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Abstract— Health care systems are at the front line to
fight the COVID-19 pandemic. Emergent questions for each
hospital are how many general ward and intensive care unit
beds are needed, and additionally, how to optimally allocate
these resources during demand surge to effectively save lives.
However, hospital pandemic preparedness has been hampered
by a lack of sufficiently specific planning guidelines. In this
paper, we developed a hybrid computer simulation approach,
with a system dynamic model to predict COVID-19 cases and a
discrete-event simulation to evaluate hospital bed utilization and
subsequently determine bed allocations. Two control policies,
the type-dependent admission control policy and the early step-
down policy, based on patient risk profiling, were proposed to
lower the overall death rate of the patient population in need of
intensive care. The model was validated using historical patient
census data from the University of Florida Health Jacksonville,
Jacksonville, FL. The allocation of hospital beds to low-risk
and high-risk arrival patients to achieve the goal of reducing
the death rate, while helping a maximum number of patients
to recover was discussed. This decision support tool is tailored
to a given hospital setting of interest and is generalizable to
other hospitals to tackle the pandemic planning challenge.

Index Terms— COVID-19, hospital pandemic planning, hy-
brid computer simulation, admission control.

I. INTRODUCTION

The COVID-19 pandemic challenge is unprecedented. In
the early stage of the outbreak, the US’s healthcare system
was severely strained, with the demand for beds and some
specialized equipment needed to treat patients and protect
staff far exceeding supply [1]–[4]. An emergent question for
each hospital is how many general ward and intensive care
unit (ICU) beds are needed at the peak of the outbreak. An
important follow-up question is how to optimally allocate
these scarce resources to achieve the goal of reducing the
case fatality rate and helping a maximum number of patients
to recover. This study aimed to address the above questions
using a computer simulation approach.

The pandemic of COVID-19 could overwhelm hospitals,
but a planning guidance that accounts for the complex and
dynamic interrelationships between hospital operating factors
is lacking. This is due to the differences among hospitals and
between various pandemic scenarios (e.g., COVID-19 differs
from Ebola and SARS in various aspects). Consequently, it is
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difficult to provide guidance based on historical experience,
and the case-specific findings might not be broadly applicable
to all hospitals. In addition, the relationship is governed
by a stochastic process rather than being deterministic.
There are inherent uncertainties in patient demand, length of
stay, and day-to-day hospital operations. These factors are
instrumental in accurately predicting and evaluating system
performance.

To guide hospital operations, a method that allows for
the control of system performance, accounting for oper-
ational bottlenecks and the complex and dynamic nature
of the system is desired. Discrete-event simulation (DES)
has been a popular and effective decision-support tool for
the optimal allocation of limited healthcare resources to
strike the balance between minimizing healthcare delivery
costs and increasing patient satisfaction [5]–[7]. Emerging
applications of DES addressing the COVID-19 pandemic
hospital planning problems can be found in [8]–[12]. The
review of how simulation modeling can help reduce the
impact of COVID-19 was presented in [13]. In these works,
the regional disease-spread feature and the heterogeneity in
patient pathways were not sufficiently accounted for when
modeling the system. For instance, the hospitalization and
death rates differ drastically across different age groups, and
the age distribution of a population is region-specific. In
addition, the patient demand is not stationary and could vary
significantly in different phases of the pandemic. Therefore,
we propose a hybrid simulation approach to modelling the
COVID patient arrival process using system dynamics, and
feeding it into a DES that models the operations of a hospital
unit in time. The Susceptible-Exposed-Infectious-Recovered
(SEIR) model is a type of system dynamics models that has
been widely used in predicting infectious disease transmis-
sion like severe acute respiratory syndrome (SARS) [14],
H1N1 influenza [15], and MERS-CoV [16], where S, E, I,
R represent the number of susceptible, exposed, infectious
and recovered people separately at a particular time. A data-
driven SEIR model is trained using the data of the catchment
area of the target hospital.

To allocate scarce resources to individual patients given
the bed capacity constraints, we further propose to categorize
patients into different types based on the potential conse-
quence, if they cannot be treated timely in the ICU [17].
By categorizing the hospitalization population into high-risk
and low-risk groups, we analyzed the effect of implement-
ing control policies including a type-dependent admission
control policy, and an early ICU step-down policy based on
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patient types. Region-specific population characteristics are
incorporated to support decision making. The optimal control
policy to lower the overall death rate of the patient population
is identified for different degree of resource shortage, and a
rigorous early step-down policy shows greater potential in
surging resource demands.

The efforts of this study are organized as follows. Model
conceptualization and development, as well as the numerical
experiment settings are included in Section II. In Section III,
the results from model validation and sensitivity analysis
are presented, including the bed capacity decisions and the
control policy comparison. Finally, the effectiveness of the
control policies, the limitations of the current study, and the
future research directions are discussed in Section IV.

II. METHODS

A hybrid computer simulation model was developed to
evaluate the hospital preparedness and provide resource
allocation decision support. The simulation model was ini-
tially validated using data from the University of Florida
(UF) Health Jacksonville, Jacksonville, FL, and was tested
under a spectrum of scenarios (e.g., different intervention
policies and disease characteristics). In the following, we
describe how the simulation inputs were calibrated based on
carefully researching the clinical evidence, and introduce the
conceptualized patient flow in a typical hospital COVID unit.

A. Input analysis

The daily COVID hospitalizations are not time-
homogeneous and are closely related to the number of
people infected. In particular, we focused on the catchment
area of UF Health Jacksonville. It is a metropolitan area
with 1.5 million people, covering five counties: Baker,
Clay, Duval, Nassau, and St. Johns, Florida. The range of
epidemiological variables, including hospitalization rate,
hospitalizations that require ICU stay, denoted as ICU rate,
hospital length of stay by unit type (ICU and ward), and
case fatality rate (death rate) were determined by review of
the literature and expert consensus of the team. In particular,
the patient age distribution, hospitalization rate, ICU rate,
and death rate were obtained from UF Health Jacksonville
and the Florida Department of Health (FDOH) [18].
Based on the difference in these event rates, patients were
broadly categorized into a high-risk group and a low-risk
group. This was inspired by the multi-principal allocation
framework for prioritizing which patients should receive
ventilators when a shortage occurs [17]. In our study, the
high-risk group contains patients 65 years old and above.
Among the hospitalization population, the death rate of this
age group exceeded 20%. The below 65-year-old group is
regarded as of low-risk, with the death rate being under
11% on average after hospitalization. Similarly, there was
a salient difference in ICU rates and average lengths of
stay between the two groups. It is worth noting that other
criteria can be used to classify patients and our choice was
based on the goal of controlling the overall death rate. The
hospital lengths of stay by unit type (ICU and ward) were

obtained from UF Health Jacksonville and the CDC [19].
We present Table I below to summarize the basic setting.
The total number of existing beds, and potential surge beds
for use in the COVID unit were provided by the hospital.
Currently, 35 beds are reserved for the COVID unit of
UF Health Jacksonville. The market share of the hospital
is assumed to be 15%. The group-wise event rates (and
lengths of stay) in Table I were calculated by taking the
weighted average of event rates (and lengths of stay) of
each specified age stratum, for the low-risk and high-risk
groups, respectively. The hospital related parameters were
obtained from different healthcare provides in their regions,
while the disease characteristics can be gradually updated as
more instances collected and research conducted for certain
new pandemic.

TABLE I
DISEASE AND PROCESS VARIABLES USED IN THE SIMULATION

Variables
Value (SD*)

ReferenceType 1 patient Type 2 patient

Hospitalization rate 6% 6% [18], [20], [21]

Hospital market share 15% 15% -

Population percentage 50% 50% [22]
(among hospitalization)

ICU rate 35% 23% [4], [18], [23]

Case fatality rate 43% 9% [4], [18]
(among hospitalization)

Average time spent in 9.30 (5.86) 8.90 (5.58) [2], [19]
an ICU bed (day)

Average time spent in 13.30 (8.37) 12.90 (8.09) [19]
hospital (day) for ICU patient

Average time spent in 6.80 (4.48) 4.00 (2.40) [19], [24]
hospital (day) for ward patient

B. SEIR model development

We let S(t), E(t), I(t), and R(t) represent the population
at each state and each time t, P (resp. Q) be the expected
number of cases directly generated by one infectious (resp.
exposed) case in a population where all individuals are
susceptible to infection. Furthermore, R0 represents the
basic reproductive number, and the effective R0 equals
to P + Q; N represents the total population in the area
(i.e., N = S(t) + E(t) + I(t) + R(t)); L represents the
incubation period, D represents the infectious period, and
V represents the serial interval, which equals to L + D.
COVID-19 has its own feature and the transmission rates
and increments/decrements of the population at each stage
are represented in the following equations:

dS(t)
dt = −PS(t)I(t)

ND − QS(t)E(t)
NL (1a)

dE(t)
dt = PS(t)I(t)

ND + QS(t)E(t)
NL − E(t)

L (1b)
dI(t)
dt = E(t)

L − I(t)
D (1c)

dR(t)
dt = I(t)

D (1d)

The total population N for our work is 1.56 million, based
on the metro Jacksonville area [25]. For the parameters, P
and Q are obtained by linearizing the model by assuming

*SD: Standard deviation
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no depletion of susceptible [14], and considering the pro-
portion of secondary cases infected by asymptomatic and
symptomatic cases [26]. The serial interval is 7.5 days and
the incubation period is 5.2 days, according to [27]. The
values of the parameters were fine tuned by minimizing the
prediction error given the historical daily COVID cases from
the FDOH dashboard data [18]. For planning purposes, the
future patient arrival is simulated based on the SEIR model.
The hospitalization demand is proportional to the new case
generated according to the hospital market share and the
hospitalization rate.

C. DES model conceptualization

A DES model based on the general patient flow in hospital
COVID units was developed using commercial simulation
software, Arena®. The scope of the system and the patient
flow is described as follows. Patients arriving at the hospital
will be triaged first. Mild patients will be directly discharged
after administering the treatment, which is out of the scope
of this study. Severe patients, based on their level of severity
will be admitted to an ICU (critical condition) or a ward
(non-critical, e.g., do not need ventilators). In the model, type
1 (high risk) patients have a higher chance to be admitted
to an ICU with a rate of 35%, and that of type 2 (low risk)
patients is only 23%. Patients in wards, depending on their
types being 1 or 2, will stay an average of 6.80 days with a
standard deviation of 4.48 days, i.e., 6.80 (4.48) days, or 4.00
(2.40) days, and will be discharged. Patients in ICUs with
critical conditions (stage 1) will be stabilized and transferred
to a ward (stage 2). The total length of stay for ICU patients
are 13.30 (8.37) and 12.90 (8.09) days with their average
time in the ICU as 9.30 (5.86) and 8.90 (5.58) days, for type
1 and type 2 patients, respectively.

When the ICU is full or exceeding its surge capacity
(typically 20% more than the normal bed allocation), new
arrivals have to be rejected. These patients might be trans-
ferred to another hospital or sent home. Here we consider
an admission control policy: when the ICU bed occupancy
is below the normal bed allocation, all new arrivals will be
admitted. When the ICU bed occupancy is above the normal
bed allocation but below the surge capacity, only high-risk
patients are admitted. The goal is to make room for a future
critical condition patient. We denote this as a type-dependent
admission control policy, and the corresponding patient flow
is illustrated in Fig 1. Besides, as shown in Fig 2, we consider
the early step-down of a patient from the ICU to make room
for an incoming critical condition patient. If a new arrival is
of type 1 and the ICU is at its surge capacity, then, we will
search for a current ICU patient who is of type 2 and has
stayed for the number of days which is more than the mean
number of mechanical ventilation usage days in ICUs [19].
If there exists a patient that qualifies both criteria, he or she
will be stepped down to a ward. This is denoted as an early
step-down policy. If a patient is rejected or stepped down due
to capacity constraints, their health outcome will be affected.
Generally, ICU refusal or delay of ICU care would result in
a higher death rate [28]. To penalize this, their death rate

will be adjusted by multiplying a factor of 1.5, or 1.2, if a
patient is rejected or stepped down early, respectively. The
condition of patient transfer between hospital units can also
be accommodated by adjusting the penalty factors.
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Fig. 1. Patient flow in the hospital COVID unit under the admission control
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Fig. 2. Patient flow in the hospital COVID unit under the early step-down
policy

D. Model validation

The validity of the model was tested against different
assumptions, the forecast arrival by the SEIR model was
compared with the historical COVID cases from FDOH, and
the historical census data were used to compare with the DES
model outputs. The real hospital patient census in the COVID
unit (ward and ICU) during March 23rd – May 11th, 2020
were provided by UF Health Jacksonville. The bed capacity
was set as 10 for the ICU and 25 for general wards. Other
parameters were set based on Table I.

E. Sensitivity analysis

With a fixed bed capacity, we constructed several sce-
narios to highlight particular aspects of the type-dependent
admission control policy and the early step-down policy.
As we allow the ratio of high-risk to low-risk patients in
the population to vary from 1:4, 1:1, to 4:1, the objective
was then to determine the appropriate policy that suits the
problem setting and patient mix. The resultant overall death
rate of the patient population was used as the performance
metrics. The admission control policy was tested in four
scenarios. The first three correspond to three ICU bed
buffer ranges,60%-120%, 80%-120%, and 100%-120% of
the normal bed capacity. If the current bed occupancy is
below the lower bound of the range, both types of patients
can be admitted; if the current bed occupancy is within this
range, only type 1 patient could be admitted. The fourth case
(base case) allows the admission of all types of patients,
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including types 1 and 2, until the ICU surge capacity (120%
of the normal bed capacity) is reached.

Next, we considered five variations for the early step-down
policy, including the base case which does not allow any
early step-down. The other four scenarios were tuned by two
key parameters. The first parameter is the patient type that
is eligible for early step-down. It has two choices, type 2
patients only, or all types are eligible. The second parameter
is the minimum ICU days a patient has stayed in order to be
eligible for early step-down. The number of days was set as
two days and six days, corresponding to the minimum and
the mean usage days of mechanical ventilation in ICUs [19].
In addition, the early step-down death rate penalty factor is
set to 1.2 and 1.1, for a minimum of two-and six-day ICU
stay before step-down, respectively.

For all the sensitivity analysis, the patient arrival was
simulated to reflect the peak of the outbreak since the onset in
the metro Jacksonville area and the state of Florida, resulting
in the surging demand for hospital resources.

III. RESULTS

A. Validation results

We ran the model for 200 replications for all the simulation
studies to ensure a narrow confidence interval (CI). We first
present the case study of UF Health Jacksonville to validate
our model. Historical data showed that the average ward
census was 6.53 patients/day and the average ICU census
was 2.38 patients/day in the COVID unit during March
23rd – May 11th, 2020. Our simulation yielded the average
census of 6.17 ± 0.38 (the number following ± refers to the
halfwidth of 95% CI), and 2.26 ± 0.14, for ward and ICU,
respectively, suggesting that the model can well capture the
system dynamics. We validate that the patient censuses in the
ICU and the ward conform to the real data, and these factors
are directly relevant to determining the number of beds.

B. Control policy analysis

With the setting of 10 ICU beds and 25 ward beds, we
varied the hospitalization rate from 6%, 8% to 10%, and
changed the high-risk to low-risk population ratio from 1:4,
1:1, to 4:1. Different control strategies were compared. If the
current bed capacity results in moderate robustness against
demand variation, i.e., only a few rejections are observed,
the type-dependent admission policy can well accommodate
the temporary bed shortage. However, it cannot handle the
case where there is a consistent deficiency in bed capacity.
The early step-down policy, meanwhile, is more effective
to handle the case of a severe bed shortage. We present the
major observations in Table II to evaluate the effectiveness of
the proposed methods. Without an admission control policy,
with 6% hospitalization rate, the rejection rate in the hospital
is 6.18 ± 0.87%, and the overall death rate is 24.94 ±
1.59%. By allowing only the high-risk group to enter the
ICU when the bed occupancy is in its buffer range, the
rejection rate increases, but the overall death rate decreases.
With the ICU buffer ranging between 60%-120%, 80%-
120%, and 100%-120% of its normal capacity, the rejection

rates are 9.81 ± 1.00%, 8.91 ± 1.03%, and 7.63 ± 1.02%,
and the overall death rates are 24.12 ± 1.55%, 24.24 ±
1.54%, and 24.11 ± 1.55%. Among the 237 severe patients
coming to the hospital, the total death (including death from
rejection cases and hospitalization cases) decreased from 27
± 2.55 (baseline) to 26 ± 2.64, 26 ± 2.59, and 25 ± 2.60,
respectively.

TABLE II
SIMULATION OUTPUTS FOR CONTROL POLICY ANALYSIS

Case Index* 1 2 3 4

ICU Utilization 40.35% 36.42% 38.13% 39.58%
(95% CI) (± 4.00%) (± 3.60%) (± 3.70%) (± 3.90%)

Ward Utilization 36.53% 35.87% 35.71% 36.03%
(95% CI) (± 3.70%) (± 3.60%) (± 3.60%) (± 3.60%)

Rejection Count 9 12 12 11
(95% CI) (± 1.38) (± 1.55) (± 1.58) (± 1.53)

Hospital Death Count 23 23 23 23
(95% CI) (± 2.46) (± 2.60) (± 2.55) (± 2.55)

Rejection Death Count 4 3 3 3
(95% CI) (± 1.66) (± 0.43) (± 0.46) (± 0.53)

Total Death Count 27 26 26 25
(95% CI) (± 2.55) (± 2.64) (± 2.59) (± 2.60)

Total Discharged Count 97 99 99 98
(95% CI) (± 10.54) (± 10.67) (± 10.71) (± 2.60)

Overall Death Rate 24.94% 24.12% 24.24% 24.11%
(95% CI) (± 1.59%) (± 1.55%) (± 1.54%) (± 1.55%)

Case Index* 5 6 7 8 9

ICU Utilization 61.30% 60.23% 60.39% 60.34% 60.17%
(95% CI) (± 5.30%) (± 5.20%) (± 5.20%) (± 5.20%) (± 5.20%)

Ward Utilization 44.16% 45.06% 44.68% 45.14% 44.93%
(95% CI) (± 4.50%) (± 4.70%) (± 4.60%) (± 4.70%) (± 4.60%)

Rejection Count 28 11 19 0 10
(95% CI) (± 3.48) (± 1.95) (± 2.50) (± 0.00) (± 1.46)

Early Step-down Count 0 17 8 28 17
(95% CI) (± 0.00) (± 2.28) (± 1.13) (± 3.51) (± 2.10)

Hospital Death Count 33 39 35 42 38
(95% CI) (± 6.27) (± 4.02) (± 3.56) (± 4.38) (± 3.89)

Rejection Death Count 16 6 11 0 6
(95% CI) (± 2.04) (± 1.15) (± 1.47) (± 0.00) (± 0.90)

Total Death Count 49 45 46 42 44
(95% CI) (± 6.59) (± 4.18) (± 3.85) (± 4.38) (± 3.99)

Total Discharged Count 118 114 115 110 113
(95% CI) (± 12.20 (± 11.84) (± 11.92) (± 11.32) (± 11.62)

Overall Death Rate 37.85% 36.97% 37.29% 36.29% 36.69%
(95% CI) (± 2.02%) (± 2.01%) (± 2.02%) (± 1.99%) (± 2.00%)

For the early step-down policy, the policy effects are
more salient in a high demand setting. To illustrate, the
hospitalization rate was selected at 8%, and the high-risk
to low-risk group population ratio was set at 4:1. In the base
case, the rejection rate, death rate, and total death cases are
17.62 ± 1.74%, 37.85 ± 2.02%, and 49 ± 6.59. When the
early step-down policy is applied, if only the low-risk group
was eligible to step-down after two (or six) days’ ICU care,
the rejection rate is lowered to 6.88 ± 1.12% (or 12.64 ±
1.36%), the death rate decreases to 36.97± 2.01% (or 37.29
± 2.02%), and total death number drops to 45 ± 4.18 (or 46
± 3.85). When no patient categorization was implemented
in the early step-down process, the rejection rate, death rate,

*Case index is explained below:
Cases 1-4: Base case (no admission control), and admission control with
ICU buffer ranging 60%-120%, 80%-120%, 100%-120% of its normal
capacity, at 6% hospitalization rate and 1:1 high-risk and low-risk group
population ratio.
Cases 5-9: Base case (no early step-down), early step-down for low-risk
group patients after 2 days and 6 days ICU stay, and early step-down for
all types patients after 2 days and 6 days ICU stay, at 8% hospitalization
rate and 4:1 high-risk and low-risk group population ratio.
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and total deaths are 0.01 ± 0.001% (or 6.87 ± 0.88%), 36.29
± 1.99% (or 36.67 ± 2.00%), 42 ± 4.38 or 44 ± 3.99, for
two (or six) days’ stay in the ICU.

IV. DISCUSSION AND CONCLUSION

A. Control policy comparison

The type-dependent admission control policy slightly low-
ered the overall death rate of hospital system during peak
days, at the cost of an increased rejection rate. When the
hospitalization rate was 6% or 8%, the 100%-120% ICU
buffer range yielded the lowest death rate and moderate bed
utilization, among the three ICU buffer range choices. If
the hospitalization rate was raised to 10%, the lowest death
rate and bed utilization results came from the 60%-120%
buffer range setting. Meanwhile, the 100%-120% setting
had a comparable death rate and higher ICU bed utilization
outcomes. By rejecting the low-risk group to ensure that
high-risk patients have access to the ICU, the 100%-120%
of ICU buffer setting would be the most appropriate one to
balance the bed utilization and overall death rate.

The early step-down policy greatly decreased the rejection
rate by allowing the high-risk group to have a higher priority
accessing the ICU and other equipment (e.g., ventilators).
The overall death rate was also lowered, where the de-
creased numbers of deaths due to rejection were partially
compensated by the increased number of hospital deaths.
The sensitivity analysis indicated that, the setting which
allows low-risk patients to step-down after six days in ICU
was less effective in reducing the death rate and the total
number of deaths. This is potentially because six days can
already be sufficient for some low-risk patients and there
is not an effective reduction in their ICU stay. Therefore,
when hospital resource shortage occurs, we would recom-
mend employing a more aggressive step-down policy, i.e.,
letting low-risk patients step-down after two days’ ICU care,
or allowing all types of patients to step-down early after
staying between two to six days in the ICU. It should be
noted that the single-cut threshold is adopted for a first-
step analysis. To implement this policy, the clinicians should
come up with a patient-specific step-down plan based on
individual patients’ diagnoses. By monitoring and updating
the composition of the patient mix, the hospital system could
adjust the early step-down strategies accordingly. When more
low-risk patients are expected to come to the hospital and
the resources are not highly utilized, letting only low-risk
group patients to step-down after a relatively shortened but
sufficient ICU stay would suffice to control the overall death
rate, and maintain relatively high patient satisfaction. If more
high-risk patients are expected to show up, it would be more
efficient to allow all types of ICU patients to step-down at
their earliest possible dates to save more lives.

By considering the total rejection, total death and total dis-
charged number of patients in Table 2, we use a normalized
reward index to include these three factors, and compare the
results with this single metric. The reward index includes
large negative penalty for death cases, relative smaller neg-
ative penalty for patient rejections, and a positive reward

for discharged cases. The reward values were obtained for
each test scenario, then, normalized based on the mean and
standard deviation for all sensitivity test scenarios per each
control policy. The normalized results are shown in Fig 3
for cases 1-4 in the admission control policy, and cases 5-9
of the early step-down policy, where cases 1 and 5 are the
base cases for each policy respectively. From cases 1-4 in
Fig 3, we can tell that the 60%-120% ICU bed buffer range
has negative reward, which comes from the inefficient bed
utilization and more rejections due to this. And the 100%-
120% buffer range admission control policy can give the
highest positive reward to handle the conditions of beginning
of peak days. When resources shortage continues and more
severe patients need hospitalization, the Fig 3’s cases 5-
9 give the guidance of early step-down policy choices to
accommodate. Case 8 represents allowing all patients to early
step-down after 2-day ICU care, which is the most aggressive
step-down policy, and gives the largest positive reward in the
urgent shortage scenario.
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Fig. 3. Normalized reward index for the control policy simulation

Comparing the two control policies, the early step-down
policy had a better performance in minimizing the total
number of deaths, especially when the bed shortage is signif-
icant. This can represent the scenario of surging demand for
hospital resources, or represent an area where the resources
are not sufficiently available, e.g., developing countries.
Besides, different early step-down policies had comparable
effects with small variances in the overall death rate. This
is good to note as in reality, the days that qualify for early
step-down can be in a range and it can be implied that such
flexibility would not be detrimental to the effectiveness of the
policy. In addition, although we did not exercise the extensive
exploration, the parameters in this simulation model can be
tuned to cater to any real hospital setting. Take the death
rate penalty factor for example, instead of using the 1.1,
1.2, and 1.5 multipliers assumed in this study, these values
could be adjusted with continuously updated hospital data.
The effectiveness of the control policies will be more salient
as the ratio of death due to rejection goes higher. Overall,
we expect this decision support tool to provide adaptive
suggestions to accommodate various potential ICU settings
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and hospital planning situations.

B. Limitations and future work
Our hybrid simulation model provides a timely decision

support tool for pandemic planning. By integrating the DES
planning tool with a predictive SEIR model, the projection of
hospital congestion and delay in treatment can be analyzed
ahead of time, which can grant a lead time for mitigating
medical resource shortage. This united framework will also
enable us to refine the SEIR model parameters based on
the simulation output and its alignment with real-world data,
achieving the best predictability to inform the optimal deci-
sion to combat the pandemic. For future work, this hybrid
simulation model can be implemented to investigate the plan-
ning of other limited healthcare resources (e.g., mechanical
ventilation and ECMO) with appropriate adjustments.

In our simulation model, we focused mainly on the ICU
bed utilization, and simplified the general ward bed planning
and the patient flow in the ward. There is a need to capture
the overall patient flow in the hospital to determine how
many beds should be reserved to the COVID unit and
distributed to wards and ICUs. To achieve this, we also
need to estimate the occupancy of hospital beds due to non-
COVID patients, and the non-COVID patient arrival process
cannot be handled by the SEIR model.

When classifying the high-risk and low-risk groups, only
age was used. The control policies can be enhanced by
considering more clinical characteristics and risk factors,
like preexisting lung problems or heart diseases, for patient
categorization. With a mechanism that allows for precise
patient risk-based grouping, the simulation tool has the
potential to improve the decision making and achieve a better
overall care performance for managing COVID-19 patients.
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[6] M. M. Günal and M. Pidd, “Discrete event simulation for performance
modelling in health care: a review of the literature,” Journal of
Simulation, vol. 4, no. 1, pp. 42–51, 2010.

[7] X. Zhang, “Application of discrete event simulation in health care: a
systematic review,” BMC health services research, vol. 18, no. 1, pp.
1–11, 2018.

[8] R. M. Wood, C. J. McWilliams, M. J. Thomas, C. P. Bourdeaux,
and C. Vasilakis, “Covid-19 scenario modelling for the mitigation of
capacity-dependent deaths in intensive care,” Health care management
science, vol. 23, no. 3, pp. 315–324, 2020.

[9] K. Ramanathan, D. Antognini, A. Combes, M. Paden, B. Zakhary,
M. Ogino, G. MacLaren, D. Brodie, and K. Shekar, “Planning and
provision of ecmo services for severe ards during the covid-19
pandemic and other outbreaks of emerging infectious diseases,” The
Lancet Respiratory Medicine, vol. 8, no. 5, pp. 518–526, 2020.

[10] A. Alban, S. E. Chick, D. A. Dongelmans, A. P. Vlaar, and D. Sent,
“Icu capacity management during the covid-19 pandemic using a
process simulation,” Intensive care medicine, pp. 1–3, 2020.

[11] G. E. Weissman, A. Crane-Droesch, C. Chivers, T. Luong, A. Hanish,
M. Z. Levy, J. Lubken, M. Becker, M. E. Draugelis, G. L. Anesi,
et al., “Locally informed simulation to predict hospital capacity needs
during the covid-19 pandemic,” Annals of internal medicine, vol. 173,
no. 1, pp. 21–28, 2020.

[12] D. Garcia-Vicuna, L. Esparza, and F. Mallor, “Hospital preparedness
in epidemics by using simulation. the case of covid-19,” medRxiv,
2020.

[13] C. S. Currie, J. W. Fowler, K. Kotiadis, T. Monks, B. S. Onggo,
D. A. Robertson, and A. A. Tako, “How simulation modelling can
help reduce the impact of covid-19,” Journal of Simulation, vol. 14,
no. 2, pp. 83–97, 2020.

[14] M. Lipsitch, T. Cohen, B. Cooper, J. M. Robins, S. Ma, L. James,
G. Gopalakrishna, S. K. Chew, C. C. Tan, M. H. Samore, et al., “Trans-
mission dynamics and control of severe acute respiratory syndrome,”
science, vol. 300, no. 5627, pp. 1966–1970, 2003.

[15] C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage, M. D.
Van Kerkhove, T. D. Hollingsworth, J. Griffin, R. F. Baggaley, H. E.
Jenkins, E. J. Lyons, et al., “Pandemic potential of a strain of influenza
a (h1n1): early findings,” science, vol. 324, no. 5934, pp. 1557–1561,
2009.

[16] A. Assiri, A. McGeer, T. M. Perl, C. S. Price, A. A. Al Rabeeah,
D. A. Cummings, Z. N. Alabdullatif, M. Assad, A. Almulhim,
H. Makhdoom, et al., “Hospital outbreak of middle east respiratory
syndrome coronavirus,” New England Journal of Medicine, vol. 369,
no. 5, pp. 407–416, 2013.

[17] D. B. White and B. Lo, “A framework for rationing ventilators and
critical care beds during the covid-19 pandemic,” Jama, vol. 323,
no. 18, pp. 1773–1774, 2020.

[18] Florida Department of Health COVID-19 Outbreak. Accessed
08-01-2020. [Online]. Available: https://floridahealthcovid19.gov/

[19] COVID-19 Pandemic Planning Scenarios. Accessed 07-31-2020.
[Online]. Available: https://www.cdc.gov/coronavirus/2019ncov/hcp/
planning-scenarios.html

[20] COVID-19 Map – Johns Hopkins Coronavirus Resource Center.
Accessed 08-01-2020. [Online]. Available: https://coronavirus.jhu.
edu/map.html

[21] Coronavirus COVID-19 (SARS-CoC-2). Accessed 08-
01-2020. [Online]. Available: https://www.hopkinsguides.
com/hopkins/view/Johns Hopkins ABX Guide/540747/all/
Coronavirus COVID 19 SARS CoV 2

[22] COVID-19 Data Reports — Florida Disaster. Accessed 08-01-
2020. [Online]. Available: https://www.floridadisaster.org/covid19/
covid-19data-reports/

[23] Institute for Health Metrics and Evaluation. Accessed 08-01-2020.
[Online]. Available: http://www.healthdata.org/

[24] I. COVID, C. J. Murray, et al., “Forecasting covid-19 impact on
hospital bed-days, icu-days, ventilator-days and deaths by us state in
the next 4 months,” MedRxiv, 2020.

[25] US Census.gov. Accessed 08-01-2020. [Online]. Available: https:
//www.census.gov/search-results.html?q=florida+population&page=
1&stateGeo=none&searchtype=web&cssp=SERP& charset =UTF-8

[26] X. He, E. H. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y.
Wong, Y. Guan, X. Tan, et al., “Temporal dynamics in viral shedding
and transmissibility of covid-19,” Nature medicine, vol. 26, no. 5, pp.
672–675, 2020.

[27] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S.
Leung, E. H. Lau, J. Y. Wong, et al., “Early transmission dynamics
in wuhan, china, of novel coronavirus–infected pneumonia,” New
England journal of medicine, 2020.

[28] M.-C. Pintado, P. Villa, N. González-Garcı́a, J. Luján, R. Molina,
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