
Distributed Multi-agent Navigation Based on Reciprocal Collision
Avoidance and Locally Confined Multi-agent Path Finding

Stepan Dergachev1 and Konstantin Yakovlev1

Abstract— Avoiding collisions is the core problem in multi-
agent navigation. In decentralized settings, when agents have
limited communication and sensory capabilities, collisions are
typically avoided in a reactive fashion, relying on local ob-
servations/communications. Prominent collision avoidance tech-
niques, e.g. ORCA, are computationally efficient and scale
well to a large number of agents. However, in numerous
scenarios, involving navigation through the tight passages or
confined spaces, deadlocks are likely to occur due to the egoistic
behaviour of the agents and as a result, the latter can not
achieve their goals. To this end, we suggest an application of
the locally confined multi-agent path finding (MAPF) solvers
that coordinate sub-groups of the agents that appear to be
in a deadlock (to detect the latter we suggest a simple, yet
efficient ad-hoc routine). We present a way to build a grid-
based MAPF instance, typically required by modern MAPF
solvers. We evaluate two of them in our experiments, i.e. PUSH
AND ROTATE and a bounded-suboptimal version of CONFLICT
BASED SEARCH (ECBS), and show that their inclusion into
the navigation pipeline significantly increases the success rate,
from 15% to 99% in certain cases.

.

I. INTRODUCTION

Multi-agent navigation is a challenging task arising in
mobile robotics, video games, crowd simulation, etc. The
approaches to solve this problem can be roughly divided into
centralized and decentralized ones. Centralized approaches
assume that there exists a (central) controller that possesses
all the information about the agents and the environment and
can communicate with the agents. The controller creates a
joint collision-free plan and then lets the agents execute it.
One of the main advantages of such an approach is strong
theoretical guarantees.

When no central controller is present and agents’ ob-
servation and communication capabilities are limited, each
of them typically plans its path and relies on a collision-
avoidance mechanism during execution, e.g. Optimal Recip-
rocal Collision Avoidance (ORCA) [1]. In many cases, such
techniques work well, i.e. make the agents avoid collisions
and progress towards their goals. However, in certain sce-
narios, involving navigation through confined spaces, such
mechanisms are likely to fail. Consider an example depicted
on Fig. 1-a. Two groups of agents have to switch sides using
a passage. Obviously, the individual (egoistic) plans for each

*This work was supported by RFBR, Grant 20-57-00011.
1Stepan Dergachev and Konstantin Yakovlev are with HSE University

and Federal Research Center for Computer Science and Control of Russian
Academy of Sciences. Moscow, Russia.

Corresponding author is Stepan Dergachev,
sadergachev@edu.hse.ru.

This is a preprint of the paper accepted to CASE’21

3

4

2

1

1
2

3

4

(a) (b)

(c) (d)

1

2 3

4

Fig. 1: Creating and solving a MAPF instance upon
the deadlock is discovered. Video is available at:
youtu.be/jE2YrXQ pNs

agent have them all try to use the passage, causing a traffic
jam around the passage. Agents driven by reactive collision
avoidance get stuck in a deadlock. They lower down their
velocities to zero to avoid collisions and stop progressing
towards the goals. Indeed, to reach the goals the agents need
to exhibit a form of coordination as some of them have to
yield to the others.

In this paper, we study how including locally centralized
multi-agent path finding (MAPF) solvers can mitigate this
problem and increase the chance of mission completion,
see Fig. 1-b,c,d. For those solvers to be applied we first
design a simple, yet effective deadlock detection mecha-
nism. Upon encountering a deadlock a locally-coordinated
distributed multi-agent system is formed, i.e. the agents
involved in deadlock exchange the information on their
current positions and desired goals thus each agent forms
and operates with the same (local) world model. Next, we
propose a method to create a grid-based MAPF instance
that is consistent with the shared world model and serves
as the input to one of the modern graph-based MAPF
solvers. Specifically, we suggest using a combination of
the two prominent algorithms to solve MAPF: PUSH AND
ROTATE [2] and a bounded-suboptimal version of Conflict
Based Search (ECBS) [3]. When the MAPF solution is
obtained all agents start following it until all of them reach
the MAPF goals. When this happens they switch back to

ar
X

iv
:2

10
7.

00
24

6v
1 

 [
cs

.M
A

] 
 1

 J
ul

 2
02

1



following the individual paths.
This work is based on the preliminary study presented

in [4]. The main novel contributions are as follows.
• We present an original, easy-to-implement, domain-

independent deadlock detection mechanism.
• We present a novel approach to form a MAPF instance

used to resolve the deadlock.
• We thoroughly describe these routines and present a

complete pseudo-code of the algorithm.
• We use a combination of the MAPF solvers that com-

plement each other when solving MAPF.
Our experiments show that in cases when tight passages

are present in the environment the suggested approach sig-
nificantly outperforms collision avoidance. The success rate
raises from 10-15% to 95-99% in certain cases.

II. RELATED WORK

Two lines of research are most relevant to this work: multi-
agent path finding and decentralized collision avoidance.

There exist a variety of MAPF formulations, which dif-
fer in assumptions on how conflicts between the agents
are defined, how agents behave when reaching their goal
locations etc. [5]. Still, the intrinsic assumption, that there
exists a centralized controller for all agents, is dominant in
MAPF research. This assumption is the key to solve MAPF
problems optimally by either employing reduction-based
techniques [6] or search-based ones, e.g. Conflict-Based
Search (CBS) [7] which is widely used nowadays to solve
MAPF optimally. There exist numerous enhancements that
improve the performance of CBS [8], [9]. However, getting
optimal solutions for a large number of agents under tight
time constraints is still problematic. One way to mitigate
this issue is to look for bounded-suboptimal solutions, which
can be provided by e.g. ECBS [3]. Another way is to use
algorithms that adapt ideas from pebble-motion solvers [10],
[2]. These algorithms are extremely fast and scale well to
large numbers of agents. However, often the cost of their
solutions is high. Prioritized planners are known to enjoy
the benefits of both approaches – they often find close-
to-optimal solutions in practice and are notably fast and
scalable. However, except for some special cases, they are
incomplete [11].

Reactive collision avoidance is also an actively studied
field of research. A wide range of algorithms for collision
avoidance exist that are different, mainly, in the under-
lying assumptions regarding movement constraints, obser-
vation/communication limitations, etc. The most common
approaches at the moment are the ones that are based
on the notion of the velocity obstacles. Velocity obstacles
were originally described in [12], and in [13] a method
of reciprocal collision avoidance based on the construction
of reciprocal velocity obstacles (RVO) was presented. After
that, the velocity-based methods were continuously modified,
the formulations of the problems were supplemented with
various movement constraints [14], [15]. Among the various
modifications, the most developed are the ORCA-based
algorithms, which, in contrast to the RVO, can guarantee

the absence of collisions under certain mild assumptions [1].
There are multiple algorithms, based on ORCA, that take
into account the accuracy of localisation and kinematic con-
straints [16], [17], [18]. Another approach to collision avoid-
ance is based on the construction of the Voronoi cells [19],
[20]. These methods involve quadratic programming, thus
they are typically slower than ORCA (which relies on linear
programming). On the other hand, they can take into account
the high-order dynamics and do not require the knowledge of
the neighbouring agent’s velocities. Finally, machine learning
can be used to generate collision avoidance policies [21],
[22].

III. PROBLEM STATEMENT

Consider n agents operating in a 2-dimensional workspace,
W , which consists of the free space and the obstacles, Wf ree
and Wobs = W \Wf ree. Time, T , is discretized, and in each
time step each agent can either wait or move into arbitrary
direction by applying the velocity v. The state of the agent
i at each time step is defined as pi

t+1 = pi
t + vi

t∆t, where
pi = (x,y) is the position of the reference point of the agent
i in the world coordinate frame. The velocity is bounded for
each agent: ‖vi

t‖ ≤V i
max.

A spatio-temporal path (trajectory) for an agent is, for-
mally, a mapping: π : T →Wf ree. It can also be represented
as a sequence of agent’s locations at each time step: π =
{π0,π1, ...}. In this work we are interested in converging
trajectories, i.e. such paths by which an agent reaches a
particular location and never moves away from it. Time
step, t f in ∈ T , by which an agent reaches its final destination
defines the cost of the path: c(π) = t f in. A path is called
feasible if an agent following it does not collide with the
obstacles and the velocity constraints are met. Two feasible
paths are said to be conflict-free if the agents following them
never collide.

The problem now is to find a set of paths (one for each
agent) starting at the predefined start locations, ending at the
predefined goal locations, s.t. each pair of paths is conflict-
free. Or, in other words, the problem is to define control
inputs, i.e. velocities, s.t. the resulting paths are pairwise
collision-free. In this work, we are not imposing a strict
requirement on optimizing the cost of the solution, which
can be defined as either flowtime, ∑c(π i), or makespan,
maxc(π i). However, the lower-cost solutions are obviously
preferable.

In the rest of the paper, we rely on the following assump-
tions, which are not uncommon in the field.

1) Workspace, W , is tessellated into a regular grid, G,
composed of the blocked and un-blocked cells. The
grid is static and known to the agents.

2) The agents are homogeneous. Each agent is repre-
sented as a disk with a radius of less than half of the
cell’s size.

3) Start and goal locations for each agent are the centers
of the grid cells.

4) Each control is executed perfectly, no stochasticity is
present. Thus at each time step, an agent’s position is



Algorithm 1: Single agent navigation
Input: W, G: workspace and its grid representation,

start, goal: start/goal location of the agent,
R: agent’s observation/communication range

1 globalPath ← FindIndividualPath(G, start, goal);
2 mode ← normal;
3 while goal is not reached do
4 neighbors ← GetNeighborsData(R);
5 if mode = normal then
6 if AgentInDeadlock(neighbors) then
7 MAPFSolution ← CreateAndSolveMAPF(W, G, neighbors);
8 localPlan ← ExtractIndividualPlan(MAPFSolution);
9 mode ← moveToMAPFStart;

10 else
11 next ← ComputeCurGoal(globalPath, W);
12 Vnew ← ComputeSafeVelocity(next, neighbors, W);

13 if mode = moveToMAPFStart then
14 if IsReached(Start(localPlan)) and

AgentsReadyToMAPF(neighbors, MAPFSolution) then
15 mode ← MAPF;
16 else
17 Vnew ← ComputeSafeVelocity(Start(localPlan), neighbors,

W);

18 if mode = MAPF then
19 if IsReached(Goal(LocalPlan)) and

AllAgentsEndMAPF(neighbors, MAPFSolution) then
20 mode ← normal;
21 next ← ComputeCurGoal(globalPath, W);
22 Vnew ← ComputeSafeVelocity(next, neighbors, W);
23 else if ExternalAgentDetected(neighbors) then
24 MAPFSolution ← UpdateMAPF(map, neighbors);
25 localPlan ← CurrentAgentPlan(MAPFSolution);
26 mode ← moveToMAPFStart;
27 Vnew ← ComputeSafeVelocity(Start(localPlan), neighbors,

W);
28 else
29 Vnew ← VelocityByPlan(localPlan);

30 ApplyNewControl(Vnew);

deterministic and the agent always knows this position.
5) Each agent is associated with an observa-

tion/communication range, R. An agent is able
to perfectly recover the states of the other agents,
who are located within the range, and exchange
information with these agents.

Overall, in this work, we abstract away from localization
and communication issues, as well as assume a simplistic
kinematic model for the agents, to concentrate on the prob-
lem of finding conflict-free trajectories.

IV. METHOD

Each agent starts with finding an individual geometric path
to its goal that respects the static obstacles. As the workspace
is discretized to a grid any algorithm that can find paths on
grids can be used, e.g. A* [23], JPS [24], R* [25], etc. In
this work, we suggest using any-angle planners as they build
shorter paths that contain fewer turns compared to A*. In our
experiments, we used THETA* [26].

After the path is built an agent starts following it, i.e. it
moves from one waypoint to the other by setting the velocity
appropriately. In case it encounters other agents within the
observation/communication range collision avoidance proce-
dure is triggered and the velocity is set up by this procedure.
In this work, we use ORCA [1] for collision avoidance.

This method is fast to compute and provides guarantees on
collision not to happen in a certain time window.

At each time step, an agent gathers information about
the states of the agents that are within the communica-
tion/visibility range (neighbours). This data is used not
only to choose the velocity but also to detect deadlocks as
described below in Section IV-A. If a deadlock is detected
an agent initiates switching to the MAPF mode. As a result,
certain agents enter this mode (see Fig. 1-a). These agents
share the information about their states and current goals
(waypoints on the geometric paths that they want to reach)
so each of them possesses the same local world model. The
latter is used to create a MAPF instance and solve it (Fig. 1-
b,c). We emphasize that each agent operates individually
in the MAPF mode and no central controller is introduced.
However as the operations in this mode are deterministic
and each agent knows the states and goals of other agents,
the result of forming a MAPF instance and solving it is the
same across all involved agents. Consequently, each agent
obtains the same MAPF solution – a set of collision-free
plans. It then extracts its individual plan from this solution
and follows it to resolve the deadlock. After al agents finish
execution of their MAPF plans they switch back to normal
mode, i.e. continue moving to the next waypoint on their
geometric path utilizing collision avoidance (Fig. 1-d).

The pseudocode of the suggested method is presented in
Alg. 1. The names of the functions are self-explanatory,
e.g. ComputeSaveVelocity stands for determining
the velocity command to be applied (e.g. by ORCA),
AllAgentsEndMAPF stands for determining whether all
of the agents executing the MAPF plans have reached
their MAPF goals, etc. We will explain how we design
the two most crucial functions, i.e. the one that imple-
ments deadlock detection, AgentInDeadlock, and the
one that implements creating and solving a MAPF instance,
CreateAndSolveMAPF, later in Sections IV-A, IV-B.

Please note that the pseudocode introduces an additional
mode – moveToMAPFStart mode (Lines 9, 13, 26) and
a procedure to update MAPF instance (Lines 23-27). The
former is needed as agents, when switching to MAPF mode,
are likely to be located not at the centers of the grid
cells as they freely move in the workspace when following
geometric paths and avoiding collisions. On the other hand,
MAPF solvers typically rely on a graph representation of the
environment and assume that the MAPF start locations (as
well as the goal ones) are tied to the graph vertices (centers
of the grid cells in our case). Thus before actually executing
the MAPF plans, agents need to reach their MAPF starts
(determined by CreateAndSolveMAPF routine). To this
end, moveToMAPFStart mode is introduced. In this mode,
agents move to their MAPF starts using collision avoidance
as in the normal mode.

Updating MAPF is needed in case an agent which is not
part of the group that executes MAPF approaches the agents
from that group. In this case, the interfering agent is added
to the group and the process of creating and solving MAPF
is restarted.



A. Deadlock Detection

We suggest the following ad-hoc deadlock detection pro-
cedure which is based on simple computations and limited
information exchange, yet is very efficient in practice (as our
experiments show). At each time step, an agent computes
its average speed across the last k time steps, where k
is the user-specified parameter. If this speed is below the
certain threshold vlow, which means that the agent does not
progress towards its goal, it requests the average speed of
the agents that are within its communication range. If any of
the neighbours report its mean speed to be lower than vlow,
then the deadlock is considered to be detected. The intuition
here is that when at least two neighbouring agents do not
progress towards their goals it is likely that the main reason
for that is their behaviour.

When implementing the described deadlock detection
mechanism special care should be made to the cases when
agents start moving after exiting the MAPF mode. It might
be the case that an agent was occupying the MAPF goal
waiting for the other agents to finish their plans (Line 19)
with v = 0. So when it switches to normal mode and starts
moving his average speed might be lower than vlow, but this is
not a deadlock, obviously. To rule out such cases we suggest
artificially setting the reported velocity of an agent in MAPF
mode to Vmax.

B. Forming MAPF Instance

MAPF solvers typically rely on the graph model of the
environment and assume that the start and goal locations of
the agents are tied to the graph vertices. Thus, to incorporate
a MAPF solver into the navigation pipeline we need to i)
determine the graph in which the MAPF solution will be
sought, ii) determine the start vertices, iii) determine the goal
vertices. Naturally, we also need to determine which agents
should switch to MAPF mode. Next, we explain how we
implement these procedures in more detail.

a) Identifying MAPF participants: Consider agent i
that detects a deadlock. The agents that are switched to
MAPF mode (via the information exchange) are N(i) and
N(N(i)), where N stands for the neighbours, i.e. the agents
that appear to be within the visibility/communication range.
Each agent in the MAPF mode is randomly assigned a unique
priority.

b) Determine the graph for MAPF: Recall that the
workspace is tessellated to a grid G. Naturally, a sub-grid
of it, G′, is the graph for MAPF. To determine G′ the
agents share their states (x,y) and identify the minimum and
maximum x- and y-coordinates. These four coordinates form
the rectangular area – see Fig. 2a. We extend this area by
adding the user-defined offset. Finally, we overlap this area
with the grid and thus identify which cells from the sub-grid
G′ to be used in the MAPF mode. We assume that agents
are allowed to move only between the cardinal cells of G′

with the same speed so all moves have a uniform duration.
This assumption is common in the MAPF community as
it significantly simplifies algorithms’ implementation and
makes them faster.

2

3.2

4

5.0

4.5

4.1

5

5.4

1.4

2.8

2.2

3.6

1

(a) (b)

Fig. 2: Constructing a MAPF instance. a) Determining the
MAPF area. b) Estimating the MAPF goal for an agent.

c) Setting start and goal locations: Agents choose start
and goal cells in accordance with their priorities. For an agent
with priority l, we identify the closest un-blocked cell in G′

which is not assigned to be the start of the high-priority
agents, i.e. 1,2, ..., l− 1, and set this cell to be the MAPF
start for the agent. We denote this cell as sMAPF .

To choose the MAPF goal for an agent we identify all
cells in G′ that are reachable from sMAPF and for each such
cell compute the Euclidean distance to the current waypoint
on the agent’s geometric path, πcur (which might be outside
G′). We now choose a cell that minimizes this distance and,
at the same time, does not coincide with a MAPF goal of
one of the high-priority agents – see Fig. 2-b.

C. Solving MAPF

After each agent in the MAPF mode has determined the
MAPF graph and all the start and goal locations it launches a
MAPF solver. Essentially any deterministic MAPF solver can
be used to obtain a solution. In this work, we suggest using
a combination of PUSH AND ROTATE [2] and ECBS [3]
algorithms. The first one is a complete, polynomial-time
algorithm by running which we can promptly get a solution.
Unfortunately, its cost (both measured as makespan or flow-
time) is likely to be high as PUSH AND ROTATE by design is
not tailored to minimize any cost objective. Thus we suggest
invoking a MAPF solver which takes the cost of the solution
into account afterwards. We use ECBS for this purpose. This
algorithm guarantees to find bounded-suboptimal solutions.
I.e. given a user-specified bound ε , it guarantees to return the
solution whose cost c satisfies c≤ ε ·c∗, where c∗ is the cost
of the optimal solution. Practice-wise we suggest setting up
a common time cap for both MAPF solvers and invoke them
sequentially. In case, PUSH AND ROTATE succeeds in finding
a solution but ECBS does not (due to the time limit) we stick
to the PUSH AND ROTATE solution. In case both algorithms
succeed we prefer the solution of ECBS. In the worst case,
when PUSH AND ROTATE does not succeed we abandon the
MAPF mode and switch the involved agents back to the
normal mode. In this case, the detected deadlock is likely
not to be eliminated. In practice, we never encountered the
cases when PUSH AND ROTATE was not able to provide a
solution even when the time limit was set to be 1 second
(which is a very strict time limit for a MAPF solver).



10 15 20 25 30 35 40

Number of agents

0

10

20

30

40

50

60

70

80

90

100
%

 o
f 

s
u
c
c
s
e
s
s
fu

lly
 c

o
m

p
lit

e
d

 t
a

s
k
s

Success Rate (Gaps 1)

10 15 20 25 30 35 40

Number of agents

0

10

20

30

40

50

60

70

80

90

100

%
 o

f 
s
u
c
c
s
e
s
s
fu

lly
 c

o
m

p
lit

e
d

 t
a

s
k
s

Success Rate (Gaps 3)

10 15 20 25 30 35 40

Number of agents

0

10

20

30

40

50

60

70

80

90

100

%
 o

f 
s
u
c
c
s
e
s
s
fu

lly
 c

o
m

p
lit

e
d

 t
a

s
k
s

Success Rate (Warehouse)

10 15 20 25 30 35 40

Number of agents

0

10

20

30

40

50

60

70

80

90

100

%
 o

f 
s
u
c
c
s
e
s
s
fu

lly
 c

o
m

p
lit

e
d

 t
a

s
k
s

Success Rate (Rooms)

Fig. 3: Success rates of the algorithms on different maps used in the experiments.

Flowtime

10 15 20 25 30 35 40

Number of agents

0

0.5

1

1.5

2

2.5

3

F
lo

w
ti
m

e

10
4

ORCA*

ORCA*

MAPF (Rooms)

MAPF (Gaps 1)

Success Rate

Gaps 1 Gaps 3 Rooms

Maps

0%

20%

40%

60%

80%

100%
PnR E-CBS

Flowtime

Gaps 1 Gaps 3 Rooms

Maps

0%

20%

40%

60%

80%

100%
PnR E-CBS

Fig. 4: Left plot: The break-down between the MAPF mode
and the normal mode. Two plots on the right: Statistics of
the independent MAPF evaluation.

V. EXPERIMENTAL EVALUATION

We implemented the suggested algorithm in C++1 and
evaluated it on a computer equipped with Intel Core i5-
8259U (2.3 GHz) CPU with 16 GB of RAM.

The four different grid maps were used in our experiments.
The first two maps are sized 64× 64 and possess a similar
structure of two halls separated by a wall with a fixed
number of narrow passages. We refer to these maps as
Gaps i, where i indicates the number of passages in the wall
(either 1 or 3 in our experiments). The third map is sized
64×64 and contains 10 prolonged rectangular obstacles with
plenty of free space between them. We refer to this map
as Warehouse. Finally, the fourth map is sized 32× 32
and it represents the indoor environment composed of rooms
with passages between them. This map was taken from
the MovingAI [5] benchmark commonly used in the MAPF
community. We refer to this map as to Rooms.

We varied the number of agents from 5 to 40 on each
map and for each number of agents created 250 different
instances. For the Gaps map, we placed half of the starts in
the left hall with the goal in right one and for the other half
of the agents – vice versa. For the other maps, we chose
starts and goals randomly. Each agent was considered to
be a disk of radius 0.3 of a cell width. When computing
the velocities by collision avoidance algorithm this radius
was considered to be 0.49 (to further minimize the risk of
collision by creating an additional safety buffer around each
agent). The observation range of each agent was 3 cells. The
maximum speed was 0.1 cells per time step.

We compared the following methods. ORCA* – a method

1Our code is available at github.com/PathPlanning/
ORCA-algorithm

Gaps 1 Gaps 3 Rooms
Ag. Nmap f Nag Nmap f Nag Nmap f Nag
10 3 9 2 4 15 3
15 3 13 2 5 30 4
20 4 17 5 7 45 5
25 5 21 5 9 55 7
30 6 24 7 11 66 8
35 6 27 8 12 79 8
40 6 32 11 17 95 10

TABLE I: MAPF statistics. Nmap f stands for the number of
MAPF calls, Nag – for the number of agents involved in
MAPF.

that combines ORCA collision avoidance with individual
path planning by THETA* algorithm. ORCA*+MAPF – a
method that implements the suggested approach. We also
included into the comparison a method previously introduced
in [4] that also combines a MAPF solver and a collision
avoidance algorithm but is different in the collision detection
and MAPF formation mechanisms as well as it does not
use a combination of the MAPF solvers. We refer to this
method as Base. The time cap for MAPF part of the Base
and ORCA*+MAPF algorithms was 1 second. To set the
parameters for ORCA*+MAPF we ran the algorithm on
a subset of the generated instances and picked the param-
eters that resulted in the best performance, i.e. K = 250,
vlow = 0.001 for the deadlock detection and 10 for the sub-
optimality factor of ECBS.

We ran each algorithm on each instance until either of the
conditions met: i) all agents reach their goals, ii) the average
speed of all agents over the last 1000 time steps is below
0.0001, iii) time step limit of 20 000 is reached. In the first
case, we treat the outcome as a success.

The success rates of the algorithms are presented on Fig. 3
(the higher – the better). The suggested approach clearly
outperforms the competitors in all the setups that involve
confined spaces and tight passages. E.g. on the Gaps 3 map,
our approach was able to solve 99% of tasks involving 40
agents while BASE’s success rate was slightly above 70%
and ORCA was not able to solve a single instance in this
setup. The reason why our approach has not achieved 100%
success might be due to the transition process that occurs
when agents move to their MAPF starts relying only on
collision avoidance. The only map for which the difference
in success rate is negligible is Warehouse. This is expected
as this map contains large portions of the free space and no
confined spaces/passages so even basic collision avoidance



techniques perform well.
The leftmost plot on Fig. 4 shows the averaged flowtime

(sum of the trajectories’ durations) obtained by our algorithm
on the two most challenging maps (Rooms and Gaps 1)
and the break-down between the MAPF mode and the normal
one. As one can see the agents spent more time in the MAPF
mode on Gap 1 map compared to Rooms. A possible
explanation is that on this former map the agents quickly
approach the passage in normal mode, then find themselves
in a deadlock, create and solve MAPF and spend a significant
portion of time while following the resultant plans. Upon
exiting the MAPF mode they appear very close to their goals
so the time spent in normal mode while reaching these goals
is small again.

We have also analyzed how often the deadlocks were
encountered and MAPF solving was triggered. Table I shows
these statistics as well as how many agents were involved in
MAPF on average. Evidently, the number of MAPF calls
increases with the number of agents. On the Rooms map,
this number reaches 95 for 40 agents, while on either of the
Gaps maps it always stays below 12. However, the number
of agents involved in MAPF is typically higher for the latter
two maps and can be up to 32 agents for Gaps 1.

We have additionally analyzed the MAPF instances that
occurred in the experiments and separately run PUSH AND
ROTATE and ECBS on them with the time limit set to
1s (as in the main experiment). The results are shown on
Fig. 4 on the right. Evidently, ECBS failed to find solutions
in numerous cases (which is captured by the success rates
plots), however, the cost of its solutions is significantly
lower compared to PUSH AND ROTATE. Overall, these results
confirm that utilizing a combination of planners, as suggested
in this work, is an adequate approach that allows combining
the strengths of the considered algorithms.

VI. CONCLUSION

In this work, we have considered the problem of de-
centralized multi-agent navigation in confined spaces where
deadlocks are likely to occur. We suggested a range of
techniques to resolve these deadlocks: deadlock identifica-
tion, MAPF formation, MAPF solving. We evaluated the
presented approach in various scenarios and showed that it
clearly outperforms the baseline, i.e. the standard state-of-
the-art collision avoidance technique – ORCA. A prominent
direction of future research is to adopt the suggested method
to a more challenging problem, e.g. to take into account the
kinematic constraints of the agents, to lift the assumption on
prior knowledge of the environment, etc.

REFERENCES

[1] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics research, 2011, pp. 3–19.

[2] B. De Wilde, A. W. Ter Mors, and C. Witteveen, “Push and rotate:
Cooperative multi-agent path planning,” in AAMAS 2013, vol. 1, 2013,
pp. 87–94.

[3] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in SoCS 2014, vol. 2014-Janua, 2014, pp. 19–27.

[4] S. Dergachev, K. Yakovlev, and R. Prakapovich, “A Combination of
Theta*, ORCA and Push and Rotate for Multi-agent Navigation,” in
ICR 2020, 2020, pp. 55–66.

[5] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker,
J. Li, D. Atzmon, L. Cohen, T. K. S. Kumar, and Others, “Multi-
agent pathfinding: Definitions, variants, and benchmarks,” in SoCS
2019, 2019, pp. 151–158.

[6] P. Surynek, “Towards optimal cooperative path planning in hard setups
through satisfiability solving,” in Pacific Rim International Conference
on Artificial Intelligence. Springer, 2012, pp. 564–576.

[7] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant., “Conflict-based
search for optimal multiagent path finding,” Artificial Intelligence, vol.
218, pp. 40–66, 2015.

[8] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Meta-Agent
Conflict-Based Search For Optimal Multi-Agent Path Finding,” SoCS
2012, vol. 1, pp. 97–104, 2012.

[9] E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D. Tolpin,
and E. Shimony, “ICBS: Improved Conflict-Based Search Algorithm
for Multi-Agent Pathfinding,” in IJCAI 2015, 2015, pp. 740–746.

[10] P. Surynek, “A novel approach to path planning for multiple robots in
bi-connected graphs,” in ICRA 2009, 2009, pp. 3613–3619.

[11] M. Čáp, P. Novák, A. Kleiner, and M. Selecký, “Prioritized planning
algorithms for trajectory coordination of multiple mobile robots,” IEEE
Transactions on Automation Science and Engineering, vol. 12, no. 3,
pp. 835–849, 2015.

[12] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The International Journal of Robotics Re-
search, vol. 17, no. 7, pp. 760–772, 1998.

[13] J. den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles
for real-time multi-agent navigation,” in ICRA 2008). IEEE, 2008,
pp. 1928–1935.

[14] J. Van Den Berg, J. Snape, S. J. Guy, and D. Manocha, “Reciprocal
collision avoidance with acceleration-velocity obstacles,” in ICRA
2011, 2011, pp. 3475–3482.

[15] J. Snape, J. Van Den Berg, S. J. Guy, and D. Manocha, “The hybrid
reciprocal velocity obstacle,” IEEE Transactions on Robotics, vol. 27,
no. 4, pp. 696–706, 2011.

[16] J. Snape, S. J. Guy, J. Van Den Berg, and D. Manocha, “Smooth
coordination and navigation for multiple differential-drive robots,” in
Experimental Robotics, 2014, pp. 601–613.

[17] J. Snape, J. Van Den Berg, S. J. Guy, and D. Manocha, “Smooth and
collision-free navigation for multiple robots under differential-drive
constraints,” in IROS 2010, 2010, pp. 4584–4589.

[18] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Sieg-
wart, “Optimal reciprocal collision avoidance for multiple non-
holonomic robots,” in Distributed Autonomous Robotic Systems, 2013,
pp. 203–216.

[19] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-
line collision avoidance for dynamic vehicles using buffered voronoi
cells,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1047–
1054, 2017.

[20] H. Zhu and J. Alonso-Mora, “B-uavc: Buffered uncertainty-aware
voronoi cells for probabilistic multi-robot collision avoidance,” in MRS
2019, 2019, pp. 162–168.

[21] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in ICRA 2017, 2017, pp. 285–292.

[22] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep rein-
forcement learning,” in ICRA 2018, 2018, pp. 6252–6259.

[23] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[24] D. Harabor and A. Grastien, “Online graph pruning for pathfinding
on grid maps,” in AAAI 2011, vol. 2, 2011, pp. 1114–1119.

[25] M. Likhachev and A. Stentz, “R* search,” in AAAI 2008, 2008, pp.
344–350.

[26] A. Nash, K. Daniel, S. Koenig, and A. Feiner, “Theta*: Any-angle
path planning on grids,” in AAAI 2007, vol. 2, 2007, pp. 1177–1183.


