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Abstract— Data-driven approaches for modelling contact-
rich tasks address many of the difficulties that analytical
models bear. For real-world scenarios, the hardware capabilities
constrain the available measurements and consequently, every
step of the problem’s formulation. In this work, we propose
a formulation that encapsulates knowledge from a baseline
controller for the contact-rich task of food-cutting. Based on this
formulation, we employ deep networks to model the dynamics
within a model predictive controller. We design a training
process based on curriculum training with learning rate decay
for multi-step predictions, which are essential for receding
horizon control. Experimental results demonstrate that even
with a simple architecture, our model achieves consistently good
predictive performance on known and unknown object classes
and exhibits a good understanding of the long term dynamics.

I. INTRODUCTION

Modelling and learning dynamics for contact-rich manip-
ulation is an open problem in robotics. Classical control
approaches [1]–[8] suffer when the modes of interaction
increase, their respective models are too complicated to be
described analytically or their variations too diverse to be
accounted for. Especially for contact-rich tasks, this diffi-
culty arises from the dynamics that can include disconti-
nuities such as breaking and making contact, complicated
frictional phenomena, or the variety of object properties.
With the introduction of data-driven methods, a lot of these
shortcomings were confronted successfully [9]. Their main
advantage stems from not relying on analytical models, but
on interaction with the environment, or demonstrations that
can initialize a policy for the completion of the task.

In this work, we investigate a data-driven method for
robotic food cutting which is inherently a contact-rich task
with complicated interaction dynamics. Modelling the in-
teraction as a mass-spring-damper system is an oversim-
plification of the contact dynamics and the tissue fractur-
ing/separation of the fibers is not well-approximated by
a smooth impedance in closed-form expression. On the
other hand, more realistic and analytical representations
[10]–[12] are arduous to develop when considering many
different classes, or classes with substantial variations in
their dynamics. As a task, cutting can be low-dimensional
if only operational space quantities are considered. The
discontinuities it exhibits are in most cases due to frictional,
stick-slip phenomena and not extreme ones such as sudden
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Fig. 1: System overview of the method. Axis Y corresponds to the sawing
motion required to break friction and enable the downwards motion along
axis Z.

and complete breaking of contact. However, it is excep-
tionally difficult to simulate, so any type of data collection
or exploration must be done on the real system, which is
expensive. As a result, we choose to learn only the dynamics
model from data with a deep network and handle the closed-
loop control with a Model Predictive Controller (MPC) as
seen in Fig. 1.

For methods that are not learning a policy online, as most
Reinforcement Learning techniques or end-to-end MPC vari-
ants [13], the resulting controller behavior primarily depends
on the accuracy and expressive capacity of the dynamics
model. The idea of choosing the appropriate quantities to
describe a task is not new. However, it tends not to be
particularly highlighted when the focus is a simulated task
where any control quantity can be readily available. In real
systems, the available quantities are constrained by hardware
and perception capabilities, and the method needs to reflect
that.

In this paper, we present a velocity-resolved formulation
for contact-rich tasks and propose a prediction method for
food-cutting dynamics that can be used in model-based
control schemes. The main contributions of this work are
summarized below:

1) In contrast to our previous work [14], the learning
problem is reformulated to explicitly incorporate in-
formation related to the complicated dynamics of the
task and how they are affected by the robots cutting
actions.

2) The proposed training scheme for multi-step prediction
gradually tackles the difficulty of long-term predic-
tions, rather than hand-picking layers to initialize at
different stages of training as in [14], [15]

3) Our modelling and training approach can provide mod-
els that have consistently good performance and exhibit
a fine-grained understanding of the task dynamics
when performing within an MPC.
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II. RELATED WORK

Robotic cutting has been treated in a multitude of ways,
primarily based on more traditional control approaches. In
[16] the authors employed an impedance controller with
adaptive force tracking for a simulated object with non-
homogeneous stiffness. An adaptive position controller with
gradient-based estimation of the desired force was presented
in [17] with simulated results as well. More recently, [12]
proposed force control combined with visual servoing to ad-
just the tracked trajectories for the task of cutting deformable
soft objects, while minimizing the required cutting force. A
combined hybrid force/position control approach was pre-
sented in [11] to cut two classes of non-deformable objects.
These works all introduce physics-based mechanics that lead
to a well-defined problem. However, their applicability is
limited as they would require additional computations to be
applied to a larger variety of cases.

Data-driven approaches can address this issue by approxi-
mating the interaction dynamics, resulting in a single model
that is capable of treating several object classes. A method
that employs deep networks to approximate the dynamics
for this task was first introduced in [15]. Although the
method’s performance was evaluated on an extensive dataset,
the generalization ability to unseen classes was not examined.
Additionally, the proposed network outperformed several
baselines but it was not clear whether there was need for
the complex architecture and training procedure, as only one
architecture was evaluated within the MPC. This approach
was revisited by our group in [14] after being reformulated
into a velocity resolved control problem, but with the same
underlying network structure and training procedure. Unseen
classes were included in the evaluation but there was no
further examination of the network and its training.

In contrast to this work, our work [14] was an investigation
of how a contact-rich task, associated with torque informa-
tion, can be adapted to a different hardware setup and the
constraints this imposes. Embedded in its modelling choices,
was the assumption that the dynamics of cutting can be
described by a nonlinear mapping of the form st+1 = F (st).
Part of what we considered as state (forces, displacements),
reflected the intended action through the external forces
measured by the sensor. By choosing this model, the focus
shifts on the response of the coupled object-knife system
which has already incorporated the effect of the control input
and thus, does not offer a proper formulation for a dynamics
learning scheme. Furthermore, this hypothesis effectively
considers the potentially delayed effect of the control input
negligible, which is not always a valid assumption, especially
in a nested control scheme, where there is no guarantee that
the desired force will be reached. Notably, in [18] the authors
have worked on the same task but their focus is how to learn
a semantic representation rather than the dynamics.

Despite the limited amount of works for this particular
application, data-driven methods in contact-rich scenarios
have shown promising results. Demonstration-based methods
[19]–[22], are well suited due to their sample complexity,

but infeasible for cutting with force feedback as there is
no practical way to distinguish the demonstrator’s exerted
wrench from the object’s. Reinforcement Learning, when
actively focusing on sampling complexity, is a competitive
alternative for real-world, contact-rich tasks. Recently, in
[23] the authors proposed an actor-critic that is guided by
supervised learning to account for sample complexity and
safety, but still required 1.5 hours for an assembly task
that has a smaller range of dynamics than cutting. Another
method that reduces the sample complexity was presented
in [24]. The authors actively leveraged a hand-engineered
controller as a basis for a policy they optimize online, thus
splitting the problem into a trajectory tracker and an adaptive
corrective behavior. Their method greatly reduced the sample
requirements through sim-to-real transfer but still depended
on a simulated environment and unsupervised exploration,
neither of which are available for our task.

A central part of the suggested training approach is cur-
riculum training [25] which we combine with learning rate
decay to avoid prediction error accumulation and facilitate
training. Curriculum training has been applied in several
different contexts but to the best of our knowledge, not as a
horizon curriculum for multistep prediction. An exception is
the work in [26] where it is used for image registration and
the authors gradually increase the temporal distance between
the images. Other applications of curriculum training include
mini-batch frequency selection [27], sequence prediction in
natural language processing [28], equation learning [29] and
finally, encoding positions and velocities from pixels in
simulated control tasks [30].

III. PROBLEM FORMULATION

Consider a robotic manipulator equipped with force sens-
ing. Let p ∈ R3 denote the translation part of the end-
effector pose in the world frame and fs ∈ R3 the force
measurements. Let further pd, ṗd denote the end-effector’s
desired position and velocity, fr the reference force and u
a velocity control input. In order to follow a predefined
trajectory in a compliant manner, we can employ a variant
[31] of velocity-resolved (inverse) damping control,

u = Ka(fs − fr). (1)

We can then define the desired compliant behavior as

fr = K−1
a (Kpe− ṗd) (2)

where Kp, Ka ∈ R3×3 are the stiffness and compliance gain
matrices and e = p− pd the position error.

Substituting Eq. (2) in Eq. (1) and noting that the control
input corresponds to the end-effector’s Cartesian velocity,
results in the desired dynamic behavior

ė + Kpe = Kafs (3)

where ė = ṗ− ṗd ∈ R3 is the velocity error.
To plan a cutting trial, it is necessary to define a desired

trajectory pd, ṗd and choose appropriate controller gains
Ka,Kp with regard to the object class. A controller capable
of handling the variation in the contact properties would



require variable stiffness gains. However, it would still be
impossible to design a single, fixed trajectory that addresses
the non-homogeneous sizes of the objects. Alternatively, we
can model the dynamics of the contact as a discrete-time
dynamics function p̂t+1 = f(pt, fst, frt) and determine
an optimal reference force such that it minimizes a cost
C(pt, frt) (see Appendix) over a time horizon T , by solving
the optimization problem

f∗r = argmin
fr

T∑
k=0

C
(
p̂t+k, frt+k

)
. (4)

In this work, we parametrize the dynamics function
f(pt, fst, frt) as a deep network that receives current po-
sitions, measured and reference forces, and outputs the
estimated future positions. We define the model’s state as the
augmented state vector xt = [pT

t , fs
T
t ] and denote vt = frt,

resulting in the formulation

p̂t+1 = f(xt,vt). (5)

This network is then used in conjunction with an MPC
to determine the optimal reference force in Eq. (4). In
contrast to our earlier work [14], we model the effect of
the control input explicitly through the reference force and
decouple it from the interaction one, as discussed in Section
II. Expressing the reference force as a function of the desired
velocity and the position error, allows to encompass the
possible delayed effects of the control input as we instill
information about the divergence from the desired trajectory
due to friction. This results in a more clear and concise
formulation that offers a better representation for the learning
task.

To further demonstrate the importance of considering fr,
we can transform the initial data space that includes multi-
step sequences of 6 or 9 features, into a 2-D one and
visualize the data with t-SNE [32]. t-SNE is a probabilistic
dimensionality reduction technique that projects data into
their low-dimensional embedding in a non-linear way, while
trying to preserve their probabilistic distribution. To have a
fair comparison, we used the same dataset1 but omitted the
fr inputs for the latter case. The two resulting datasets went
through the same pre-processing as in Eq. (6) and (7).

Fig. 2a shows the results of the dataset D1 = {p, fs}
and correspondingly, Fig. 2b the ones from the dataset we
propose for this task, namely D2 = {p, fs, fr}. With dataset
D1 , as seen in Fig. 2a, there is no specific structure in
the embedding except for the eggplant class as the class
dynamics are the most easily distinguishable during the task
due to the object’s texture. In comparison, adding fr and
visualizing D2, produces more coherent clusters. The central
part of the plot is mostly occupied by easier to cut classes
and as we are moving peripherally outwards, we get cases of
stiffer materials. Although we are not interested in classifying
the objects, a more cohesive embedding indicates that D2

1For all the visualizations, the dataset consists of 24 different cutting
trials for 6 different objects. The t-SNE hyperparameter ”perplexity” was
set to 30 and the max number of iterations to 3000.

(a) t-SNE visualization of D1 (b) t-SNE visualization of D2

Fig. 2: Embedding space of the two datasets. Adding fr to the learning
process produces more coherent clusters suggesting a more informative
latent space.

is a more informative representation and henceforth, the
networks we compare in the experimental section are trained
on these features.

IV. METHOD

A. Modelling Cutting

Modelling cutting analytically is a complicated process
due to its frictional properties as well as the separation
of fibers [33]. Nevertheless, it can be approximated given
appropriate inputs and a model that is adequately expressive
to capture the nonlinear temporal and spatial variations.

In the context of this work, we are interested in represent-
ing the interaction dynamics between the manipulator and
the object as the transition function in Eq. (5). Therefore, the
dataset needs to reflect the current state of the system and the
delayed effect of the controller’s input. Traditionally, to char-
acterize the dynamics during an interaction task, the terms of
mechanical impedance and admittance are introduced, which
are characterized as mappings between velocities and forces.
However, velocities are usually noisy and not easy to learn
from. In addition, considering joint velocities unnecessarily
increases the difficulty of the task as the approximator is
implicitly required to learn the robot’s kinematics.

Instead, we employ relative displacements over time to
approximate a generalized notion of velocity, similar to [14],
[15]. To achieve that, the input features for the learning
module are not treated as single time-steps but form non-
overlapping blocks of sequences. Block b of length M is
then given by

XM
b = [xT

bM ; . . . ; xT
(b+1)M−1], ∈ RM×6. (6)

If we denote the positional elements of XM
b as PM

b and an
all-ones vector of length M as 1M , the transformation from
positions to relative displacements is done by subtracting the
past block’s last position from every position in the current
one

∆pM
b = PM

b − 1Mp(b−1)M−1. (7)

Dropping the superscript M for brevity, the network’s
input is then Xb = [∆pb, fsb]. Through this transformation,
we also ensure that the network will not overfit to absolute
positions, which do not carry the same amount of information



as they depend on the object’s size. Since we are using rela-
tive displacements and sample every 5ms, the magnitude of
the positional part is significantly smaller than the remaining
features of the input vector. To ensure consistency in the
input range, we normalize the features to zero mean and
unit standard deviation.

B. Network Architecture and Training

In this work, we chose to employ an LSTM network as
opposed to Recurrent Neural Networks (RNN) used in [14],
[15]. While more complex than a regular RNN, LSTMs
have proven to be suitable for learning sequences and depen-
dencies further in time [34], which is appealing for a task
that requires modelling of temporally and spatially varying
dynamics.

Although Eq. (5) is referring to one-step predictions,
predicting the positions at a time-step H ahead into the
future can be achieved by recursively using the intermediate
prediction p̂b+i, i ∈ [1, H/M ] as inputs until we reach the
desired horizon i.e.

p̂b+1 = f(Xb,vb)

p̂b+2 = f(X̂b+1,vb+1)

. . .

p̂b+H = f(X̂b+H−1,vb+H−1)

This results in a sequence-to-sequence prediction that, for
a robot working at 200Hz and with M = 10, instead of
predicting to tH = 0.15s, the new horizon will be bH =
0.15/0.05 = 3 blocks ahead.

A common problem with the recursive approach is error
accumulation, since predictions are used in place of obser-
vations. To avoid that, we propose to train the system with
a curriculum strategy that gradually increases the difficulty
of the prediction goal. Practically, this amounts to progres-
sively predicting further ahead in the future by increasing
the horizon. However, the abrupt difference in difficulty
might lead the system into instability, or it might render
the hyperparameters used for the easier problem unsuitable.
Therefore, we apply learning rate decay when the horizon
changes, so that learning is adjusted to the new horizon
smoothly and the gradient steps are affected less by the
change, especially during the transitions.

C. Model Predictive Control

We treat the problem in Eq. (4) with an MPC [35] that
instead of solving the optimization problem for an infinite
horizon, executes the first step of the solution and then
re-samples the current state. By doing so, it alleviates the
need for a global, open-loop, plan that would require model-
plant mismatches or abrupt discontinuities to be treated a
priori. Instead, receding horizon controllers correct them by
sampling the real system state at the next optimization round.

We manage the compliant reaction to the environment
separately as seen in Fig. 1, and use fr as a feature for the
dynamics model and the optimization variable of Eq. (4).
Finally, for the MPC state we do not consider the full pose
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Fig. 3: Evolution of the Mean Squared Error for a total horizon of 0.75
secs which is equivalent to predicting 15 blocks ahead in the future. The
predictions and the groundtruth are expressed as relative displacements.

of the end-effector, but simplify the problem by only treating
the translational parts of the cutting motion (axes Y, Z in Fig.
1). The motion on the remaining axes is controlled through
a set-point stiffness controller.

V. EVALUATION

For all of the following experiments, the training set, or
seen classes, includes trials for 6 object classes, Dseen =
{banana, pepper, cucumber, cake, eggplant, zucchini}. In
Sections V-B and V-C we also examine the generalization
ability of the different models by adding 3 completely
unseen classes, Dunseen = {cheese, potato, lemon}. For the
experiments, the blocks are formed by M = 10 time-steps
which correspond to 0.05s of measurements and in Sections
V-B, V-C the prediction horizon is set to H = 5 blocks.
More information regarding the models’ parameter values
and experimental details are listed in the Appendix.

A. Data Collection

We collected data from cutting trials executed with the
controller in Eq. (1), where the desired behavior in Eq.
(2) was commanded as a trajectory (pd, ṗd). The gains,
as well as the sawing rate for the desired trajectory, were
tuned depending on the object class in order to record a
large variety of interaction modes. We included interactions
with optimal parameters for the specific object, interactions
with appropriate parameters for the whole class, as well as
parameters that could accommodate all the classes, albeit not
in an optimal manner. All the cutting trials were initialized
above the object, depending on its size, as to include enough
samples of free-space motion.

B. Prediction Performance

In this section, we investigate the effects of the pro-
posed training approach on the prediction performance of
the networks modelling the dynamics. To evalue this , we
compare an RNN architecture (RNN), a baseline LSTM
network trained directly for 5-block prediction (LSTM), an
LSTM trained with horizon curriculum (LSTM-c) and finally
the LSTM trained with the proposed combination of horizon
curriculum and decaying learning rate (LSTM-lr-c). The
RNN was structured and trained with the 3-stage approach in
[14]. In the experiments, we investigate whether a simpler
architecture can capture the dynamics, the effect of the



Cake Zucchini Cucumber Banana Pepper Eggplant Cheese* Potato* Lemon* Avg.
RNN 1.08 1.04 1.49 1.59 0.92 1.42 0.71 0.55 N/A 1.13**
LSTM 1.07 2.34 0.96 1.72 2.08 2.11 1.69 0.68 1.43 1.56
LSTM-c 1.51 1.41 1.68 1.19 1.21 0.98 2.18 0.51 0.99 1.29

LSTM-lr-c 1.26 0.91 0.71 2.31 0.72 0.95 0.73 1.76 1.80 1.24
Avg. 1.23 1.42 1.21 1.71 1.23 1.36 1.33 0.88 1.16**

TABLE I: Mean cost across trials. Object classes denoted with an asterisk belong to Dunseen. The results denoted with a double asterisk do not take
into account the failed attempts.

proposed training approach and finally how these changes
can affect the generalization ability over different object
classes.

Firstly, we examine the evolution of the mean L2 error be-
tween predicted and groundtruth trajectories as the prediction
horizon increases up to 0.75s (or 15 blocks) into the future.
Note that the trajectories consist of relative displacements,
hence their magnitude. For this experiment, the networks
were trained on a dataset containing 34 cutting trials over 6
objects (210564 data points in total), while the validation set
includes 15 independent trials over the same object categories
(93447 data points in total).

From the results in Fig. 3 it can be seen that for short hori-
zons, the LSTM networks have comparable results, while the
RNN displays a much higher error. As the horizon increases,
the performance of all the networks, except LSTM-lr-c,
degrades to the same point. Before the prediction horizon
reaches t = 0.45s, LSTM-c has only marginally better
results than its simpler counterpart, showcasing that simply
employing a learning curriculum is not enough to boost the
predictive performance. Finally, throughout the experiment,
LSTM-lr-c significantly outperforms all of the baselines,
supporting that the combination of learning rate decay and
curriculum training results in better performance that scales
well with the prediction horizon.

Secondly, we report the average MSE during forward
predictions on a test set for a prediction horizon of H = 5
blocks. For this purpose, we performed trials for 5 object
classes that were also in the training set Dseen and the
additional 3 classes in Dunseen. We recorded two repetitions
for three different values of Ka amounting to a total of 30
trials with seen classes and 18 trials with unseen ones.

Table II shows the corresponding results for each model
on seen and unseen classes, as well as the total MSE for
both cases. It is evident that LSTM-lr-c is consistently
better than the rest of the models and generalizes well to the
unseen cases. It is interesting to observe that despite its poor
scaling as the horizon grows, the RNN model shows slightly
better results than the LSTM baselines in both datasets. This
reinforces the results from the previous section concerning
the training procedure and further indicates the usefulness of
combining curriculum training with learning rate decay.

C. Robotic experiments

Even though deep networks can efficiently model non-
linear mappings, when training a network for a dynamics
model, the focus should be on the closed-loop behavior.
A good prediction accuracy is a good indication of the
modelling capabilities but does not necessarily reflect what

Model Seen classes
(10−5 mm)

Unseen classes
(10−5 mm)

Total
(10−5 mm)

RNN 2.08 3.33 2.55
LSTM 2.26 3.75 2.82
LSTM-c 2.30 3.94 2.92

LSTM-lr-c 1.37 2.29 1.72

TABLE II: Test performance. ”Seen classes” include unseen datasets but
on objects that have been treated in training as opposed to the ”Unseen
Classes” that have never been encountered.

that behavior will be as both training and testing are done
on trajectories executed by a trajectory-tracking controller,
which is different than the cost-based MPC during online
deployment. The desirable properties of that closed-loop
system are primarily qualitative and difficult to express
quantitatively. Considering that we are aiming to construct
an intelligent system that is handling the task of food-cutting
generally, it is of paramount importance that the results
for different models are consistently good and can tackle
different object types. In that light, failure to complete trials
for a given object type, such as the RNN model in Table I,
should be weighted more than good training and validation
results.

To evaluate the models’ performance within the controller,
we executed a series of experiments with the 9 different
object classes in Dseen and Dunseen. In the experiments, we
used a YuMi-IRB 14000 collaborative robot with an Opto-
Force 6axis Force/Torque sensor mounted on its wrist. For
every model, we executed 5 trials per class. Throughout the
trials, we set Ka = 0.003I3 and kept the same cost function
as reported in the Appendix. The trial ended successfully
only when the knife had reached the cutting board. In any
other case, e.g. if the execution time exceeded a minute,
the trial was considered unsuccessful and the results were
discarded. Since we have included sequences of free-space
motion in the training data, we did not initialize the trials
with the knife already in the object as in [14], [15], but
directly above it with no further indications of the object’s
location.

It should be noted that due to the robot’s hardware
limitations, stiffer objects often caused the torque limit to be
surpassed, leading the robot to shut down, which constituted
a failure and the trial was repeated. This was especially
evident while evaluating the RNN architecture on lemons as
the closed-loop behavior did not exhibit the necessary sawing
motion to break friction. This hampered the downwards
progress, or simply caused a hardware failure, making it im-
possible to collect successful trials. For this reason, in Table
I the associated results are marked with a double asterisk
to denote that RNN trials were omitted when calculating the
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(a) Sawing motion for the four model baselines on a soft
object.
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Fig. 4: The sawing trajectories followed by the controller during two very distinct cutting cases. LSTM-lr-c leads the controller to insightful strategies
depending on the dynamics of the class.

average scores.
The only modifications made to the objects were size

adjustments if their width exceeded the knife’s length. We did
not alter the objects’ height as that could alter the dynamics
of certain classes. Additionally, because of the aforemen-
tioned hardware limitations, when treating eggplants and
lemons, we created a small slit on the object’s surface to
decrease the exerted torque during the initial contact and
avoid reaching the torque limits before the controller had
time to employ sawing motions.

Since most of the objects did not have homogeneous
shapes, the required cutting length was often not the same.
Consequently, the accumulated costs per trial would be a
misleading and an incomparable metric as longer trajectories
do not necessarily signify worse performance. Instead, in
Table I we assess the online performance through the mean
cost achieved by the models. For almost half of the classes,
LSTM-lr-c again outperforms the rest of the baselines
and achieves better mean costs. However, it is interesting to
notice that LSTM-c, despite having the highest MSE during
forward predictions, still manages to perform well, and more
importantly, accomplishes the best scores in 2 out 3 unseen
cases. Finally, even though RNN failed to complete a cut on
lemons, it still has notable performance on several classes.
This is partially due to the fact that the strategies it resulted in
revolved mostly around slicing the object instead of sawing.
However, because this behavior was more aggressive, it often
led to failed trials because of the hardware limits.

In a successful cutting trial, it is straightforward to surmise
that the main objective is downwards motion. Nevertheless,
the sawing motion is related to the downward progress, as
it enables it by breaking friction and minimizing the sheer
force otherwise required. Consequently, apart from the mean
cost, a crucial point of evaluation for the dynamics models is
whether they lead the controller to infer useful strategies for
each object class. For objects that are stiffer, fine-grained
understanding of the dynamics should drive the strategy
around sawing, while for the softer ones, it should deem it
unnecessary. A qualitative demonstration of these emerging
behaviors can be observed in Fig. 4a and Fig. 4b that depict

the trajectories during trials on a soft (cake) and a stiff object
(eggplant).

In the former case, any strategy is viable as there is
no significant resistance from the material. LSTM that had
the best cost for this class, results in minimum sawing, as
it is redundant, and so is LSTM-lr-c despite it’s worse
cost-wise performance. On the other hand, RNN, that had
almost the same cost as LSTM, displays similar behaviour
with the worst model for this class. In the latter case of the
eggplant, it is substantially more difficult to cut through the
object without sawing, because of its density and firmness.
LSTM-lr-c demonstrates the most insightful behavior with
smooth sawing motions that led to the best cost. Similar
behavior is adopted by LSTM-c that has the closest score,
as opposed to LSTM and RNN that only employed low-
magnitude sawing, which was not suitable for the dynamics
of the class. In conclusion, even though LSTM-lr-c did
not have the least cost for every class, it exhibited the
most appropriately diverse techniques that were able to adapt
efficiently to the dynamics encountered amongst the classes.

VI. CONCLUSION

In this work, we presented a data-driven framework for
the contact-rich task of food-cutting. We showed that by
carefully designing every step of the method, we can produce
models that have consistently good predictive performance
on known cases and generalize well to unseen ones. When
evaluated within a predictive controller, the proposed ap-
proach achieved the best mean cost in 4 out of 9 object
classes and displayed a better understanding of the dynamics
as showcased by the strategies the controller adopted. In the
future, it would be interesting to explore avenues that allow
adaption not only on different object sizes or classes, but on
completely different and more complicated cases of cutting,
such as objects with a large seed. To this end, we will further
investigate the design choices as to seamlessly incorporate
behaviors that could be otherwise generated by switching
controllers or a high-level planner.



APPENDIX

Network architectures

The LSTM networks consist of a fully connected input
layer of size 90 with a hyperbolic tangent activation, followed
by 2 LSTM layers of hidden size 9 and a linear output
layer that transforms the LSTM output to size 30. The RNN
baseline consists of 6 fully connected layers with hyperbolic
tangent activation and 2 recurrent layers with 30 units each.

Curriculum training

During curriculum training, we gradually increase the
horizon until we reach the desired one. For every horizon,
we train the network for 10 epochs and reduce the learning
rate, except for the final length prediction that we allow the
network to train for 20 epochs without further changing it.

Training Hyperparameters

For all the networks we used Adam [36] with the hyper-
parameters learning rate (lr), weight decay (wd) and learning
rate decay (gamma) set as listed in Table III.

Model {lr, wd, gamma} Model {lr, wd, gamma}
{1e-04, 5e-04, N/A}

RNN {1e-04, 5e-04, N/A} LSTM-c {1e-04, 2e-04, N/A}
{1e-04, 3e-04, N/A}

LSTM {2e-04, 3e-04, N/A} LSTM-lr-c {1e-04, 3e-04, 0.5}

TABLE III: Hyperparameters used for the experimental results

Model Predictive Control

The main components of the cost function are a term that
drives the slicing motion towards the table’s surface ptable

and a sawing term that enables the downward progress. Since
there is no fixed trajectory, the sawing term does not penalize
motion within a range d, with an ε margin, around the central
sawing point pcenter and is quadratic beyond it. Finally, to
motivate smaller-effort solutions, we include the norm of the
control input. Namely, for the prediction horizon Hb, the cost
was given by:

C(p,u) = ccut

Hb∑
k=1

(pz
k − ptable)

2

+ csaw

Hb∑
k=1

(max{0, |py
k − pcenter| − d+ ε})2

+ cv

Hb∑
k=1

‖vk‖2

where ccut, csaw are positive constants weighting the con-
tribution of the costs associated with cutting and sawing
actions respectively to the total cost while cu is the weighting
constant for the control input quadratic term.

To solve Eq. (4) we use a shooting method [37]. For every
optimization iteration, we generate 25 potential inputs that
act as the feasible forces for this round and choose the one
associated with the lowest cost as f∗r .
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