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Closed Form HJB Solution for Path Planning of a Robot Manipulator
with Warehousing Applications

Ravi Prakash∗, Jayant Kumar Mohanta† and Laxmidhar Behera‡

Abstract— Real-time optimal path planning for robotic ma-
nipulations in task space is a very fundamental and important
problem. In this paper, the problem of generating robot trajec-
tories in an obstacle-ridden environment is formulated under
an optimal control framework using Hamilton-Jacobi-Bellman
(HJB) equation. The novel contribution of this paper is that
a closed form HJB control solution (a necessary and sufficient
condition for global optimality of a control solution with respect
to a cost function) has been achieved for generating real-
time optimal trajectories for a robot manipulator. In contrast
with the decoupled end-effector path planning and subsequent
trajectory generation, the proposed scheme can exploit sensory
input for real-time trajectory generation where the end-effector
path as well as the joint trajectory is recomputed online while
satisfying the real-time constraints. The stability and the perfor-
mance of the proposed control framework is shown theoretically
via Lyapunov approach and also verified experimentally using
a 6 degrees of freedom (DOF) Universal Robot (UR) 10 robot
manipulator. It is shown that a significant saving in cost metrics
can be obtained over similar trajectory generation approaches
from the state-of-the-art with obstacle-ridden environment and
also has better performance in high speed tracking applications.
Warehouse applications of the proposed scheme in case of static
and dynamic targets with respect to the robot manipulator is
also included.

I. INTRODUCTION

Motion generation for a task at hand is a very fundamental
problem in robotics in order to transfer a robotics system
such as robot manipulator from an initial configuration to a
desired configuration. The motion includes sequence of robot
movements as a function of time namely the trajectory which
is determined by the task complexities, robot kinematics and
desired performance metrics. A very common approach of
trajectory generation for a robot manipulator is a decoupled
approach [1], [2]. In this approach, the robot end effector
path is first determined considering the geometry of the
task and the environment e.g. obstacles in the workspace
and subsequently trajectory generation in joint space is
performed to achieve end-effector path tracking. However,
this approach rely heavily on accurate robot models and may
give rise to infeasible trajectories. Moreover, this approach is
unsuitable for real-time trajectory generation in unstructured
and dynamic environments. Almost any real world robotics
application in modern day requires sensory measurements
of both the internal robot (joints, end-effector) and external
sensors (vision) for real-time motion execution in dynamic
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environments. Therefore, ability to exploit these sensory
input in such environments is a desired characteristics for
real-time trajectory generation. In other words, the end-
effector path as well as the corresponding joint trajectory
needs to be recomputed online while satisfying the real-time
constraints.

In many real-world robotics applications, the trajectory
generation not only needs to guarantee accurate end-effector
path tracking but also optimize some pre-defined perform-
nace metrics such as time of execution or energy consumed
during the motion. Therefore, trajectory generation methods
are often formulated as non-linear optimization problem with
a pre-specified cost functional [3]. There are mainly three
different families of optimal joint trajectory generation meth-
ods: numerical optimization techniques, convex optimization
techniques, and optimization techniques based on optimal
control theory.

The numerical techniques for trajectory generation for
robot manipulator are based on numerical formulations like
the Newton-Raphson iteration [4]–[7], predictor-corrector
integration [8], [9], gradient based [10], euler and trapezoid
method [11], [12]. These solutions are generally not so
reliable and has stability and efficiency issues. The failure
of such algorithm does not imply exact cause, whether
the solution failed or there are other undesirable numerical
phenomena such as ’large step’ divergence or ’curvature
reversals’ [13].

The convex optimization based trajectory generation has
been accomplished using local optimization for finding an
instantaneous optimal solution. These methods have the
advantage of being versatile (they can, for instance, trade
off different objectives such as error convergence or actuator
input) and can rely on existing efficient convex optimization
packages. A comprehensive analysis of trajectory generation
for robot manipulator using closed loop inverse kinematics
algorithm in a convex optimization framework is presented
in [14]. It is centered on the Jacobian pseudoinverse and
null space. The solution is achieved using gradient projection
based methods. Trajectory generation is formulated using
nonlinear optimization framework using Quadratic Program-
ming in [15], [16]. The neural network based optimization
framework for real-time trajectory generation is presented in
[17]–[21].

The optimization techniques based on optimal control
theory mainly aims to solve the trajectory generation problem
based on Dynamic Programming. The theory of dynamic
programming gives rise to HJB equation which is a nec-
essary and sufficient condition for optimality of a control
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solution with respect to a loss function. However, solving
the HJB equation still remains a major hurdle. Therefore,
several approximate solutions to the HJB equation have been
proposed [22] and referred to as adaptive or approximate
dynamic programming (ADP). The trajectory generation for
a robot manipulator using single network adaptive critic
under ADP framework is accomplished in [23], [24]. In these
schemes, the theoretical convergence to the optimal cost with
guarenteed stability proof is not shown. However, The near
optimal convergence is shown using repeated training and
extensive simulations. There exists very few works in the
literature that has shown the convergence to the optimal cost
in an analytical manner along with the proof of stability.
Recently in [25], a Lyapunov stability based optimal ADP
control framework for trajectory generation is proposed.
The online neural network approximator learns the infinite-
horizon cost function related to error dynamics in continuous
time and calculates the corresponding optimal joint angle
update law to minimize the cost function forward in time.
To obtain a real-time closed loop solution has been addressed
very recently in [26]. However, the solution for the online
optimal trajectory generation scheme is proposed in free
space without any obstacle. The solution uses SVD scheme
which is unduly expensive computationally and not amenable
to real-time extension to obstacle ridden environment. In this
paper a comprehensive solution to the problem of optimal
trajectory generation in obstacle ridden environments using
simple matrix computation is proposed. The extensive com-
parison with the state-of-the-art optimization based schemes
for same task in obstacle ridden environment is carried to
demonstrate the significance of the proposed method. The
closed form analytical HJB solution is shown to be more
significant than the approximate optimal solutions for a
complex and non-linear cost.

In the next section, the problem formulation for optimal
control is presented. In section III and IV detailed mathe-
matical derivation for the control scheme along with stability
proof is presented. In section V, experimental results of the
proposed control scheme for a 6-DOF robotic manipulator
are evaluated with comparison with the state-of-the-art kine-
matic control solutions. This paper is finally concluded with
prospects of future works in Section VI.

II. BACKGROUND AND PROBLEM FORMULATION

A. Robot Manipulator Kinematics

Let f(θ) : Rn → Rm be the robot manipulator forward
kinematics (n ≥ m) where θ is the Rn joint position vector
of the robot manipulator. The pose of the end-effector is
given by

X(θ) = f(θ). (1)

The representation of orientation in end-effector pose
of the robot manipulator is non-trivial which significantly
affects the calculation of pose error. For example, the popu-
lar ”roll-pitch-yaw” representation are generally problematic
and geometrically meaningless while calculating pose error.
Therefore, In this paper, the end-effector pose and pose error

∈ SE(3) are represented by a task space vector data structure
to handle storage and operations on spatial frames. The task
space vector is a data structure that keeps track of SO(3) sub-
groups within the stored vector. The operations on this vector
then implement the Lie group algebra to correctly compute
addition or substraction in the task space. The embedding of
the task space vector is done by combining three position
coordinates x, y, z ∈ R and a sub vector containing a SO(3)
rotation represented as a unit quaternion. The substraction
calculation of two task space vectors X1 and X2 first
converts the quaternion into rotation matrices R1 and R2

and performs the roatation operation R2
−1R1. The result

is then converted into ωx, ωy, ωz and packed into output
vector ∆X = X1 −X2. Notice that the dimensionality of
∆X ∈ R6 and X1,X2 ∈ R7 are different.

The time derivative of the kinematic model (1) yields
the forward kinematic mapping from joint space to the
operational space at the velocity level as Ẋ(θ) = ∂f

∂θ θ̇(t) =
J(θ)q̇(t) where J(θ) is the geometric Jacobian matrix [27].
In general, this matrix loses rank at singular configurations.
Since the focus of this paper is mainly on the optimal control
problem, J(θ) is assumed to be of full row rank (rank = m).

In this paper, we aim to design the joint velocities control
law for trajectory generation of a robot manipulator. Then the
robot manipulator kinematics can be rewritten by replacing
θ̇(t) by u(t):

Ẋ(θ) = J(θ)u(t), where u(t) = θ̇(t). (2)

B. Collision Cost Metric

Let there be O obstacles in the m−dimensional opera-
tional space of the robot manipulator and a virtual collision
point pj(j ∈ O) attached to each of them. Let us define
collision error between the robot end effector and the jth

collision obstacle as epj(θ) = X(θ)−pj . Then the collision

cost function Co(θ) is given by Co(θ) =
∑O

j we
−k‖epj(θ)‖

where, the precision parameter k can be used to adjust the
fall-off of the cost function, e.g. a precision factor of 50 will
result in negligible cost when the obstacles are further than
10 cm apart from the end effector and the weighting factor
w determines the maximum weightage of the collision cost
when the distance of the end effector from the obstacle is
zero.

III. CASE I: FIXED END POSE

In this section, we shall consider the optimal regulation of
X(θ) to a constant desired value Xr in the m-dimensional
operational space for the control of a robot manipulator in
the presence of obstacles.

The derivative of the reference trajectory is given by
Ẋr = 0 Let the regulation error e(θ) = X(θ) −Xr. Then
its derivative w.r.t. time t is

ė(θ) = Ẋ(θ)− Ẋr = J(θ)ue(t), ue(t) = u(t) (3)

Considering the above system error dynamics (3) with θ(t)
as the system states, the optimal control law is derived next.
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The infinite horizon HJB cost function for (3) is defined
as

V (θ(t)) =

ˆ ∞
t

L(θ(τ),ue(τ)dτ (4)

where, L(θ(t),ue(t)) =
1

2
(e(θ)ᵀQe(θ)

+ ue(t)ᵀRue(t) + Co(θ)) (5)

with Q as a m × m positive definite diagonal matrix to
design the rate of convergence of the error and R as a n×n
positive definite diagonal matrix which penalizes the inputs
to optimize the cost function. Our goal is to find an optimal
control law ue(t) which minimizes the aforementioned cost
function.

Then the hamiltonian for the cost function (4) with an
associated admissible control input ue(t) is written as

H(θ(t),ue(t)) = L(θ(t),ue(t)) +
dV (θ(t))

dθ
θ̇(t) (6)

where d(V (θ(t)))
dθ is 1× n vector.

The optimal control input that minimizes the cost func-
tion (4) also minimizes the hamiltonian (6); therefore op-
timal control is found by solving the stationarity condition
∂H(θ(t),ue(t))

∂ue(t)
= 0 i.e. minue

(
L(θ(t),ue(t))+ dV ∗

dθ θ̇(t)

)
=

0. Putting the expressions for L(e(t),ue(t)) and θ̇(t) from
eqs. (5) and (2), respectively,

min
ue

(
1

2

(
e(θ)

ᵀ
Qe(θ) + ue(t)ᵀRue(t) + Co(θ)

)
+
dV ∗

dθ
ue(t)

)
= 0 (7)

Differentiating (7) with respect to ue, we get

ue
∗(t) = −R−1

(
dV ∗

dθ

)ᵀ

(8)

In order to find the expression for
(

dV ∗

dθ

)
, we put the optimal

ue from (8) in (7),

min
ue

(
1

2
e(θ)(t)ᵀQe(θ)(t) +

1

2

(
dV ∗

dθ
R−1

dV ∗

dθ

ᵀ)
+

1

2
Co(θ) +

dV ∗

dθ
(−R−1

dV ∗

dθ

ᵀ

)

)
= 0 (9)

(
dV ∗

dθ

)
R−1

(
dV ∗

dθ

)ᵀ

= e(θ)
ᵀ
Qe(θ) + Co(θ) (10)

This is a quadratic equation of the form YᵀY = x, where
Y ∈ Rm and x ∈ R. It has a solution of the form Y =

√
xΦ,

where Φ ∈ Rm is a vector with ΦᵀΦ = 1. Thus, we get

R−
1
2

(
dV ∗

dθ

)ᵀ

=
√

e(θ)
ᵀ
Qe(θ) + Co(θ)Φ (11)

Substituting (11) in (8) gives

ue
∗(t) = −R−

1
2 Φ
√

e(θ)
ᵀ
Qe(θ) + Co(θ) (12)

. The expression for Φ is determined using Lyapunov Sta-
bility criteria presented next.

A. Stability Proof
Proof. The stability of the system can be analyzed with
the help of a Lyapunov function defined as V(e(θ)) =
1
2e(θ)

ᵀ
e(θ). Then the time derivative of the Lyapunov

function is V̇(e(θ)) = e(θ)
ᵀ
ė(θ) = e(θ)

ᵀ
J(θ)ue

∗(t)

= −e(θ)
ᵀ
J(θ)R−

1
2 Φ
√

e(θ)
ᵀ
Qe(θ) + Co(θ) (13)

Now to ensure guarenteed system convergence V̇(e(θ))
needs to be negative definite. Therefore, if Φ is chosen as

Φ =
J(θ)

ᵀ
e(θ)

||(J(θ)
ᵀ
e(θ))||

(14)

satisfying the condition ΦᵀΦ = 1, then

V̇(e(θ)) = −e(θ)
ᵀ
J(θ)R−

1
2

J(θ)
ᵀ
e(θ)

||(J(θ)
ᵀ
e(θ))||√

e(θ)
ᵀ
Qe(θ) + Co(θ) (15)

It can be concluded that V̇(e(q)) becomes negative definite
and regulation error converges to zero asymptotically imply-
ing optimality and guarenteed convergence concurrently.

B. Stabilizing Control Law
Finally we get the stabilizing optimal control by combin-

ing (12) and (14).

ue
∗(t) = −R−

1
2

J(θ)
ᵀ
e(θ)

||(J(θ)
ᵀ
e(θ))||

√
e(θ)

ᵀ
Qe(θ) + Co(θ)

(16)

IV. CASE II : TIME VARYING END POSE TRAJECTORY

In this section, we shall consider the tracking of X(θ) to
a time varying end pose reference trajectory Xr(t) in the
m-dimensional operational space a robot manipulator. The
optimal tracker is considered as an extension to regulation
problem [22]. The objective for the infinite time optimal
tracking control problem is to design the optimal control law
u∗(t) to ensure that the nonlinear system (1) tracks a time
varying desired trajectory Xr(t) with known time derivative,
Ẋr(t), in an optimal manner. It is observed that the optimal
control input for the case of dynamic tracking consists of an
optimal feedback term ute and a predetermined feedforward
term used to compensate to satisfy the steady state velocity
requirement [28]. To ensure that the desired velocity is
reached during steady state, a feedforward control input,
uss(t) is found using Ẋr(t) = J(θ)uss(t).

Now, because of the redundancy of the robot manipulator,
unique solution for such a uss(t) does not exist. Hence, the
solution which minimizes the kinetic energy is chosen i.e.,
uss(t) that minimizes uss(t)

ᵀuss(t). The solution for such a
uss(t) can be found as uss(t) = J(θ)

†
Ẋr(t), where J(θ)

†
=

J(θ)
ᵀ
(J(θ)J(θ)

ᵀ
)−1 is the pseudo-inverse of J(θ).
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A. Tracking Control law

Let the tracking error et(θ) = X(θ)−Xr(t).
The optimal tracking control law can then be obtained by

u∗(t) = ute
∗(t) + uss(t)

= −R−
1
2

J(θ)
ᵀ
et(θ)

||(J(θ)
ᵀ
et(θ))||

√
et(θ)ᵀQet(θ) + J(θ)

†
Ẋr(t)

(17)

B. Stability Proof

Proof. The time derivative of the tracking error is given by

ėt(θ) = Ẋ(θ)− Ẋr(t) = J(θ)u∗(t)− Ẋr(t)

= J(θ)(−R−
1
2

J(θ)ᵀet(θ)
||(J(θ)ᵀet(θ))||

√
et(θ)ᵀQet(θ)

+J(q)
†
Ẋr(t))− J(θ)J(θ)

ᵀ
(J(θ)J(θ)

ᵀ
)−1Ẋr(t)

= −J(θ)R−
1
2

J(θ)ᵀet(θ)
||(J(θ)ᵀet(θ))||

√
et(θ)ᵀQet(θ)

(18)

Consider the following lyapunov function Vt(et(θ)) =
1
2et(θ)ᵀet(θ). Then the time derivative of Vt(et(θ)) can be
written as V̇t(et(θ)) = et(θ)ᵀėt(t)

= −et(θ)ᵀJ(θ)R−
1
2

J(θ)
ᵀ
et(θ)

||(J(θ)
ᵀ
et(θ))||

√
et(θ)ᵀQet(θ)

It can be concluded that V̇(et(θ)) becomes negative defi-
nite and tracking error converges to zero asymptotically.

Fig. 1: Hardware Setup

V. EXPERIMENTAL RESULTS

In this section, we present the details of realtime experi-
mental validations of the proposed HJB control scheme along
with similar approximate HJB based ADP control from the
literature. To demonstrate the performance and efficacy of
the schemes a 6-DOF UR 10 robot manipulator is employed
as testbed.

A. Experimental Setup

In order to evaluate the control performance of the pro-
posed controller, a UR10 robotic manipulator with six joints
is employed as a test bed. The structure of this robotic
manipulator is shown in Figure (1). It consists of a UR10
robot manipulator with its internal PC and a host PC/external

computer. It exposes its real-time interface for joint velocity
control schemes using URScript commands. The realtime
interface runs on the UR10’s internal PC using UrDriver
wrapper class integrated with ROS with inner control loop
frequency operating at 125Hz. The main controller runs on
Host PC which publishes the generated control commands
to the robot’s real-time interface at 125 Hz over ethernet in
a ROS framework.

B. Case I: Fixed End Pose

1) Without Obstacles: Experimental results are presented
to demonstrate the performance of the proposed optimal
control of a robot manipulator for the task of end pose
regulation in case of obstacle free robot workspace.
The objective is to actuate the robot manipulator using
optimal joint velocities to the individual robot joints
which is obtained by minimizing the cost function
(4) with Co(e(t)) = 0, such that the robot end
effector reaches a target pose (Xr) in the cartesian
space from any given start pose. The experimental
results generated from a typical run using the proposed
control with start pose (position : [−0.7, 0.3, 0.65]m,
orientation :[−0.500, 0.512, 0.500, 0.487]) to a fixed
target pose (position : [−0.5, 0.5, 0.2]m, orientation
:[−0.500, 0.512, 0.500, 0.487]) in the cartesian space is
shown in Figure (2(a,b,d,e)). The controller gain parameters
during the run is diag(Q)=[106; 106; 106; 105; 105; 105] and
diag(R)=[0.5 ;0.5 ;0.5 ;1 ;1 ;1]. For a qualitative comparison
purpose, a ADP control approach [25] was utilized to solve
the end pose regulation control problem for the same
start and target pose using the same cost function (4)
with Co(e(t)) = 0. This controller also generates velocity
control inputs to actuate individual robot joints such that
the regulation control error converges to zero in a short
transient time. The results are shown in Figure (2(a,b,c,e)).
The controller gains in [25] were tuned to obtain similar
time domain performance as that in the previous case.

2) With Obstacles: Experimental results are presented to
demonstrate the performance of the proposed optimal control
of a robot manipulator for the task of end pose regulation
in presence of obstacle in the robot workspace. For this, the
robot manipulator is actuated using optimal joint velocities to
the individual robot joints which is obtained by minimizing
the cost function (4), such that the robot end effector reaches
a target pose (Xr) in the cartesian space from any given
start pose while avoiding obstacles in the workspace. The
collision weighting factor w and the precision parameter k
is selected as 5 and 50 respectively such that the collision
cost is maximum at 5 when the end effector is very near to
the obstacle and and it falls off exponentially to 0 when
the end effector is farther than a radius of 10 cm from
the obstacle. Also the obstacles are always farther than a
minimum of 10 cm from the goal point. The experimental
results generated from a typical run with start pose (posi-
tion : [-0.25,-0.25,0.1]m, orientation :[-0.053, 0.034, 0.704,
0.707]) to a fixed target pose (position : [0,0.1,0.4]m, orien-
tation :[−0.053, 0.034, 0.704, 0.707]) in the cartesian space
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(a) End Pose Regulation
without Obstacle

(b) RMS Error Convergence (c) Control Input (ADP) (d) Control Input (HJB) (e) Cost Function

(f) End Pose Regulation with
Obstacle

(g) RMS Error Convergence (h) Control Input (ADP) (i) Control Input (HJB) (j) Cost Function

(k) Time varying Trajectory
Tracking

(l) RMS Error Convergence (m) Control Input (ADP) (n) Control Input (HJB) (o) Cost Function

Fig. 2: Experimental results for end pose regulation control without obstacles (a-e), with obstacles (f-j) and time varying
trajectory tracking for a time varying elliptical trajectory (k-o) using proposed control scheme and ADP control [25].

TABLE I: Quantitative test comparison of the proposed control with the state-of-the-art optimal control algorithms for
real-time trajectory generation.

Case I
without obstacles

Case I
with obstacles

Case II
(ω < 1rad/s)

Case II
(ω > 1rad/s)

Scheme Class Proof ANTC1 ANTC1 ANTC1 ANTC1

RRT+ KDL [7] Numerical, Local, Newton method No 880 ±20.4 3649±85.27 93±4.85 116±7.54
SVF CLIK [14] Instantaneous, Local, Gradient Projection No 675±17.2 2816±55.75 82±2.4 98±3.58

STOMP [19] Probabilistic, Local, Gradient Descent No 572±14.3 2337±40.97 70±1.9751 87±2.17
RNN [20] Convex, Local, KKT conditions Yes 525±6.2 1669±35.5 61±1.5 71±1.64
ADP [25] Sub-optimal, Global, Approximate HJB Yes 250±2 780±15.25 47±1.05 55±1.27

Proposed HJB Optimal, Global, Exact HJB Yes 225±1.5 450±9.77 35±0.5 42±0.59

with an obstacle at (position : [−0.125,−0.175, 0.25]m) is
shown in Figure (2(f,g,i,j)). The controller gain parameters
during the run is diag(Q)=[106; 106; 106; 105; 105; 105] and
diag(R)=[0.25; 0.25; 0.25; 0.5; 0.5; 0.5]. The ADP control ap-
proach [25] was utilized to solve the end pose regulation
control problem for the same start and target pose with the
obstacle using the same cost function (4). The results are
shown in Figure (2(f,g,h,j)). The controller gains in [25] were
tuned to obtain similar time domain performance as that in
the previous case.

C. Case II: Time Varying End Pose Trajectory

In this section, the tracking control of a time varying
reference trajectory given by the control law (17) is val-
idated through experiments. Many circular time varying
reference trajectory was generated using sampled parameters

like center of the circle, radius of the circle and speed
of the circle. A typical experimental run generated with a
sampled start pose and tracking a time varying reference
trajectory moving at an angular speed of 1.5 rad/s along
a circle centered at [−0.8, 0, 0.5]m with a radius of 0.2m
is shown in Figure (2k). The controller gain parameters
during the run is diag(Q)=[106 106 106 105 105 105] and
diag(R)=[0.25 0.25 0.25 0.5 0.5 0.5]. The results of the
trajectory tracking using ADP control for the same problem
setup above is shown in Figure(2(k,l,m,o)).

D. Quantitative Comparison Test Methodology

In order to quantify the performance of the proposed
optimal control for real-time trajectory generation, an au-
tomated test process was used for comparing various class
of optimization based solution from the literature.

2053

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2022 at 08:43:29 UTC from IEEE Xplore.  Restrictions apply. 



The quantitative test methodology for comparing the
proposed method for optimal control against the various
solutions mentioned in Table I is entailed next.

First the test samples are generated over robot’s task
workspace in case of both regulation and tracking problem.
The sample space consists of feasible robot end poses within
robot’s reach. A total of 25 target poses were generated
in case of end pose regulation with 5 variable start poses.
In case of end pose regulation control with obstacles, an
obstacle is placed in midway of the line joining the start and
goal poses. For the case of time varying trajectory tracking
performance in the robot’s task space, 25 different feasible
time varying circular reference trajectories with varying
parameters (radius of the circle, center of the circle and speed
of the circle) were generated in the workspace of the robot.

Then the above mentioned control schemes for real-time
trajectory generation are tested on those test points over all
workspace and compared on a metric defined as Average
Normalised Trajectory Cost (ANTC). The ANTC is defined
as average normalised trajectory cost over all trajectories.
The normalized cost for ith trajectory is given by Ci = C/N ,
where N is the number of total time instances until the error
converges to a threshold in case of end pose regulation and
total time of execution in case of trajectory tracking. Hence
the average normalized trajectory cost over all trajectory is
given by

∑Nt
i Vi

Nt
, where Nt is total number of trajectories.

Now we define the ANTC metric corresponding to trajectory
cost C = e(t)ᵀe(t) + u(t)ᵀu(t) + u̇(t)ᵀu̇(t). This metric
is a measure of accuracy and optimal effort with smooth
trajectories. To ensure fairness in comparison the following
methodology was adopted. First all the algorithms are run
for the same problem setup using best selection of controller
gain parameters until satisfactory task error performance is
achieved (e.g. the RMS regulation error or tracking error
converges below 10−3). Then the controller gain parameter
of each of the controller is tweaked to match the same
time domain convergence while ensuring that the maximum
control limits of the individual joints is not violated in all the
cases. So, now for the same time domain task performance,
both the control methods are compared on a same metric
whose physical significance is that how much control effort
is invested for the same accuracy of the task and also how
smooth are the trajectory profiles. The smaller value of these
metrics would imply smooth and optimal control for the same
robot motion tasks. It would also ensure optimal actuator
torque input in the secondary/low level servo control loop
for the same task performance in the real world applications.

The above experiment was done for 10 trials. The Table
I summarizes the comparison drawn on the basis of metric
ANTC with their mean and variance. The comparision has
been arranged as per their class of optimization and method-
ology of solution. In essence the performance of schemes
based on optimal control theory involving solution of HJB
equation performs better than other classes of optimiza-
tion algorithms. The study reflects that among the convex
optimization formulations of the same problem, the RNN

based optimization using KKT optimization criteria performs
slightly better than its probabilistic counterpart STOMP
along with the analytic proof of stability. Among the global
optimization algorithms involving solution of HJB equation,
the important observation from the comparison test is that
the proposed controller performs significantly better than the
ADP control in terms of ANTC for regulation control with
obstacles and trajectory tracking accuracy for reference tra-
jectories with high speed. This implies accurate, optimal and
smoother trajectory profiles using the proposed HJB based
solution. Also the tracking accuracy of the ADP controller
shows oscillatory behaviour in realtime experiments with
reference trajectories having higher speed (ω ≥ 1rad/s),
see Figure (2l) for ω = 1.5rad/s. The observed bahaviour
may be accounted due to the iterative update of neural
network weights towards optimality which is not fast enough
in case of high speed tracking. Therefore, the conclusion of
the analysis is that the analytic closed form HJB solution
shall significantly perform better than the approximate NN
solution when the cost function becomes complex and more
non-linear.

VI. WAREHOUSING APPLICATIONS

To demonstrate the significance of proposed real-time
trajectory generation scheme for real-world robotics appli-
cation, a demo for warehouse automation case is included
in this paper. In case I, the robot manipulator pick desired
items from a table in the presence of obstacles and place
it in a storage box and in case II, the robot manipulator
has to pick the items from a moving conveyor belt. The task
space target locations of items is integrated with the proposed
control scheme through real-time visual feedback. The real-
time experimental demo of warehousing application has been
included as supplementary video submission and available
online at [29].

VII. CONCLUSION AND FUTURE WORKS

In this work, we have designed an optimal controller
for real-time trajectory generation of a robot manipulator
using HJB framework. This is a necessary and sufficient
condition for optimality of a control solution with respect
to a cost function. The control input update law is derived
using a closed form solution of HJB equation in contrast
to ADP based approximate HJB solution in the state-of-the-
art. The stability analysis of the proposed control scheme
is guarenteed using Lyapunov stability. Both the problem
of end pose regulation and time varying trajectory tracking
in the task space is solved under the framework of optimal
control. Using the proposed optimal end pose regulation and
time varying trajectory tracking control law (16), (17), it
has been experimentally demonstrated that robot performs
desired tasks with optimal cost as evident from Table 1. The
proposed controller has the advantage of better cost with
steady state trajectory tracking accuracy for reference trajec-
tories with high speed than ADP based controller [25] when
the cost function becomes more complex and non-linear.
The collison cost metric defined in this paper considers a
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spherical static obstacles in the robot task space. This is one
of the limitations of this work and a possible opportunity to
extend it for different geometry/shape/size of the obstacles
and also time varying obstacles. The collision cost needs
to be also defined in robot configuration space instead of
only end-effector. Instead of eye-to-hand visual feedback, the
proposed controller can be integrated with visual feedback in
eye-on-hand to develop optimal visual servoing algorithms
where the robot jacobian would be extended with the image
jacobian.
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