic
inference over graphical models,” in Advances in neural information
processing systems, 2006, pp. 1393–1400.

[7] M. Ghavamzadeh, Y. Engel, and M. Valko, “Bayesian policy gradient,”
in NIPS, vol. 17, 2016.

[8] S. Gu, T. Lillicrap, Z. Ghahramani, R. E. Turner, and S. Levine, “Q-
prop: Sample-efficient policy gradient with an off-policy critic,” arXiv
preprint arXiv:1611.02247, 2016.

[9] M. Ghavamzadeh and Y. Engel, “Bayesian actor-critic algorithms,”
ACM International Conference Proceeding Series, vol. 227, pp. 297–
304, 2007.

[10] M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar, Bayesian
reinforcement learning: A survey, 2015, vol. 8, no. 5-6.

[11] V. Verma, G. Gordon, R. Simmons, and S. Thrun, “Real-time fault di-
agnosis [robot fault diagnosis],” IEEE Robotics Automation Magazine,
vol. 11, no. 2, pp. 56–66, 2004.

[12] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines through
continuous self-modeling,” Science, vol. 314, no. 5802, pp. 1118–
1121, 2006.

[13] A. Cully, J. Clune, D. Tarapore, and J. B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[14] R. S. Barto and A. G., Reinforcement learning: an introduction, 2019,
vol. 53, no. 9.

[15] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[16] D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, Z. Wen et al., “A
tutorial on thompson sampling,” Foundations and Trends® in Machine
Learning, vol. 11, no. 1, pp. 1–96, 2018.

[17] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in Proceedings
of The 33rd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, M. F. Balcan and
K. Q. Weinberger, Eds., vol. 48. New York, New York, USA:
PMLR, 20–22 Jun 2016, pp. 1050–1059. [Online]. Available:
http://proceedings.mlr.press/v48/gal16.html

http://proceedings.mlr.press/v48/gal16.html

	I INTRODUCTION
	II Related Work
	III Preliminaries
	III-A Bottlenecks in Monte-Carlo Simulation
	III-B Gradient Computation by Bayesian Quadrature

	IV Proposed Approach
	IV-A Behavior Policy: Healthy Ensembles
	IV-B Behavior Policy: Partially Guidance
	IV-C Thompson Sampling
	IV-D Controller

	V System Overview and Experiments
	V-A Hardware Platform
	V-B Experiments overview
	V-C Simulation Environment
	V-D Algorithmic Implementation
	V-E Result Analysis

	VI Conclusion
	References

