
Bayesian Optimization-based Nonlinear Adaptive PID Controller
Design for Robust Mobile Manipulation

Hadi Hajieghrary1, Marc Peter Deisenroth2, and Yasemin Bekiroglu1,2

Abstract— In this paper, we propose to use a nonlinear
adaptive PID controller to regulate the joint variables of a
mobile manipulator. The motion of the mobile base forces undue
disturbances on the joint controllers of the manipulator. In
designing a conventional PID controller, one should make a
trade-off between the performance and agility of the closed-
loop system and its stability margins. The proposed nonlinear
adaptive PID controller provides a mechanism to relax the need
for such a compromise by adapting the gains according to
the magnitude of the error without expert tuning. Therefore,
we can achieve agile performance for the system while seeing
damped overshoot in the output and track the reference as
close as possible, even in the presence of external disturbances
and uncertainties in the modeling of the system. We have
employed a Bayesian optimization approach to choose the
parameters of a nonlinear adaptive PID controller to achieve
the best performance in tracking the reference input and
rejecting disturbances. The results demonstrate that a well-
designed nonlinear adaptive PID controller can effectively
regulate a mobile manipulator’s joint variables while carrying
an unspecified heavy load and an abrupt base movement occurs.

I. INTRODUCTION

Mobile manipulators have long been the sought-after tech-
nology to automate material handling in industrial settings.
They are expected to have a central role in Industry 4.0
to revolutionize the workshops, assembly lines, warehouses,
and construction sites [1]–[4]. In recent years, mobile manip-
ulators have appeared outside industrial settings in our daily
lives as service robots [5].

Both mobile robots and robotic manipulators enjoy very
mature and robust technologies; nevertheless, combining the
two systems brings up new opportunities and challenges:
opportunities to use the combined facilities of the mobile
base and robotic manipulator to improve the performance
of the overall system, increase its capability, and broaden
its reach; and challenges to avoid the adverse effect that
coupling the two subsystems can have on each other’s
stability and performance [6]–[8].

A mobile base allows the robot to perceive the scene
from different angles and acquire a better temporal under-
standing [4], [9]. The added degrees of freedom increase
the robot’s dexterity and enable new capabilities for task
and motion planning [10]–[12]. However, maneuvering the
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Fig. 1: Gazebo simulation of grab-and-go scenario. The
mobile manipulator consists of a MiR100 mobile base on
which a UR5 manipulator is mounted, and a three-finger
Barrett hand BH282 is attached as the end effector. The
simulation scenario is to grab a heavy power drill (3.5kg),
and maneuver it while the mobile base is moving around.

mobile base may put an undue burden on joint controllers
of the manipulator, depending on the configuration of the
manipulator and the bearing and acceleration of the base
at the time, see Fig. 1. Estimating the bounds of this
disturbance is complex, and designing controllers to satisfy
the requirements of robust performance against the adverse
effects of this uncertainty is challenging. We may identify
dynamic and kinematic stability regions beforehand and
recommend operating the system within these boundaries
[13]–[15]. However, conservative measures like these may
substantially limit the versatility of a mobile manipulator
since any planning for its action should navigate through
these added limitations. This fact has warranted a substantial
body of research to design the mechanics of a mobile
manipulator to exhaust all the possibilities to increase the
breadth of the stability region [16]–[18].

A robust controller has to be designed to deliver the
best performance in the presence of structured and un-
structured model uncertainties and external disturbances, as
long as a measure of these uncertainties remains within the
boundaries known when the controller is designed [8], [19],
[20]. However, robust controllers often give up too much
of the performance to guarantee the stability of the overall
system. In the case of a manipulator, the primary sources
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of uncertainty are various amounts of load the robot may
handle during its operation and the changing configuration
of the robot as it moves. The uncertainty of the load can
be parameterized and modeled as structured uncertainty, but
when it is coupled which the changing configuration of the
robot, it isn’t easy to forge a structure for it. There are
established methods of variable-structure controllers, such
as adaptive controllers, to guarantee the performance of a
system in the presence of bounded structured uncertainties
[21]. However, the performance of adaptive controllers is just
guaranteed within the bounds of the structured uncertainty
of the model of the system. Any unstructured uncertainties
can throw the system’s performance off its track. There are
several attempts to exploit the benefits of both robust and
adaptive controller schemes simultaneously, without giving
up much of their benefits [6], [22].

Various approaches have been proposed to design a con-
troller for joints of a robotic manipulator [20], [23], [24].
The Proportional–Integral–Derivative (PID) cascaded control
is still the predominant approach in the industry due to its
simplicity and effectiveness. A well-tuned PID controller
can satisfy most of the design objectives of a mechanical
system. However, in the case of the mobile manipulator,
where the parameters of the dynamics of the system change
regularly based on various factors such as the mass and
shape of the load it holds, the configuration it takes, or
the variation of the velocity of the mobile base, a PID
controller with fixed parameters may not be able to deliver
the desired performance at all condition. Moreover, the
system’s behavior, which is controlled with a set of constant
parameters, will deteriorate as the robot’s components get
old and worn out. In [25], the authors study the trade-off
between increasing the robustness of the performance and
lowering the performance requirements. They introduced an
elegant graphical tool that provides an insight into this trade-
off. The method described in this paper is a direct adaptive
algorithm, for which the adaptation mechanism is optimized
based on a Bayesian optimization method.

The nonlinear adaptive PID controller is one of the
successful cases of adding adaptability to a classic control
approach [6], [25]–[28]. The effectiveness of this controller
stems from the fact that it formulates fundamental control
requirements for transient and steady-state regimes into a
simple gain scheduling scheme. Each gain of a PID con-
troller adjusts the behavior of the closed-loop system in
a different region of operation. Increasing the proportional
gain decreases the rise time but increases the overshoot
and might lead to undesirable oscillations. The gain of the
differential term has almost the opposite effect. Although
the integral term may increase the overshoot and push the
system toward instability, it is often necessary to be used to
eliminate the steady-state error. The nonlinear adaptive PID
controller exploits the fact that the corresponding effects of
each component of the PID can be scheduled based on the
magnitude of the tracking error. When the output signal is
far from its reference value, the proportional gain must be
at its maximum to accelerate the system toward its goal. As

the output comes near its reference value, the derivative gain
needs to be increased to dampen any possible overshoot and
trailing oscillations.

We can implement the nonlinear adaptive PID control
scheme with several choices for the nonlinear gain func-
tions. However, almost all of these functions include hyper-
parameters that must be chosen during the design process.
These parameters determine how effective the gains of the
PID controller will adjust to the changes in the system’s
state. The solution we propose in this paper to select these
parameters is to examine various sets of parameters and
indicate which one can optimize the performance measure
we have chosen for our system during some extreme sce-
narios we have devised. Bayesian optimization provides a
systematic approach to efficiently search for the optimal
parameters [29]. Initially, we may just use our expert view
on choosing the hyper-parameters. These parameters should
be chosen carefully such that the system stays stable. Unlike
the gains of a PID controller, the relationship between the
hyper-parameters and the performance of the system is more
complicated. We may use a tuned linear PID controller as a
clue toward the choice of minimum and maximum variation
of a gain. After running the system with a handful of different
sets of parameters, the information we acquire about the
system may be used to train a model for the effect of
changing the hyper-parameters on the performance of the
system. Bayesian optimization uses this model to determine
the next set of hyper-parameters to try on the real system,
which may optimize its performance measure.

II. PROBLEM STATEMENT

The objective of designing controllers for a mobile ma-
nipulator is to move a payload from one point to another on
a trajectory. The combined trajectory of the mobile base and
the manipulator is devised in conjunction with each other;
that is, the mobile base starts its motion as soon as the
payload is securely grasped and while the manipulator is
still moving the payload with respect to the base. This is in
contrast with the cases in which the motion of the mobile
base and the manipulator are devised separately, i.e., the
mobile base moves to a point near the load, stops there until
the robotic arm picks the load and secures it, and then the
mobile base moves to its destination.

The manipulator we study in this paper is equipped with
an effort controller to actuate the joints. It draws feedback
from the position of the joints and generates torque to move
the robotic arm, such that the joint angles reach the desired
values. As such, the robot’s dynamics and load will directly
affect the controller’s performance.

A. Forward and Inverse Kinematics of a Mobile Manipulator

The objective of designing controller for the joints of a
manipulator is to have the joint variables follow the reference
commands as closely as possible. In the case of a manipulator
on a fixed base, this means compensating for the system’s
dynamics, including the dynamic of the manipulator and the
effect of gravity and external forces on each joint. In the



Fig. 2: Compliance ellipsoid for UR5 in its different config-
urations. The compliance of the manipulator vary when the
robotic arm is moving from one configuration to another;
therefore, while there is a heavy load in hand and the base
is moving, the effect of the Centripetal and Coriolis forces
on the joint controllers change along the trajectory.

case of a mobile manipulator, additionally, the movement
of the base generates centrifugal and Coriolis forces. These
forces propagate back to the joints of the manipulator, and the
actuator of the joint must overcome these forces to regulate
the angle of the joint. Predicting the final load on the joints
of a mobile manipulator is not trivial as they depend on
the base’s velocity and the arm’s configuration at the time.
Consider a manipulator with n degrees of freedom. The
dynamic equations of the system can be written as

Mpqq:q`Cpq, 9qq 9q`Gpqq “ T ` F, (1)

where q is the vector of the state variables, i.e., the joint
variables, Mpqq P Rnˆn is the symmetric bounded positive
definite inertia matrix, Cpq, 9qq P Rnˆn represents the
centripetal and Coriolis forces and torques, Gpqq P Rn dele-
gates the overall effect of the the gravity on the manipulator,
and T and F are the generalized forces and torques.

In Eq. (1), the centripetal and Coriolis forces, Cpq, 9qq,
only encompass the effect of moving the manipulator. How-
ever, in the case of the mobile manipulator, it must be
replaced with a more general term that also accounts for
the motion of the base. The same is true for the first
term, including the acceleration, which can be different in
a non-inertial frame of the mobile base. The force generated
at the end-effector of the robot, F , and consequently the
reactionary force, and the load observed by the joints, τ , are
related by the Jacobian matrix J :

τ “ JTF , (2)

where τ are the torques generated with the actuators of
the joints, and F is the generalized force, i.e., force and
torque, which the end-effector exerts on its environment. In
the case of a mobile manipulator, F should also compensate
for the centripetal and Coriolis forces. We can also look
at this equation from the point of view of the concept of
compliance, i.e., if a force F is to be exerted on the end-
effector, how much the end-effector will be displaced:

δX “ CCC F . (3)

The compliance matrix CCC “ pJKJT q´1 is the function of
the Jacobian matrix and is directly related to the configura-
tion of the robot at any given time. K is the matrix of the
stiffness of the joints. The eigen-structure of the compliance
matrix, CCC , provides us with information about the stability
of the manipulator. Fig. 2 depicts the linear compliance
of the Universal Robot (UR) against the force on its end-
effector. The larger radius for the ellipse indicates the more
compliant direction. The value of CCC changes according to
the manipulator’s configuration, and the motion of the base
applies different forces according to its maneuver at any
given time. These uncertainties erode the performance of
any fixed structure controller. The controller of each joint
should be able to adjust to these changes in order to deliver
the predefined performance. In the rest of this paper, we
will design and tune a nonlinear adaptive PID controller,
which adjusts its parameter to deliver the predefined tracking
performance in the presence of various uncertainties and
disturbances mentioned above.

III. NONLINEAR ADAPTIVE PID CONTROLLER WITH
MAGNITUDE-MODULATED GAINS

PID controllers are commonly used as the controller of
the actuators of industrial robots. A PID controller relates
the control command to the error between the actual and the
desired set-point, its integral, and derivative. Sequentially, the
controller makes an effort to minimize the error, its integral
over time, and the rate of change of the output.

In a simple case of a stable minimum phase system, the
proportional gain Kp magnifies the error to push the output
toward the set-point. Higher gain decreases the rise time for
the system, which is desirable; however, when the system’s
output reaches the set-point and the error becomes zero—
although only for a brief moment in time—the system will
not stop abruptly. Even in the absence of any driving input,
the inertia of the dynamic plant drives it beyond the set-point;
the error increases again, although in a different direction;
and the controller generates proportional effort to subdue
this error too. The same happens this time in the opposite
direction, which will continue until the error is smaller than
a detectable boundary for the controller.

An oscillatory behavior for a joint is not desirable. It
will erode the system’s actuators, and at its extreme, it can
destabilize the system. However, sometimes it is unavoidable
due to the system’s dynamics; this is often tolerated as the
price to be paid for having an agile system. If we desire
smoother output, we can introduce derivative terms as part
of the PID controller. The derivative component produces
control effort in proportion to the rate of change in the error
and forces the system’s output to settle with smaller ripples.
But there is a price to pay for this smooth transition: the
derivative term subdues the output changes not only around
the set-point but also when it rises toward the set-point, i.e.,
the derivative term also increases the system’s rise time.

The existence of the integral component sometimes is
necessary to eliminate the steady-state error and improve
the tracking performance of the system. However, it also



comes with a cost: it amplifies the system’s oscillation and
pushes the system toward instability. Thus, the integral term
is to fulfill a special requirement, zero steady-state error, to
control a particular class of systems in which the control
loop does not include any integrator.

It appears that the necessary components of the PID con-
troller act in contrast to each other. A desirable characteristic
of a system is to respond rapidly to the changes in its input.
When the system is controlled with a PID controller, this
can be satisfied with high proportional and low derivative
gains. Another desirable behavior of the system is damped
oscillations of its output and, consequently its shorter settling
time. This can be realized with high derivative and low
proportional gains. Ostensibly, these desired performance
characteristics of a closed-loop control system contradict
each other. As a solution to this conundrum, in [26], it was
proposed to coordinate the gains to enact strongly when
needed and to be weakened when their effect is against
the desired performance. This is realized by replacing the
constant gains of the PID controller with nonlinear functions
of tracking error, so that

U ptq “ Kppeq ˆ e`Ki ˆ

ż t

0

epτqdτ `Kdpeq ˆ
de

dt
, (4)

where U ptq is the control input and eptq is the process error.
The proportional and derivative gains are functions of the
tracking error, but the integral gain is chosen to be constant.
The stability of the system is sensitive to the changes in the
integral gain, and this sensitivity depends to the proportional
and derivative gains of the controller. Therefore, any region
we choose to search for better integral gain may have pockets
inside where the parameters can destabilize the system. And,
the importance of the stability of the system outweighs any
benefits we might see from using a nonlinear integral gain.
The proportional gain Kp and the derivative gain Kd are
chosen as functions of the tracking error:

Kp “kp,max ´
2pkp,max ´ kp,minq

expp´τpeq ` exppτpeq
, (5)

Kd “kd,max expp´τde
2q. (6)

The proportional gain may vary between kp,max and kp,min.
This interval does not include zero. The derivative gain, on
the other hand, is small when the error is large, and as
the output of the system gets closer to its set-point, the
derivative gain increases to its maximum, kd,max, to prevent
undesirable oscillations. Intuitively, both proportional and
derivative gains are adjusted to stabilize the system. The
most prominent methods to find the stability criteria for a
system that is controlled with a nonlinear PID are Aizerman’s
conjecture and the Popov’s criterion. These theorems divide
a nonlinear system into two parts: a part that can be ap-
proximately modeled with a linear system, and the nonlinear
residue that is the difference between the linear model and
the actual nonlinear system. Using the Aizerman’s conjecture
and the Popov’s criterion, we can set bounds that if a measure
of this residual nonlinear part stays within these bounds,

the stability of the linear portion implies the stability of
the nonlinear system [30]. These are very useful tools since
we have a comprehensive toolbox to control linear systems,
while most of the systems we are to control are nonlinear. In
this paper, we aim to control a robotic manipulator, which
itself is a nonlinear system, with a nonlinear PID controller.
This is one of the best case studies to apply Aizerman’s
conjecture the Popov’s criterion to study the stability of the
system, see [26]–[28], [31]. We will use the results of such
studies to set the bounds of the search area for the gains we
have introduced in Equations (5) and (6).

A. Parameter Selection for Nonlinear Adaptive PID

To optimize the performance of a system, ideally, we need
a model that relates the values of the parameters that should
be tuned to a measure of the system’s performance, e.g., a
cost function. If a mathematical model of such a relationship
exists, we may employ one of several existing optimization
techniques to find a set of parameters that optimizes the cost
function. However, there are cases, including the problem we
are addressing in this paper, where an explicit relationship
cannot be formulated, so we need to resort to black-box
optimization methods. Then, we need to study the behavior
of the cost function as the parameters of the system change.
If we incrementally change the parameters and evaluate the
cost function at several points, we can build a numerical
version of its model and choose the parameters of the system
by studying this model. However, if the evaluation of the
cost function is very expensive do, the optimization method
needs to be sample-efficient (requiring only a few function
evaluations), to find the best possible parameters that deliver
the system’s best performance. In this paper, every evaluation
of the performance of the system requires driving the robotic
platform. The number of robotic experiments is limited to a
small number due to wear and tear of the hardware and the
time it takes to conduct the experiment; therefore, we need
an optimization method that can work with a small dataset
to model the behavior of the system and use that model to
optimize the performance of the system.

The cost function J we intend to minimize is a combina-
tion of the joint control effort and the tracking error between
the state of that joint and the command it has received:

J “
N
ÿ

k“0

tppθik ´ θ
i
ref q

2 ` qu2
ku. (7)

Here, θik is the sample for the ith joint angle, θiref is the
desired reference value for the ith joint angle, and uik is the
control effort at time step k. The coefficients p and q adjust
the trade-off between the response time of the closed-loop
system and the amount of the control effort paid to regulate
the output. The objective is to find a set of design parameters
for the controller gains at Equations (5) and (6) to reduce
this cost function to its minimum.

The effect of changing the parameters of the nonlinear
controller on the performance of the closed-loop system is
not obvious. Moreover, the nonlinearity of the system we



aim to control and the presence of various deterministic and
stochastic uncertainties and disturbances make it difficult
to derive a mathematical model from describing such a
relationship. Although it is difficult and time-consuming, we
can run the system with a set of parameters and calculate
the cost function in association with those parameters. We
opt to present the relationship between the defined cost
function and the parameters which should be tuned as J “
fpkp,min, kp,max, τp, kd,max, τdq, where f is an unknown
function. We can repeat this procedure for a few iterations
and collect samples by evaluating this function. The question
is how we should explore the regions of the parameter space
to find the optimal values.

The search space of the parameters is vast, and it is not
feasible to draw many samples and evaluate the cost function
for these samples in order to identify the relationship between
the parameters and the system’s performance. Therefore,
we need to extract as much information about the function
as possible from the limited number of samples we have.
We propose to use Bayesian optimization to achieve this
goal. Bayesian optimization is an approach to efficiently
optimizing black-box objective functions that are expensive
to evaluate. It builds a surrogate for the objective function.
The surrogate model is typically cheap to query and easy-
to-train model. A commonly used surrogate model for the
objective function is a Gaussian process (GP) [32]. Each
conducted experiment will add to the training dataset of the
GP, so that over time the surrogate matches the true (but
unknown) objective closely. The trained surrogate model is
used by an acquisition function [29], [33], which tells us
what parameter setting for the controller to try out next on
the robotic system.

We have five parameters to adjust for the controller of each
joint of the robot. The search space for the optimal set of
values for these parameters is large. To confine our search to
possible values, we first tune a conventional PID controller of
each joint with the Ziegler-Nichols method. Then we use the
gains of the tuned PID controller to generate good guesses
for the parameters of nonlinear adaptive PID. These initial
values are used to train the GP model to be used as the
surrogate by Bayesian optimization. Formally, a GP can be
specified by its mean and covariance functions. Given a set
of input points X “ tx1, x2, . . . , xNu and corresponding
observations Y “ ty1, y2, . . . , yNu, such that yi “ fpxiq `
ε, where ε „ N p0, σ2

ε ) denotes Gaussian noise with zero
mean and σ2

ε variance, the GP can be written as fpxq „
GP p mpxq, kpx, x1q q, where, mpxq is the mean function and
kpx, x1q is the kernel function [32]. Thus, given the kernel,
the data, the predictive mean f̄px˚q and variance Vpx˚q at
a query point x˚ are

f̄px˚q “ E rfpx˚q |X,Y, x˚ s “ kpX,x˚qTΣY (8)

Vpx˚q “ kpx˚, x˚q ´ kpX,x˚qTΣkpX,x˚q (9)

where Σ “
`

kpX,Xq ` σ2
ε I
˘´1

, and kpx, x1q “

σ2
SE exp

´

´ r2

2l2

¯

with r “ }x´ x1} is the squared exponen-
tial kernel.

Fig. 3: The value of the cost function (Eq. (3)) during the
Bayesian optimization iterations. The coefficients of the cost
function are p “ 1 and q “ 0.5, and N “ 246.

In Bayesian optimization, an acquisition function is a
utility that is used to pick the next point in the parameter
space to be explored. In this paper, we choose Expected
Improvement (EI) as the acquisition function, which has
been shown to be useful in many practical applications [34].
Given the surrogate model derived from rX,Y s and (9) with
the squared exponential kernel, we select the next point by
optimizing the acquisition function, EI, defined as

EIpxq “
`

f̄pxq ´ ybest
˘

Φ pαq `
a

Vpxqφ pαq , (10)

where α “ f̄pxq´ybest?
Vpxq

, ybest is the best sample so far, φ p¨q

is the standard probability density function and Φ p¨q is the
standard cumulative distribution function. The EI function
leads us to explore the regions we know less about by looking
for the highest difference between the current optimum and
the rest of the function. In summary, Bayesian optimization
is run iteratively where in each iteration, a query point is
evaluated, the surrogate model is updated with the new data
sample, and EI is run to select the next data point.

We start with the robot at which the joints are controlled
with the PID controller tuned with the Ziegler–Nichols
tuning method. Then, we replace the controller for the
lowest joint—the joint between the base and shoulder-pan,
with a nonlinear adaptive PID controller and optimize its
parameters while the other joints are still controlled with
conventional PID controllers. Once we are satisfied with the
performance of the controller of the joint between the base
and shoulder-pan, we proceed to replace the controller of
the next joint—the joint between shoulder-pan and upper-
arm. This time, we use Bayesian optimization to find the
best set of parameters for the controller of the joint between
shoulder-pan and upper-arm. Lastly, we replace the controller
of the joint between upper-arm and fore-arm with a nonlinear
adaptive PID controller, and optimize the parameters of this
controller while the other two joints are being controlled by
the nonlinear adaptive PID controllers.

IV. SIMULATION RESULTS

We propose a controller to regulate the joint variables of a
robotic arm of a mobile manipulator while it is transporting
a heavy payload. The mobile manipulator we use is a MiR-
100 mobile base from Mobile Industrial Robots® on which



(a) Performance of Tuned PID (b) Performance of Nonlinear Adaptive PID

Fig. 4: The joint variables controlled with tuned PID controller (left), and nonlinear adaptive PID controller (right). The PID
controller is tuned with the Ziegler–Nichols tuning method. Some fine-tuning is done manually afterward. The nonlinear
adaptive PID controller is initialized with minimum and maximum values around the previously tuned values. Then, the
trials are run based on the parameters Bayesian optimization suggests to fine-tune these minimum and maximum values and
the time constants of the nonlinear gains.

(a) Control Efforts - Tuned PID (b) Control Efforts - Nonlinear Adaptive PID

Fig. 5: The control effort of joints controlled with tuned PID controller (left), and nonlinear adaptive PID controller (right).
The parameters of the nonlinear adaptive controller is chosen to decrease the tracking error and minimizes control effort.



(a) Proportional Gain (b) Derivative Gain

Fig. 6: Variation of the gains of the nonlinear adaptive PID controller of each joints. The proportional gain of the controller
is responsive to disturbances. When the error between the output and the reference value is large the proportional gain is
high to force the output back toward the reference value. The derivative gain is minimum at the beginning to let the joint
move fast. As the tracking error decreases, the differential gain rises to its maximum and increases the stiffness of the joint.

a Universal Robot® UR5 robotic arm is mounted. The end-
effector attached to the manipulator is a BarrettTM Hand
model BH282. The load is moved along a convoluted trajec-
tory, i.e., the mobile base starts moving while the arm brings
in the load. Fig. 1 depicts a few scenes from the simulation
runs to test the performance of the proposed controller. In
this section, we present the results of the simulations of the
proposed method. The simulation environment in which our
robot operates is Gazebo, and we use the facilities of the
Robot Operating System (ROS) to implement our solution.

In the simulation, the mobile manipulator grasps a heavy
object—a power drill (for which the weight is set to 3.5kg)
and moves it around with purposefully designed convoluted
and exaggerated motions. The motions include acceleration
of the mobile base and sudden stops, turning sharply while
the stretched-out arm is pulled in, and other maneuvers of
alike, which are designed to exert a lot of load on the joints
of the arm. Motions of the base and the manipulator are
designed in conjunction with the motion of the arm to exert
considerable centrifugal and Coriolis disturbance forces to
the joints of the manipulator. This is to put the abilities
of the controllers of the joints of the robot into a test to
reject the possible external disturbances and regulate the joint
variables under stress. In about 20 iterations of the Bayesian
optimization loop, we see significant improvement, and we
can find the good parameters for the controller of each joint,
see Fig. 3. Each trajectory in an iteration takes 25 seconds
to simulate. After the 20th iteration is done, we choose the

best set of parameters that yields the minimum value for
the cost function. For upgrading the controllers of the joints,
we start by replacing the controller of the lowest joint, i.e.,
the joint between the shoulder-pan and the lower-arm. Then,
we continue to the next joint until the controllers of all three
joints are replaced with the nonlinear adaptive PID controller.

Fig. 4 depicts the performance of the nonlinear adaptive
PID alongside the tuned PID controller for each of three
load-bearing joints of the UR5 manipulator. The nonlinear
adaptive PID leads to less rise time and less overshooting.
It damps disturbances more effectively. These are done at
the cost of slightly higher control effort, see Fig. 5. The
control effort for each joint of the manipulator is limited
with an upper bound. In this simulation, the limit of the
torque for a joint is set to 150.0Nm. Fig. 6 illustrates how
the parameters of the controller change during the cycles
of performance of the system. The derivative gain is less
sensitive to disturbances. This behavior is desirable since
this element of the PID controller is to keep the output of
the system steady in the presence of external disturbances.
The derivative gain is at its minimum when the joint receives
the command. At this moment, the proportional gain is at its
maximum to drive the output toward the desired reference
command value. When the joint variable settles down to
the desired value, the proportional gain is reduced, and
the sensitivity of the output to the external disturbances is
subdued. At this state, the derivative gain is high to dampen
any output oscillation in response to the system’s inertia or



external disturbances.

V. CONCLUSIONS

In this paper, we design and optimize a nonlinear adaptive
PID controller to regulate the joint variables of a mobile
manipulator. The joints of a mobile manipulator must follow
a command they receive despite any disturbances the motion
of the mobile base can cause. The parameters of a PID
controller balance a trade-off between different requirements
which is needed to be satisfied during the different phases
of the response of the system. In a mobile manipulator,
where the the controller of the joints should endure large
disturbances—because of the moving base and the load the
manipulator is supposed to carry, the performance require-
ments have to be carefully balanced. We propose to use an
adaptive scheme to adjust the gains of the PID controller
according to the tracking error. When the reference value
for a joint angle changes and the error between the current
and the desired angle increases, the response of the system
needs to be nimble and fast. Therefore, the proportional
gain must be at its maximum. As the output comes closer
to the reference value, the derivative gain must increase to
damp down possible overshoot. The derivative gain stays
high to help the system regulate the output in presence of
any external disturbances.

We used a Bayesian optimization approach to search for
the best set of parameters for the adaptation mechanism of
the gains for the proposed nonlinear adaptive PID controller.
Our results demonstrate that the resulting control scheme
improves the performance of the system in comparison to
the baseline PID controller, which is tuned with the help of
Ziegler–Nichols tuning method. In future work we examine
how robust performance of the manipulator may improve the
overall stability and performance of the mobile manipulator.
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