
Pareto Frontier Approximation Network (PA-Net) to Solve Bi-objective TSP

Ishaan Mehta, Sharareh Taghipour, and Sajad Saeedi

Abstract— The travelling salesperson problem (TSP) is a
classic resource allocation problem used to find an optimal
order of doing a set of tasks while minimizing (or maximizing)
an associated objective function. It is widely used in robotics for
applications such as planning and scheduling. In this work, we
solve TSP for two objectives using reinforcement learning (RL).
Often in multi-objective optimization problems, the associated
objective functions can be conflicting in nature. In such cases,
the optimality is defined in terms of Pareto optimality. A
set of these Pareto optimal solutions in the objective space
form a Pareto front (or frontier). Each solution has its trade-
off. We present the Pareto frontier approximation network
(PA-Net), a network that generates good approximations of
the Pareto front for the bi-objective travelling salesperson
problem (BTSP). Firstly, BTSP is converted into a constrained
optimization problem. We then train our network to solve
this constrained problem using the Lagrangian relaxation and
policy gradient. With PA-Net we improve the performance over
an existing deep RL-based method. The average improvement
in the hypervolume metric, which is used to measure the
optimality of the Pareto front, is 2.3%. At the same time, PA-
Net has 4.5× faster inference time. Finally, we present the
application of PA-Net to find optimal visiting order in a robotic
navigation task/coverage planning. Our code is available on the
project website1.

I. INTRODUCTION

The travelling salesperson problem (TSP) is a popular
sequencing problem. TSP generates a sequence (a.k.a. tour)
that visits each city (or node) in a given graph and finally
returns to the starting city. The goal of TSP is to minimize
the overall traversal cost of the tour. TSP and its variants are
widely used in robotics for applications like path planning
for UAVs [1], multi-robot path planning [2], task allocation
for robotic manipulators [3], and coverage planning [4].

We use the bi-objective travelling salesperson problem
(BTSP) for application of coverage planning. Algorithms
for coverage planning generate trajectories for robots to
cover a given area [4]. Area coverage is used in robotic
applications like cleaning robots and surveillance. Grid-based
TSP planners [4] segment a given map into multiple cells
and generate a coverage pattern for each cell. The optimal
visiting order for these cells is generated by solving TSP
that minimizes the length of the tour. We are interested in a
scenario where a robot has to visit these cells and the order
is dependent on two objectives. The first objective is tour
length, and the second objective could be used to represent
traversable condition or priority of the path. So, BTSP would
be an appropriate choice in this scenario.

There are a wide variety of algorithms, ranging from
exact methods to evolution-based methods that solve multi-

Department of Mechanical and Industrial Engineering, Toronto
Metropolitan University. Emails: {ishaan.mehta, sharareh,
s.saeedi}@ryerson.ca

1Project website: https://sites.google.com/view/pa-net-btsp

objective TSP [5]. Evolutionary algorithms, like non-
dominated sorting genetic algorithm-II (NSGA-II) [6] and
multi-objective evolutionary algorithm (MOEA/D) [7], are
frequently used to tackle multi-objective TSP and other
multi-objective optimization problems. Some works use evo-
lutionary algorithms coupled with local search heuristics [8]–
[10]. In practice, these evolutionary-based methods suffer in
performance and computation time with an increase in the
scale of the problem [11]. Another method is to use linear
scalarization of the objectives using convex weights [12].
These weights are used to convert BTSP to single objective
TSP, which can be solved using solvers like OR-Tools. The
downside of the linear scalarization technique is that it is
unable to find solutions in the concave region of the Pareto
front [12].

Contribution: In this work, we address the aforemen-
tioned challenges. We present the Pareto frontier approx-
imation network (PA-Net), a reinforcement learning (RL)
based framework that generates an approximation of a set of
Pareto optimal tours for BTSP. Further, we demonstrate the
use of PA-Net for a robotic planning application. Our main
contributions are: (1) We achieve an average improvement
of 2.3% in optimality metrics along with 4.5× faster infer-
ence times as compared to the network (called DRL-MOA)
proposed by Li et al. [13]; (2) We address the drawback of
the existing approach [13], which trains separate networks
to generate different solutions for approximating the Pareto
front. The generalization ability of PA-Net enables it to
produce a dense approximation of the Pareto front through
a single network, while maintaining similar training times
as DRL-MOA [13]; and (3) Our approach can be extended
to generate a set of Pareto optimal solutions for other
multi-objective reinforcement learning and multi-objective
optimization (MOO) tasks.

Related Work: Sequencing problems are a subset of
combinatorial optimization (CO) where the decision vari-
ables are discrete. Most CO problems are NP-Hard, and
as a result state-of-the-art algorithms rely on handcrafted
heuristics to make decisions that are otherwise too expensive
to compute or are tailored to specific problem instances.
Recently, researchers are addressing these issues using deep
learning and machine learning (ML) [14]–[16].

Many recent works of deep learning-based CO methods
focus on solving Euclidean TSP. Google Brain’s Pointer
Network (Ptr-Net) [17] learns the conditional probability
of an output sequence of elements that are discrete to-
kens corresponding to the positions in an input sequence.
They used Ptr-Net to solve Euclidean TSP (and other CO
problems) in an end-to-end fashion, where the solutions
from classical methods are used as baselines for training.

ar
X

iv
:2

20
3.

01
29

8v
3

 [
cs

.R
O

]
 1

7
Ju

l 2
02

2

https://sites.google.com/view/pa-net-btsp
https://developers.google.com/optimization

Similarly, TSP was solved using a 2D graph convolution
network followed by the beam search procedure [18]. Deep
reinforcement learning (DRL) was used to solve various
combinatorial optimization problems in [19]. Their network
uses RNN-based encoder and a Ptr-Net. They trained their
network using policy gradient. Deudon et al. [20] developed
an actor-critic based architecture. They used transformers to
encode the TSP graph. Further, they used 2-opt heuristics
to refine the solutions generated by the network. Kool et
al. [21] proposed a network based on attention layers. They
trained their network using policy gradient. Their network
outperformed other deep-learning based solvers. Further,
methods like [20]–[22] have been able to close the gap
(in terms of optimality) in comparison to TSP solvers like
Concorde and OR-Tools by using additional heuristics or
sampling procedures [20], [21].

Finding Pareto optimal solutions has been studied in
deep learning literature for various multi-objective tasks. In
supervised learning domain, many works focussed on multi-
objective classification tasks [23]–[27]. Similarly, many
multi-objective RL methods have been developed to solve
multi-objective MDPs [28], [29]. Some works in RL train
many single policy networks to approximate the Pareto front
[13], [30]. While others have trained a single network to
generate a set of Pareto optimal solutions [31], [32].

There are various methodologies to tackle MOO problems.
The ε-constrained methods optimize one of the objectives at
a time, while using the other objectives as constraints [33],
[34]. One of the most common ways is to use preference
vectors or weights. These preference vectors or weights
indicate the desired trade-off between various objectives.
Some methods use convex weights to scalarize the objective
function, and the Pareto front can be obtained by solving
the optimization for multiple preference vectors [12], [35].
On the other hand, some methods use these preferences as
constraints. For instance, Das et al. [36] generate preferences
(used in constraints) based on the convex hull of individual
minima of the MOO. Our method also uses preference in
constraints, although in our case preferences are unit vectors
sampled from the unit circle in the objective space.

Li et al. [13] solved multi-objective TSP by training
multiple single policy networks. They converted the MOO
problem into a single objective using the linear scalariza-
tion method with convex preferences. They train multiple
networks with the architecture adopted from [37]. Each
network is trained with a different preference weight, to
approximate the Pareto front. Their network, called DRL-
MOA, generated competitive results in comparison to classi-
cal methods. However, the downside of their method is that
it is redundant to train multiple networks, which is time-
consuming and resource-intensive. Furthermore, solutions on
concave regions of the Pareto front cannot be uncovered
by their network because it uses the linear scalarization
technique [12]. In our work, we train a single network that
can predict solutions for any unit preference vector. This
enables us to produce a much denser Pareto front. Instead
of using linear scalarization, our network learns to solve a

Fig. 1: A small scale BTSP tour generated by our algorithm for a map of a real-
world environment. The locations of interest highlighted in red and the starting point
in green. The path traversed by the robot is highlighted in blue, and arrows indicate
the sequence of visiting different locations. It is clear that the path between two points
of interest is not always a straight line. For such cases, we use a modified architecture
of PA-Net, which can process adjacency matrices as inputs.

constrained optimization problem where the constraints are
dependent on the preference vectors.

In this work, we present PA-Net, a network framework
trained using the policy gradient that can approximate the
Pareto front for MOO problems. Our choice of using RL is
motivated by the success of deep learning-based CO methods
and the fact that it is hard to generate training data for
complex problems like BTSP. We use PA-Net to find a
set of Pareto optimal tours for BTSP. The networks that
use the policy gradient methods can be easily adopted and
modified under our framework. So, the networks presented
in [20], [21] are augmented for PA-Net to solve BTSP. The
novelty of our algorithm is that we pose the problem of
finding a set of Pareto optimal solutions as a constrained
optimization problem, rather than using linear scalarization
of the objective function. We use preference vectors as
constraints which indicate the desired location of the solution
in the objective space. Finally, we train our network using the
reward constrained policy optimization, which is a paradigm
used to train constrained RL applications [38]. Our network
performs better than other deep learning methods in terms
of quality of the Pareto front, training, and inference time.
Further, we extend our framework to process non-Euclidean
data. We demonstrate the use of this network for a coverage
planning application.

II. BACKGROUND

Here we review the definition of Pareto optimality and
present a brief primer on solving TSP using DRL.
A. Problem Setup

A MOO problem is defined as:

minx ~F (x) = [f1(x) f2(x) ... fm(x)]> (1)

where ~F (x) is a vector of m-objective functions and
x ∈ X is the vector of the decision variable in Rn. In such
problems, often different objectives are conflicting in nature,
i.e., no single solution can simultaneously optimize all the
objectives. Instead, a set of Pareto optimal solutions provide

https://www.math.uwaterloo.ca/tsp/concorde.html
https://developers.google.com/optimization

the best solutions with different trade-offs between various
objectives. Pareto optimality is defined as follows:
• Dominance: A solution xa is said to dominate xb (xa ≺
xb) if and only if fi(xa) ≤ fi(x

b), ∀i ∈ {1, ...m} and
fj(x

a) < fj(x
b) such that ∃j ∈ {1, ...m} .

• Pareto optimality: A solution x∗ is said to be Pareto
optimal if there does not exist any solution x′ such that
x′ ≺ x∗. A set of all such points form a Pareto frontier,
denoted by Υ.

Euclidean BTSP: The Euclidean TSP is defined over a
graph of n cities, where each city has coordinates a ∈ R2.
A TSP tour π provides a sequence of visiting cities exactly
once and then returning to the starting city. BTSP is a MOO
problem that finds a set of Pareto optimal TSP tours Π
(Π ⊂ Zn) on a complete graph s, while optimizing for two
objectives. Here, the input graph s is a sequence of n cities in
a four-dimensional space s = [a1

i , a
2
i]i=1:n, where ami ∈ R2

for each m ∈ {1, 2} [13]. The goal is to find a tour π ∈ Π
that visits each city in the graph s and can simultaneously
optimize the objectives for m ∈ {1, 2}:

fm(π) =
∥∥amπ(n) − amπ(1)∥∥2 +

n−1∑
i=1

∥∥amπ(i) − amπ(i+1)

∥∥
2
. (2)

Non-Euclidean BTSP: In certain situations, the objective
functions may not take a Euclidean form. For instance, the
distance between two locations on a map might not to be a
straight line because of obstacles or other path constraints,
as shown in Fig. 1. So for this case, we assume that the costs
between all these points are given by the adjacency matrix,
i.e., Hm where m ∈ {1, 2}. The cost associated with the
mth objective for a tour π can be calculated using:

fm(π) = Hm[π(n), π(1)] +

n−1∑
i=1

Hm[π(i), π(i+ 1)]. (3)

B. TSP using policy gradient
In our work, we adopt and modify architectures presented

in [21]and [20]. These networks are trained using REIN-
FORCE, a classic policy gradient method [39]. The input to
the network is a graph s. An encoded representation of each
city in the graph is obtained using an encoder. This encoded
representation, along with the history of previous actions,
are used by the decoder to sequentially generate a TSP tour.
The actor, network θ, is trained to minimize the total tour
length given by Eq. (2) or Eq. (3). The network is trained
on a batch of TSP problem instances of size B. The training
objective for the actor is given by:

D(θ) = Es∼S [Eπ∼pθ(.|s)[Q(π|s)]]. (4)
Here, S is the distribution from which training graphs are
drawn and pθ(π|s) is the probability of a tour generated by
the decoder and Q(π|s) is the reward which minimizes the
total path length.

III. METHODOLOGY

This section provides our mathematical formulation for
MOO. We use this formulation to train a network that
generates a good approximation of the Pareto front for BTSP.

A. Problem Formulation
We intend to generate a good quality approximation of the

Pareto front, which is denoted by Υ̃, where Υ̃ ⊂ Υ. Ideally,
the set Υ̃ should capture a wide range of possible dominant
solutions in the objective space.

BTSP is an extension of TSP to the MOO domain. Let the
vector cost function for a BTSP be given by ~F (π), where

Fig. 2: Visualization of surrogate optimization of Eq. (7) for 2-D cost (~F (π)) along the
preference vector ~wk . All the members in the set Ck are mapped to the line along the
preference vector ~wk in the objective space. The optimum point ~F∗(π) dominates all
other members in Ck . The dominant point ~F∗ is unique in Ck , although alternative
solutions i.e. πk ∈ Sk may exist that map to ~F∗.

~F ∈ R2 and the tour π ∈ Π (Π ⊂ Zn). The optimization
problem can be written as:

minπ ~F (π) = [f1(π) f2(π)]>. (5)

Where the ith cost function is fi : Zn → R for i ∈ {1, 2}.
We further assume that all the cost functions are strictly
positive:

fi(π) > 0 ∀i ∈ {1, 2}. (6)

In order to find the Pareto front, we convert the MOO in
Eq. (5) to a set of constrained optimization problems. This
is done by discretizing the objective space using a collection
of K unit preference vectors W : {~w1... ~wK}, where each
~wk ∈ R2 for ∀k ∈ {1...K} . These preference vectors are a
set of rays emanating from the origin that uniformly divide
the objective space. Each element in ~wk lies in the interval
[0, 1] and ||~wk||2 = 1.

The key idea is to solve a surrogate optimization problem
along each preference vector in order to generate a set of
dominant solutions for Eq. (5). This surrogate optimization
is expressed as a set of K constrained optimization problems,
where the kth problem corresponding to ~wk ∈ W is given
by:

min~F (πk)
J(~F (πk)) = ||~F (πk)||2

s.t. ~F (πk) ∈ Ck.
(7)

The constraint set is defined as Ck = {g(~F (π), ~wk) ≤
0 | ~F (π) ∈ R2} and the corresponding tour set is defined as
Ak = {g(~F (π), ~wk) ≤ 0 | π ∈ Zn}. Here, the dot product
constraint g(~F (πk), ~wk) is given by:

g(~F (πk), ~wk) = 1− ~wk · ~F (πk)

||~F (πk)||2
. (8)

We assume Ak is non-empty. As a consequence of this
assumption, Ck is also non-empty.

The constraint set Ck is a set of vector cost ~F (πk) where
πk ∈ Ak. Here, each ~F (πk) lies on the corresponding
unit preference vector ~wk in objective space. The objective
function in Eq. (7) minimizes the L2-norm and hence finds
the points closer to origin. Below, we state a theorem that is
the motivating factor of our work.
Theorem 1. ~F ∗ ∈ Ck is the optimum solution of Eq. (7) if
and only if it dominates all other points in the set.
Proof: Let ~F

′′ ∈ Ck minimize the Eq. (7) such that ~F ∗ ≺
~F
′′

. This dominance relation implies that f∗i ≤ f
′′

i ∀i ∈
{1, 2} and ∃j ∈ {1, 2} such that f∗j < f

′′

j . This dominance
relation leads to the following result:

||~F ∗||2 < ||~F
′′
||2 . (9)

But this result is a contradiction because ~F
′′

minimizes
Eq. (7). Hence, ~F ∗ ∈ Ck that dominates all other points in
the set are the optimum solution for problem Eq. (7). �

A similar argument can be made to show that a non-
dominated solution in Ck is the optimum solution of Eq. (7).
The dominant point in the set, i.e., ~F ∗ ∈ Ck is also unique
in the set. An intuitive proof for this can be visualized using
the case for Ck ⊂ R2 as shown in Fig. 2. Because of the dot
product constraint, all the possible members in the set lie on
the unit vector ~wk. It is clear from Fig. 2 that the point in the
set Ck closest to origin dominates all other points and is, in
fact, the optimum solution of Eq. (7). Further, there can be
multiple solutions in Ak that lead to the dominant objective
value, i.e., ~F ∗. Mathematically, the solution set Sk ⊂ Ak,
where Sk = {~F (πk) = ~F ∗ | πk ∈ Ak}, all members of Sk
will generate dominant objective values.

Essentially, Theorem 1 demonstrates the viability of ap-
proximating the Pareto front for the problem in Eq. (5)
through the surrogate optimization problem in Eq. (7). Solv-
ing the optimization problem in Eq. (7) for large values of
K can be computationally intractable. We address this issue
through the generalization power of deep neural networks.
PA-Net learns to approximately solve Eq. (7) on a given input
preference set. We select a sparse preference set (more details
in Sec. III-B) that captures the diversity of the solutions in the
objective space. This enables PA-Net to generalize to unseen
preferences as well. Unlike linear scalarization methods,
our formulation can also find concave Pareto frontier. We
demonstrate this with an example of a concave Pareto front
in the Appendix.

B. Network Architecture

Euclidean BTSP: Our training framework can easily be
used by any existing policy gradient-based networks to solve
TSP. In this work, we adopt and modify the architecture from
existing works to solve Euclidean BTSP. The first network
we use is Encode Attend Navigate (EAN) network [20]. The
second network we use is the Attention network (AT) from
[21]. We refer to these modified networks trained with our
framework as PA-EAN and PA-AT, respectively.

The input for Euclidean BTSP is 4D coordinates of the
cities, where each pair of coordinates is used to calculate
the corresponding objective. To generate a set of dominant
tours, we augment these network architecture by adding an
input of a set of preference vectors W of size K. Each
~wk ∈W is encoded in higher dimensions using a single layer
feed-forward network. These additional layers learn features
corresponding to different preferences. This encoding is
combined with the encoded representation of the graph and
then passed on to the decoder. With this architecture, the
network can be trained for various preferences.

Non-Euclidean BTSP: For the case where the input is an
adjacency matrix, we are required to learn a representation
of each city corresponding to each objective. This represen-
tation is used as an input to the network to generate a set
of TSP tours. A graph transformer-based encoder by Sykora
et al. [40] is used to learn this representation. The input to

the encoder is the adjacency matrix Hj and an initial set of
features of each city in the graph, s given by sj = [aj1...a

j
n]

where j ∈ {1, 2}. The description of the initial feature for
the ith city corresponding to the jth objective, aji ∈ R3, is
given in Table I.

TABLE I: Description of initial city features for PA-AD

Name Dim. Type
Sum of neighbouring edge weights 1 float

Min. neighbouring edge weight 1 float
Max. neighbouring edge weight 1 float

The graph encoder produces an encoded representation of
the features for each objective, i.e., s̃j . It should be noted
that we process features for each objective independent of the
other. Finally, we stack the learned features for each objective
to obtain a combined representation S̃ = [s̃1 s̃2]>. Now, S̃
along with the preference encoding, is used by the network
to predict BTSP tours. For this case, we use the AT network
[21] along with the preference encoder. We will refer to this
combined network as PA-AD.
C. Training Methodology

The reward-constrained policy optimization is an actor-
critic algorithm that solves constrained RL problems [38].
It uses a Lagrangian of the constrained problem as the
objective function, where after each gradient update step, the
Lagrangian multipliers are updated based on the constraint
violation. We use the reward-constrained policy optimization
to train a network to solve the problem in Eq. (7) for all
k ∈ {1...K}.

We intend to train a single network that generates a set
of dominant tours T : {π1, ..., πK}. Hence, the problem in
Eq. (7) for each πk ∈ T can be written in the parametric
format as:

minθ J(πk(θ, sj)) = ||~F (πk(θ, sj))||2
s.t. gk(~F (πk(θ, sj), ~wk)) ≤ 0.

(10)

Here, θ is the parameters of the actor network and
πk(θ, sj) is the tour generated by the actor network cor-
responding to kth preference for the input graph sj . For
notational convenience, we denote πk(θ, sj) as πjk. The
Lagrangian dual problem for Eq. (10) is:

Lk(πjk, λk) = maxλk≥0 minθ J(πjk) + λk · gk(~F (πjk, ~wk)).
(11)

Here, λk is the kth Lagrangian multiplier corresponding to
the preference vector ~wk. We use the Lagrangian in Eq. (11)
as the reward for the network. Based on this reward, the
training objective for the actor can be written in our case as:

DAC(θ) = Esj∼S [E~wk∼W [Eπ∼pθ(.|sj)[Lk(πjk, λk)]]]. (12)

A critic network is used to provide predictions bφ(~wk, sj) on
the reward given in Eq. (11). This critic network is trained on
the mean squared error between its predictions and rewards
of the actor, which is given by:

DCR(φ) =
1

K ·B

K∑
k=1

B∑
j=1

||bφ(~wk, sj)− Lk(πjk, λk)||22. (13)

The gradient for the training of the actor network is approx-
imated using REINFORCE [39]:

∇θDAC(θ) ≈ 1

K ·B

K∑
k=1

B∑
j=1

[Lk(πjk, λk)−

bφ(~wk, sj)] · ∇θlog(pθ(π
j
k))].

(14)

The description of the training of PA-Net is given in
Algorithm 1. We start with the initialization of weights
and learning rates for the network and the set of preference
vectors, along with other hyperparameters that are the ascent
rate of the Lagrangian multipliers α and [λmin, λmax] the
limits for the multipliers. The network is trained for N
iterations. At each iteration, a batch of graphs Ω of size
B is generated. For each sj ∈ Ω and the corresponding
preference vector, ~wk ∈ W a tour πjk is constructed by the
network. Based on generated tours, the objective for actor
and critic are calculated. Then parameters of the network are
updated using gradient descent. At the end of each iteration,
the Lagrangian multiplier corresponding to each preference
vector is updated in an ascent step using:

λi+1
k = Γλ(λik +

α

B
·
B∑
j=1

gk(F (πjk, ~wk))). (15)

Here Γλ(·) ensures that the multipliers remain within the
limits, i.e., [λmin, λmax] and α is prespecified ascent rate.
Although the network is trained on a fixed set of preferences
W , it can generalize to a larger set of preferences. For
training of BTSP, we generate preferences by sampling the
unit circle in R2. Since the objective functions are strictly
positive, the angle for unit vectors is sampled from the
interval (0◦, 90◦). A higher number of preferences, i.e.,
would lead to better performance. But increasing K also
increases training times. So, to keep the training tractable,
we limit the number to K = 20.

One downside of our approach is that our network might
be susceptible to local minima. However, in practice, our
approach can generate competitive results as presented next.

Algorithm 1: Training of PA-Net

input : [θ, φ, ηA, ηC], [W,α, λ1:K , λmin, λmax] ←− Initialization of
network weights, set of preference vectors and corresponding
parameters.

output: Trained network parameters of PA-Net θ∗, φ∗.

for i ←− 1, 2...N do
Ω : {s1 sB} ← Sample a Batch of TSP Graphs of size B from

distribution S.

for k ←− 1, 2...K do
for j ←− 1, 2...B do

πjk ←− Actor network Generates TSP Tour for each sj and
~wk .

bφ(~wk, sj) ←− Critic Network predicts the baseline

Lk(πjk, λk) ←− Calculate the Lagrangian using Eq. (11).

Actor Update: θ ←− θ − ηA · ∇θDAC(θ)

Critic Update: φ ←− φ− ηC · ∇φDcr(φ)

for k ←− 1, 2...K do
λk ←− Update the Lagrangian multipliers using Eq. (15)

IV. EXPERIMENTS

To evaluate the efficacy of PA-Net, we present two ex-
periments. The first experiment is on BTSP instances, where
the input is Euclidean data. The second experiment is an
application for coverage planning, where we test our network
on non-Euclidean input data generated from simulated grid
world maps.

The performance of PA-Net is compared with deep
learning-based method DRL-MOA [13], evolution-based
strategies: NSGA-II and MOEA/D [7]. Further, we generate
baseline results using TSP solver from OR-Tools library.

Note that in this case, we use linear scalarization of objec-
tives. The experiments for deep learning methods are carried
out on NVIDIA V100 Volta GPU. Whereas, for NSGA-II,
MOEA/D and OR-Tools experiments are carried out on dual-
core Intel i5 processor.

The results of PA-Net are compared with other methods
on the basis of hypervolume (HV) of the solutions. HV is
a hybrid metric used to evaluate Pareto fronts [41], [42]. It
represents the volume covered by the non-dominated set of
solutions with respect to the worst-case solution. A higher
HV indicates a better quality of the Pareto front, both in
terms of optimality and coverage of the objective space.
Here, HV is calculated as the percentage of points dominated
by the solution set out of densely sampled points in a fixed
volume in the objective space. This volume is generated with
respect to a reference point. We use a fixed reference point
to compute HV for all the algorithms. It is calculated as the
product of the number of cities and unity vector, for example,
reference point for 200-city BTSP is [200.0, 200.0]>.

We also mention the run time of each algorithm. However,
evolutionary-based methods and OR-Tools are CPU-based
methods, whereas DRL-MOA and PA-Net are GPU-based
methods. Libraries like OR-tools are highly optimized and
can generate solutions in a short time. On the other hand,
deep-learning based methods have relatively higher run-time,
but they can take advantage of parallelization and generate
a batch of solutions in one shot.
TABLE II: Training details for our networks and DRL-MOA. Our network can learn
to generalize for various preferences for similar training time to DRL-MOA

PA-EAN PA-AT PA-AD DRL-MOA
Batch Size 60 60 60 200

Epochs 1 3 4 1/net.
Steps (per epoch) 20000 5000 5000 2500
Input Graph Size 120× 4 40× 4 40× 40 40× 4

Training Times (hrs) ∼ 12 ∼ 8 ∼ 10 ∼ 9

Training Setup: For Euclidean BTSP, we train two ar-
chitectures, i.e., PA-AT and PA-EAN. For the non-Euclidean
BTSP, we train PA-AD. Training details of these networks
along with DRL-MOA are given in Table IV. The training
times are reported based on training on NVIDIA V100 Volta
GPU. All the networks except PA-EAN are trained on 40-
city BTSP instances. Further, all our networks are trained for
K = 20 preferences. PA-AD network is trained on adjacency
matrices.
A. Evaluation on Euclidean BTSP Instances

In this experiment, we evaluate the performance of PA-
Net on bi-objective TSP. The input graph G is a sequence
of n cities, where each city ai ∈ R4 is represented by 4
dimensional features. We use L2 norm using Eq. (2) for
the two objectives. For each algorithm, we generate 100
solutions corresponding to various preferences among the
two objectives. It should be noted that the preferences used
in linear scalarization are sampled from [0,1] and satisfy
convexity constraints. In PA-Net, the preferences used are
unit vectors that uniformly segment the objective space.

A set of 25 synthetically generated BTSP instances are
used in this experiment. The average HV and run times
for each algorithm are reported in Table III. NSGA-II and

https://developers.google.com/optimization

5 10 15 20

f
1

4

6

8

10

12

14

16

18

20

22

f 2

OR-tools
PA-EAN
PA-AT
DRL-MOA
NSGA-II-20K
NSGA-II-80K
MOEA/D-20K
MOEA/D-80K

(a) 40 City BTSP

0 50 100 150 200 250 300

f
1

0

50

100

150

200

250

300

f 2

OR-tools
PA-EAN
PA-AT
DRL-MOA
NSGA-II-20K
NSGA-II-80K
MOEA/D-20K
MOEA/D-80K

(b) 500 City BTSP
Fig. 3: Visualization of the dominant solutions for different problem instances. It can be seen that our network (PA-EAN and PA-AT) generates significantly better objective
values than DRL-MOA and evolutionary methods

TABLE III: Quantitative comparison of solutions for BTSP. Our methods outperform DRL-MOA and other evolutionary algorithms in terms of HV and time.

40-City 200-City 500-City 1000-City
Algo. HV (%) Time (s) HV (%) Time (s) HV (%) Time (s) HV (%) Time (s)

NSGA-II (20K) 67.3 5.64 45.4 8.04 38.4 14.7 33.8 27.1
NSGA-II (80K) 72.5 21.7 53.9 30.8 46.36 58.7 41.48 107.3
MOEA/D (20K) 66.7 9.357 47.5 12.7 40.4 20.7 35.7 33.5
MOEA/D (80K) 70.7 34.65 55.98 48.2 48.8 79.53 43.89 130.75

DRL-MOA 73.6 5.87 80.63 29.3 84.5 72.9 85.9 145.5
PA-EAN (ours) 75.4 1.59 83.2 6.03 86.92 15.14 88.45 30.38
PA-AT (ours) 74.18 2.6 80.9 13.4 85.15 33.5 87.35 68.2

OR-tools (nl = NO LIMIT) 78.14 2.16 86.5 86.8 91.07 732 93.39 3730
OR-tools (nl = 10) 78.08 0.93 84.8 10.4 89.8 53.5 92.38 209

TABLE IV: Quantitative comparison of Pareto front for Coverage Planning.Our algorithm generates promising initial results.

40-City 100-City 200-City
Algo. HV (%) Time (s) HV (%) Time (s) HV (%) Time (s)

PA-AD (ours) 71.59 3.06 72.14 6.26 76.4 11.85
OR-tools (nl = 100) 75.9 2.15 78.7 17.4 84.29 82.5
OR-tools (nl = 10) 66.6 0.75 68.5 2.72 82.4 9.9

MOEA/D are tested at different values for the maximum
number of iterations. For OR-Tools, we report results for
different values of the maximum number of iterations for
solution refinement, nl, where the solver terminates once
the specified limit is reached. The results of the quantitative
comparison for BTSP is given in Table III. Visualization of
dominant objective values attained by different algorithms is
shown in Fig. 3 (a)-(b).

Discussion: It is clear that the baseline method i.e., OR-
Tools achieves the best values for HV metric. Further, these
values improve with increasing the maximum solution limit
of the solver. The routing problem solver of OR-Tools is
a highly optimized library built on years of research by
the operation research community. It should be mentioned,
that even the state-of-the-art deep learning-based methods
to solve single objective TSP are able to compete against
OR-Tools by using additional neural local heuristics or
sampling a large set of solution space [20]–[22]. On the
other hand, evolutionary methods significantly underperform
as the scale of the problem increases. This is likely because
these algorithms are unable to explore the solution space
well for larger problems. Running these algorithms for more
iterations could potentially improve their performance in
terms of HV, but this comes with an additional computational
cost. All deep learning-based methods achieve competitive
results in terms of HV. Our networks achieve much better
performance as compared to DRL-MOA in terms of HV. The

average improvement in HV over DRL-MOA for PA-EAN
and PA-AT is 2.3% and, 0.7% respectively. Further, PA-EAN
and PA-AT generates the complete Pareto front about 4.5×
and 2.1× faster, respectively, as compared to DRL-MOA.
Further, we have either lower or comparable training times
relative to DRL-MOA, see Table II. For each problem set,
PA-Net can infer a solution from a single network, whereas
DRL-MOA has to train and rely on multiple networks.
Another notable point is that DRL-MOA has many gaps in its
Pareto front, see Fig. 3. This demonstrates the ineffectiveness
of linear scalarization approach in deep learning setting.

B. Application for Coverage Planning

We use BTSP for the application of coverage planning.
In this experiment, the robot has to visit various locations
in a given map while optimizing for total distance travelled
and an additional priority metric. An example of such a
map is shown in Fig. 1. Such a priority metric can be
representative of attributes like traversable conditions of the
path or traffic on a given path etc. The distances between
locations are stored in adjacency matrices for this case
because the distances are not Euclidean.

For this experiment, we synthetically generate 10 maps us-
ing PathBench [43], an open-source motion-planning bench-
marking platform. We then randomly sample points from
the free space in the map as locations of interest, as shown
in Fig. 1. We assume that the graph formed by these

points are fully connected. The input adjacency matrix for
the first objective, H1, is generated by determining path-
lengths between all the points using A* algorithm. For the
second objective, we randomly sample 2D points where
each coordinate is in range [0,1). We then generate the
second adjacency matrix H2, by computing the Euclidean
distance between these points. For this dataset, we test the
performance of our PA-AD network while using OR-Tools
as the baseline. The average results for HV and runtimes are
reported in Table IV.

Discussion: OR-Tools finds much better solutions when
this limit is increased. As mentioned before, OR-Tools is a
highly optimized solver for TSP and other routing problems.
Like the Euclidean case, there is a lag in the performance of
our network as compared to OR-Tools. This is likely because
the network converges to local minima. Nonetheless, these
initial results look encouraging as we are able to outperform
existing deep learning approach, i.e., DRLMOA.

V. CONCLUSIONS

We presented PA-Net, a network that approximates the
Pareto frontier for the bi-objective TSP. Our results indicate
a competitive performance in terms of optimality of the
solutions. This is achieved by segmenting the objective space
using a set of unit vectors which represent trade-offs among
various objectives. We then use these preference vectors to
convert the unconstrained optimization problem into a set
of constrained optimization problems. Then the network is
trained using Lagrangian relaxation and policy gradient to
generate solutions for these constrained problems. While PA-
Net is trained on a fixed number of preference vectors, it
generalizes well to other unseen preferences as well. The
effectiveness of our method is highlighted by the significant
gains made in terms of quality of solutions, inference and
training times. Although we focus on bi-objective TSP in
this work, our training framework can be applied to other
MOO problems. We also demonstrated a use case of PA-
Net for a coverage planning application. Our future inves-
tigation would be focussed on bridging the performance
gap with OR-Tools through informed use of local heuristics
and tackling the issue of convergence to local minima by
incorporating expert training data from solvers like OR-Tools
and Concorde. Further, we also plan on extending this work
to cases with dynamic costs and multi-robot systems.

APPENDIX

Ablation Studies
In this ablation study, we evaluate the contribution of the

preference layer. We train two networks, i.e., PA-EAN− and
PA-AT−. The training conditions for both these networks
are kept the same as our proposed networks, with the only
difference being that the preference embedding layer is
removed for both these networks. We compare our proposed
network with these on the basis of hypervolume. The results
are reported in Table V. It can be clearly seen that without
the preference layer, the performance of the networks drop
significantly.

In the case of non-Euclidean BTSP, a key addition is
the graph transformer layers that learn representation for

TABLE V: Impact of using preference encoder. It can be seen that preference encoders
play a critical role for the performance of our networks.

Network 40-City 200-City 500-City 1000-City
HV(%) HV(%) HV(%) HV(%)

PA-EAN 75.4 83.2 86.92 88.4
PA-EAN− 39.1 25.6 25 24.6

PA-AT 74.18 80.9 85.15 87.3
PA-AT− 52 48.9 52.9 55.8

Fig. 4: The above plot depicts the convergence of our method to Concave Pareto Front.
Here red points are the results generated by our algorithm, green points are the solution
from linear scalarization method and blue points represent the set of possible solutions
in the objective space.

initial features. In order to evaluate its impact, we train a
network, i.e., PA-AD− without a graph convolution layer. In
this case, we use the initial feature set described in Table I
along with the coordinates of the city as the input to the
network. We then compare PA-AD and PA-AD− on the map
dataset generated for the non-Euclidean BTSP experiment.
The results for comparison are reported in Table VI. It can
be clearly seen that graph transformer encoder plays a crucial
role to learn useful representations of features for each city.
TABLE VI: Impact of using graph transformer encoder. Using a graph encoder enables
the network to learn better features as indicated by higher HV values.

Network 40-City 100-City 200-City
PA-AD 71.59 72.14 76.4

PA-AD− 60 53 53.2

Convergence to Concave Pareto Fronts
We solve a concave MOO problem to demonstrate the

convergence of our optimization framework given by Eq. (7).
The concave problem taken from [24] is given by:

minx ~F (x) = [f1(x), f2(x)]>, (16)

where,
f1(x) = 1− exp(−Σdi=1(xi −

1√
d

)2),

f2(x) = 1− exp(−Σdi=1(xi +
1√
d

)2).
(17)

Here x = [x1, x2]> ∈ R2+ and d = 2. The surrogate
optimization in this case with preference ~wk is given by:

min~F (xk) J(~F (xk)) = ||~F (xk)||2

s.t. 1− ~wk · ~F (xk)

J(~F (xk))
≤ 0

(18)

We solve the above problem in Matlab for K = 20. The
preference is generated by ~wk = [cos(φk), sin(φk)]>, where
φk ∈ (0, 90). We also solve the MOO problem with a simple
linear scalarization of objective. In this case, the preference
is given by αk = [α1, α2]> ∈ R2+ such that α1 + α2 = 1.
We use K = 100 preferences in this case. The kthobjective
function for linear scalarization is:

min~F (xk) R(~F (xk)) = α1 · f1(xk) + α2 · f2(xk) (19)

The results are shown in Fig. 4. It can be clearly seen that
our method is able to produce the concave Pareto front. On
the other hand, linear scalarization is unable to find solutions

on the concave part of the Pareto front. This example
demonstrates that our method can certainly be extended to
MOO with concave Pareto fronts.

REFERENCES

[1] Y. Xu and C. Che, “A brief review of the intelligent algorithm for
traveling salesman problem in UAV route planning,” in 2019 IEEE 9th
International Conference on Electronics Information and Emergency
Communication (ICEIEC). IEEE, 2019, pp. 1–7.

[2] Z. Yu, L. Jinhai, G. Guochang, Z. Rubo, and Y. Haiyan, “An
implementation of evolutionary computation for path planning of
cooperative mobile robots,” in Proceedings of the 4th World Congress
on Intelligent Control and Automation (Cat. No. 02EX527), vol. 3.
IEEE, 2002, pp. 1798–1802.

[3] P. T. Zacharia and N. Aspragathos, “Optimal robot task schedul-
ing based on genetic algorithms,” Robotics and Computer-Integrated
Manufacturing, vol. 21, no. 1, pp. 67–79, 2005.

[4] R. Bormann, F. Jordan, J. Hampp, and M. Hägele, “Indoor cover-
age path planning: Survey, implementation, analysis,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 1718–1725.

[5] T. Lust and J. Teghem, “The multiobjective traveling salesman prob-
lem: a survey and a new approach,” in Advances in Multi-Objective
Nature Inspired Computing. Springer, 2010, pp. 119–141.

[6] B. A. Beirigo and A. G. dos Santos, “Application of NSGA-II
framework to the travel planning problem using real-world travel data,”
in 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE,
2016, pp. 746–753.

[7] W. Peng, Q. Zhang, and H. Li, “Comparison between moea/d and
NSGA-II on the multi-objective travelling salesman problem,” in
Multi-objective memetic algorithms. Springer, 2009, pp. 309–324.

[8] A. Jaszkiewicz, “On the performance of multiple-objective genetic
local search on the 0/1 knapsack problem-a comparative experiment,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 4, pp.
402–412, 2002.

[9] L. Ke, Q. Zhang, and R. Battiti, “Hybridization of decomposition and
local search for multiobjective optimization,” IEEE transactions on
cybernetics, vol. 44, no. 10, pp. 1808–1820, 2014.

[10] X. Cai, Y. Li, Z. Fan, and Q. Zhang, “An external archive guided multi-
objective evolutionary algorithm based on decomposition for combina-
torial optimization,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 4, pp. 508–523, 2014.

[11] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable
clustering-based evolutionary algorithm for large-scale many-objective
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 1, pp. 97–112, 2016.

[12] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[13] K. Li, T. Zhang, and R. Wang, “Deep reinforcement learning for
multiobjective optimization,” IEEE Transactions on Cybernetics, 2020.

[14] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for com-
binatorial optimization: a methodological tour d’horizon,” European
Journal of Operational Research, 2020.

[15] N. Vesselinova, R. Steinert, D. F. Perez-Ramirez, and M. Boman,
“Learning combinatorial optimization on graphs: A survey with ap-
plications to networking,” IEEE Access, vol. 8, pp. 120 388–120 416,
2020.

[16] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Rein-
forcement learning for combinatorial optimization: A survey,” arXiv
preprint arXiv:2003.03600, 2020.

[17] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in
Advances in neural information processing systems, 2015, pp. 2692–
2700.

[18] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convolu-
tional network technique for the travelling salesman problem,” arXiv
preprint arXiv:1906.01227, 2019.

[19] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural com-
binatorial optimization with reinforcement learning,” arXiv preprint
arXiv:1611.09940, 2016.

[20] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M.
Rousseau, “Learning heuristics for the tsp by policy gradient,” in
International conference on the integration of constraint programming,
artificial intelligence, and operations research. Springer, 2018, pp.
170–181.

[21] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve
routing problems!” arXiv preprint arXiv:1803.08475, 2018.

[22] Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang,
“Learning to iteratively solve routing problems with dual-aspect col-
laborative transformer,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

[23] O. Sener and V. Koltun, “Multi-task learning as multi-objective
optimization,” in Advances in Neural Information Processing Systems,
2018, pp. 527–538.

[24] X. Lin, H.-L. Zhen, Z. Li, Q.-F. Zhang, and S. Kwong, “Pareto multi-
task learning,” in Advances in Neural Information Processing Systems,
2019, pp. 12 060–12 070.

[25] D. Mahapatra and V. Rajan, “Multi-task learning with user preferences:
Gradient descent with controlled ascent in pareto optimization,” in
International Conference on Machine Learning. PMLR, 2020, pp.
6597–6607.

[26] M. Ruchte and J. Grabocka, “Efficient multi-objective optimization for
deep learning,” arXiv preprint arXiv:2103.13392, 2021.

[27] A. Navon, A. Shamsian, G. Chechik, and E. Fetaya, “Learning
the pareto front with hypernetworks,” in International Conference
on Learning Representations, 2021. [Online]. Available: https:
//openreview.net/forum?id=NjF772F4ZZR

[28] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey
of multi-objective sequential decision-making,” Journal of Artificial
Intelligence Research, vol. 48, pp. 67–113, 2013.

[29] S. Parisi, M. Pirotta, N. Smacchia, L. Bascetta, and M. Restelli, “Policy
gradient approaches for multi-objective sequential decision making,”
in 2014 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2014, pp. 2323–2330.

[30] P. Vamplew, R. Issabekov, R. Dazeley, C. Foale, A. Berry, T. Moore,
and D. Creighton, “Steering approaches to pareto-optimal multiobjec-
tive reinforcement learning,” Neurocomputing, vol. 263, pp. 26–38,
2017.

[31] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm
for multi-objective reinforcement learning and policy adaptation,”
in Advances in Neural Information Processing Systems, 2019, pp.
14 636–14 647.

[32] S. Parisi, M. Pirotta, and M. Restelli, “Multi-objective reinforcement
learning through continuous pareto manifold approximation,” Journal
of Artificial Intelligence Research, vol. 57, pp. 187–227, 2016.

[33] G. Mavrotas, “Effective implementation of the ε-constraint method
in multi-objective mathematical programming problems,” Applied
mathematics and computation, vol. 213, no. 2, pp. 455–465, 2009.

[34] A. Chinchuluun and P. M. Pardalos, “A survey of recent developments
in multiobjective optimization,” Annals of Operations Research, vol.
154, no. 1, pp. 29–50, 2007.

[35] C. C. Coello, C. Dhaenens, and L. Jourdan, Advances in
multi-objective nature inspired computing. Springer, 2009, vol. 272.

[36] I. Das and J. E. Dennis, “Normal-boundary intersection: A new method
for generating the pareto surface in nonlinear multicriteria optimization
problems,” SIAM journal on optimization, vol. 8, no. 3, pp. 631–657,
1998.

[37] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, “Reinforcement
learning for solving the vehicle routing problem,” Advances in neural
information processing systems, vol. 31, 2018.

[38] C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward constrained
policy optimization,” arXiv preprint arXiv:1805.11074, 2018.

[39] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no.
3-4, pp. 229–256, 1992.

[40] Q. Sykora, M. Ren, and R. Urtasun, “Multi-agent routing value
iteration network,” in International Conference on Machine Learning.
PMLR, 2020, pp. 9300–9310.

[41] J.-F. Bérubé, M. Gendreau, and J.-Y. Potvin, “An exact phi-constraint
method for bi-objective combinatorial optimization problems: Applica-
tion to the traveling salesman problem with profits,” European journal
of operational research, vol. 194, no. 1, pp. 39–50, 2009.

[42] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, and L. Salomon,
“Performance indicators in multiobjective optimization,” European
journal of operational research, 2020.

[43] A.-I. Toma, H.-Y. Hsueh, H. A. Jaafar, R. Murai, P. H. Kelly, and
S. Saeedi, “PathBench: A benchmarking platform for classical and
learned path planning algorithms,” in 2021 18th Conference on Robots
and Vision (CRV). IEEE, 2021, pp. 79–86.

https://openreview.net/forum?id=NjF772F4ZZR
https://openreview.net/forum?id=NjF772F4ZZR

	I Introduction
	II Background
	II-A Problem Setup
	II-B TSP using policy gradient

	III Methodology
	III-A Problem Formulation
	III-B Network Architecture
	III-C Training Methodology

	IV Experiments
	IV-A Evaluation on Euclidean BTSP Instances
	IV-B Application for Coverage Planning

	V Conclusions
	References

