Accepted for publication in IEEE International Conference on Automation Science and Engineering (CASE), August 2022

FRobs RL: A Flexible Robotics Reinforcement Learning Library

Jose Manuel Fajardo* !, Felipe Gonzélez Roldan!, Sebastian Realpe', Juan D. Herndndez?, Ze Ji?
and Pedro-F. Cardenas!

Abstract— Reinforcement learning (RL) has become an in-
teresting topic in robotics applications as it can solve complex
problems in specific scenarios. The small amount of RL-tools
focused on robetics, plus the lack of features such as easy trans-
fer of simulated environments to real hardware, are obstacles
to the widespread use of RL in robotic applications. FRobs_RL
is a Python library that aims to facilitate the implementation,
testing, and deployment of RL algorithms in intelligent robotic
applications using robot operating system (ROS), Gazebo, and
OpenAl Gym. FRobs_RL provides an Application Programming
Interface (API) to simplify the creation of RL environments,
where users can import a wide variety of robot models as well as
different simulated environments. With the FRobs_RL library,
users do not need to be experts in ROS, Gym, or Gazebo to
create a realistic RL application. Using the library, we created
and tested two environments containing common robotic tasks;
one is a reacher task using a robotic manipulator, and the other
is a mapless navigation task using a mobile robot. The library
is available in GitHub '.

Index Terms—Deep Learning Methods, Reinforcement
Learning, Software Architecture for Robotic and Automation.

I. INTRODUCTION

As robots become more popular and prevalent in many
applications, including not only sophisticated industrial set-
tings but also unstructured environments such as stores or
homes, the problems that robots have to deal with are more
complex [1]. Many planning or decision making algorithms
that have been studied and tested in structured environments,
i.e., environments in which we have complete information,
cannot handle more complex real world scenarios which are
unstructured and dynamic [2].

An approach that is being explored to enable new robotic
applications and has shown great potential for solving in-
tricate control problems is reinforcement learning (RL) [3],
especially a variation that uses neural networks known as
deep reinforcement learning (DRL). DRL has been used
successfully in many fields like the video games industry
[4], transportation [5], as well as in robotics. DRL has solved
robotics problems related to the control of quadruped robots
[6], humanoids [7] and manipulation tasks [8]. DRL can be
used in an end-to-end manner [9], where all the data from
sensors fed the network, and the network outputs control

* Corresponding author.

1 Mechanical and Mechatronics Deparment National University of
Colombia, Bogota, Colombia { jmfajardod, fegonzalezro,
srealper, pfcardenash}@Qunal.edu.co

2 School of Computer Science and Informatics, Cardiff University, UK,
HernandezVegaJ@cardiff.ac.uk

3 School of Engineering, Cardiff
jizl@cardiff.ac.uk

Uhttps://github.com/jmfajardod/frobs_rl

University, UK,

all actuators. In addition DRL can be combined with other
techniques used in robotics such as the operational space
control [10] or perception algorithms that use supervised
learning [11]. The variety of usages of DRL makes it highly
flexible and adaptable to a broad range of applications.

Although RL has proven to be effective in solving com-
plex problems in robotics and could be functional in many
applications, it still has issues entering the robotic research
community due to many reasons. One of these reasons
is that almost all users that employ RL only test their
algorithms and implementations in simulation because the
interface with a real robot may be time-consuming and can
demand the development of additional software and tests
[12]. Additionally, even if some researchers with substantial
knowledge in robotics are interested in RL and want to im-
plement a DRL-based algorithm in a novel application, they
would have to develop a framework to establish the proper
software and interfaces between the learning algorithm and
the robotic hardware [13]. On the other hand, realistic
simulation environment for training is considered crucial to
minimize potential problems when deploying trained agents
to hardware platforms.

To alleviate some of the problems mentioned above, in
this paper, we introduce FRobs_RL. This library uses the
robot operating system (ROS) [14] middleware to manage
the interface between the learning algorithm and the robotic
hardware, which is the most widely used middleware and
with the largest community [15]. The proposed library
uses Gazebo [16] as its simulation environment since many
robotics engineers or users have experience using ROS
and Gazebo. The Gazebo environment is widely adopted
by the robotics community largely due to its embedded
physics engine that ensures high accuracy of simulation and
reliability. To manage the RL environment implementation,
our proposed library uses OpenAl Gym [17]. In addition,
the library incorporates stable-baselines3 (SB3) [18] to allow
users with limited knowledge in RL to directly use developed
state-of-the-art (SOTA) DRL algorithms in their robotics
applications.

The remainder of the paper is organized as follows.
Section II describes the background of the proposed library,
including the basic concepts of RL and its components.
Section III describes the main goals of the proposed library,
its input and output files, its functionalities and includes
a brief example script. In Section IV, two example cases
using the proposed library are described. Finally, Section V
presents a brief discussion of the advantages and uses of the
library, and in Section VI conclusions and future work are

listed.

II. BACKGROUND

FRobs_RL is primarily built around OpenAl Gym, which
is one of the most popular RL libraries. Gym was designed
to be a general framework in which any type of RL task
can be defined. All tasks in RL can be described as a
Markov Decision Process (MDP) [19]. Specifically, in RL,
the MDP is modeled with two main components: the agent,
which is the system that can be directly controlled, and
the environment, which is everything outside the agent, i.e.,
all that cannot be controlled and is relevant for the current
task. The main goal of every RL algorithm is to “discover”
which actions best achieve the task based on the state of the
environment. The process of evaluating an action is done
using a reward signal as an indicator to determine if the
action taken gets the agent closer or farther away from the
goal of the task [3].

OpenAl Gym has a basic structure in which the user
needs to create a Python class, called env, in which at least
three functions must be defined: an initialization function, a
step_function, and a reset_function [17]. In the initialization
function, the user must load all the required variables and
define the observation and action spaces. The observation is
the information of the environment that the agent can obtain.
Instead of the concept of state, the concept of observation is
used, as usually the agent can not have complete knowledge
of the environment, and the states are generally only partially
observable [20]. In the step function, the user inputs the
action that the agent must take. This function must return an
observation, the reward of the action, and extra information
if the user requires it. Finally, the reset function handles if
the task meets the termination condition. In RL, the task can
be classified into two types based on its length: continuing or
episodic. A continuing task is a never-ending process, while
an episode task has clear ending states defined.

Although RL has been used in many robotic applications
[1], [21], [7], there is not a standard library to define the tasks
in a way that the communication between the RL algorithm
and a simulator or a real robotic platform can be handled
without much software developing. The ease of communica-
tion to the simulator has great relevance, as RL approaches
generally require vast exploration of the action space, so the
training, or at least its first stages, are done by simulation.
When the network is trained, it is transferred to the real
robot. This simulation to real transfer (Sim2Real) generally
means that new software must be written to communicate
with the robot, as communication with simulators is often
done differently from the actual platform [12].

Previous tools have used ROS, Gazebo, and OpenAl Gym
[22], [13], [23]. Nevertheless, they have significant issues.
These tools are built as forks of the main OpenAl Gym,
which means that all new features of the library or bugs
must be continuously merged, and the library can not be
installed from the official source. This latter aspect leads to
several maintainability issues. Another major problem is the
creation or definition of new RL tasks or OpenAl Gym envs.

Finally, with the previous tools creating a simple env takes
a considerable amount of time, and there are not enough
functionalities to quickly create an interface between Gym
and ROS/Gazebo, which results in the need of developing
large pieces of code, which defeats the purpose of a general
tool.

To reduce the complexity of integrating an RL algorithm
to a robotic task, FRobs_RL has a Gym env in which
all the communication between the algorithm, the robot,
and the simulator is handled. The env is created using a
standard installation of OpenAl Gym, which minimizes the
maintainability issues. In the env, all the communication
between the RL algorithm with Gazebo or a real robotic
platform is handled using ROS. Finally, this env can be
inherited by any task that the user wants to develop by
filling similar functions to the ones proposed in the OpenAl
Gym library, such as the action, observation, and reward are
specific for every task.

In general, after defining the task in a Gym env the user
must then use or develop an RL algorithm that uses the
actions, observations, and rewards of the env. Previously RL
algorithms could only handle problems with a small number
of actions or states, mainly because RL heavily relies on
the concepts of the environment state and the action taken
in that state. When problems had more actions and states,
the exploration became exponentially larger and more time-
consuming, and the curse of dimensionality became visible
[2]. This issue meant that RL was not suitable for extensive
problems like the ones seen in robotics. However, in recent
years many approximation techniques have been developed.
Neural networks are especially good at approximating the
observation and actions spaces without a massive memory
capacity. Applying a neural network to an RL algorithm re-
sulted in DRL algorithms which can solve complex problems
with good performance [24].

To allow the user directly using DRL algorithms in their
robotic tasks, FRobs_RL includes an API integration of the
SB3 library [18], in which many SOTA algorithms are
included. Among them are value-based algorithms like DQN
[24], policy-based algorithms like PPO [25] or TD3 [26], and
actor-critic algorithms like SAC [27].

III. THE FRobs_RL LIBRARY

FRobs_RL is intended for research use in both RL algo-
rithms and robotics implementations. Our library aims to
reduce the difficulty of implementing an RL algorithm for
any ROS-based robotic architecture both in simulation and
on real hardware, for users developing new RL algorithms
as well as implementing those algorithms in robotics. With
these considerations in mind, the library has the following
design goals:

1) ROS Integration: By using ROS along with popular
RL libraries, such as OpenAl Gym and SB3, the
implementation or testing of RL algorithms in robotics
should require less coding and development effort.

2) Easy tasks definition: By providing templates of the
files to define a task, which are defined as Gym envs,

the time of task implementation with any robot should
decrease significantly.

3) Integration of SOTA RL algorithms: By directly inte-
grating algorithms, such as PPO, TD3, SAC, among
others, the necessity to write algorithms should be
minimized, and the creation of all the required files
to train and test a model should decrease.

4) Direct Sim2Real transfer: By using the Gazebo simu-
lator and a framework that uses ROS as middleware,
the migration from a simulation setting to real robot
hardware should be direct and should not need to create
more files.

A. Input and Output

As FRobs_RL integrates many concepts, such as robotics
middleware, RL task definitions, and algorithms, it has
several types of files for configuration, logging, and scene
or robot hardware definition. The main types of files that
FRobs_RL uses are the following:

1) URDF and SDF files: Due to the use of ROS and
Gazebo, robots are described using the URDF format,
and simulation scenes are defined using SDF files.
FRobs_RL contains functions to effortlessly parse and
load URDF files into the ROS parameter server with
only a few commands within a Python script. The
library also contains functions to spawn URDF or SDF
in the simulator or initialize Gazebo with a set of
scenes directly using Python commands.

2) YAML files: FRobs_RL has functions to directly load
the parameters into the ROS parameter server, whether
from a ROS package or a given system path and
in different namespaces. Loading the parameters in
different namespaces facilitates the training of multiple
parallel RL agents, as the library or the user can easily
keep track of the states/parameters of each agent.

3) ROS nodes and launch files: RL episodes may need
to change some system configurations or use different
programs. FRobs_RL contains functions to directly
run or stop ROS nodes or ROS launch files straight
from Python, where it is also possible to set different
parameters, e.g., the name or namespace of the ROS
node or the arguments of the ROS launch. FRobs_RL
can execute ROS nodes and launch files in a new
terminal or inside the same terminal running the Gym
env. This feature helps to monitor the ROS logs or
close the envs as previous libraries did not properly
close all ROS or Gazebo processes.

4) Logging and RL models: If the integrated models of
SB3 are used, FRobs_RL is set to save or display
multiple types of logs. By default, it is configured to
display the logs in the terminal using stdout and save
them using both TensorBoard and CSV formats. As
SB3 uses PyTorch , a common deep learning library,
the trained models are saved in ZIP files, and the replay
buffers are stored in PKL files with the same name as
the corresponding model.

B. ROS and Gazebo Integration With Gym

FRobs_RL manages the integration between Gym and
ROS/Gazebo using the communication mechanisms provided
by ROS, i.e., topics, services, and actions. The communi-
cation process is managed using a basic Gym env in the
library called RobotBasicEnv. Within the RobotBasicEnv
program, all RL scheme steps are managed, like launching
the ROSCore, resetting the simulator or the robot controllers
at the end of an episode, the step function of the RL scheme
in which the observations are obtained from the environment,
and the actions are sent to the robot. Optionally, the user can
launch the simulator or spawn the robot directly from this
env if the associated parameters are set.

Although the functions for obtaining the observation, the
reward, and the action are called in the RobotBasicEnv env,
the user needs to fill these functions when creating the task
environment, as the specific action, observation and reward
must be defined for each task.

C. Definition of Gym envs

To define a task in FRobs_RL it is recommended that the
user creates two files: the RobotEnv and the TaskEnv, which
is a similar approach as previous libraries [23].

1) RobotEnv: In this env, the functions related directly
to the robot architecture are set, e.g., the parsing
and loading of the robot URDF model in the ROS
parameter server, the spawn of the robot in Gazebo,
and the functions to send actions or receive information
from the robot. This class inherits the RobotBasicEnv
env. Thus, it manages all the RL related communi-
cation between ROS, Gazebo, and Gym. Even if the
user obtains some information from the robot, e.g.,
LIDAR scans, odometry, or joint positions, this may
not be the entire observation in the RL task. As some
additional information from the external environment
can be obtained, e.g., the distance from a robot frame
to the goal or if the robot has collided with objects.

2) TaskEnv: Within this env, all the functions related to the
action, observation, reward, and episode end criteria
must be implemented. This env inherits all the methods
already implemented in the RobotEnv class, which
facilitates the creation of new tasks using the same
robot hardware since the RobotEnv env can be reused.

Although the use of the RobotEnv/TaskEnv is suggested,
the user can create the gym env in many different ways, but
always inheriting the RobotBasicEnv class.

D. Use of Integrated RL Algorithms

As FRobs_RL integrates the SB3 library, it includes algo-
rithms such as A2C, PPO, SAC, DQN, DDPG, and TD3. To
use any of these techniques, the user only needs to import
them from FRobs_RL and associate the env to the algorithm.
Although a default YAML file is located in our library, the
user can create a copy of this parameter file and set the
parameters as desired.

E. Example environment

A reacher task [28] that uses an ABB IRB 120 was
implemented to test the library, this task is explained in a
detailed way in Section IV. The entire process needed to
create the RobotEnv, TaskEnv, the RL parameter YAML
file and the script needed to train the policy is available in the
library documentation 2. The example shows how to import
the robot’s URDF model, and how to override the methods
of the basic classes to set the desired reward, observation,
and action, among others. It is also shown how to modify
the YAML file of the TD3 algorithm and how to create a
small script, in less than 40 lines of code, to train the policy.
The example is available at the resources library .

IV. EXAMPLE USE-CASES

Example environments demonstrate the advantages of
FRobs_RL in the definition of the task, the direct use of
SOTA RL algorithms, models saving and loading processes,
and the deployment of the trained models. Although only a
manipulator and a mobile robot were used in the example
environments, any type of robot can be used with FRobs_RL.

A. Manipulator Reacher

The reacher task [28] is a typical application of RL
algorithms with robotic manipulators, where the manipulator
must achieve a spatial position or pose. The reacher task can
be viewed as a learning problem where the RL is going to
learn the robot Jacobian matrix and achieve a spatial position
through multiple iterations. In each iteration, there will be a
small joint movement that will take the end-effector closer
to the desired goal.

The reacher task can be viewed as a learning problem
where the RL is going to learn the robot Jacobian matrix and
achieve a spatial position through multiple iterations. In each
iteration, small joint movements will take the end-effector
closer to the desired goal. The reward function consists of a
dense and a sparse components. The dense reward is based
on the distance from the end-effector to the goal. The sparse
rewards are used when the robot reaches the goal position
or when any joint reaches its position limits.

The Movelt [29] package is used to move the robot,
calculate a valid starting joint configuration and a feasible
goal position, the latter is important to speed up the training
as sending the robot to an infeasible goal would mean that
the episode would never end. Figure 1 shows the reacher
environment.

The PPO, SAC, and TD3 algorithms were trained in
the reacher environment with a real-time factor of 20.0 in
Gazebo. The training of all algorithms was made in five
rounds of 100k steps each, using the algorithms default
parameters contained in SB3. FRobs_RL automatically saves
the training logs in both Tensorboard and CSV format. The
logs show that TD3 outperforms the other algorithms, as it
requires fewer steps to learn a behavior with an adequate

Zhttps://frobs-rl.readthedocs.io/en/latest/guide/example_enviroment.htm]
3https://github.com/jmfajardod/frobs_rl_resources

Fig. 1: ABB Reacher environment implemented using
FRobs_RL visualized in RViz. The goal position is visualized
through a red sphere marker.

mean reward and achieve the best success rate. Figure 2
presents the plot of the episode mean reward obtained from
the saved logs.

Mean episode reward

—200

—400

Episode reward

—600

0 100000 200000 300000

Timesteps

400000 500000
Fig. 2: Example of the episode mean reward plot obtained
with saved logs.

B. Mobile robot mapless navigation

The mobile robot mapless navigation problem [30], [31]
is where a robot requires to move from an initial position to
a desired goal without having prior knowledge of its envi-
ronment and without the need to construct a map constantly.
The previous statements are beneficial compared to map-
based navigation as it eliminates the time-consuming need
to construct a map, and it reduces the computing resources
needed in the robot to run a Simultaneous Localization and
Mapping (SLAM) algorithm.

Three mapless navigation environments using a Kobuki
mobile robot were implemented. In all the implemented envi-
ronments, the agent actions are linear and angular velocities.
In all environments, the reward function consists of a dense
and a sparse component. The dense reward is proportional to
the distance from the robot to the goal. The sparse rewards
are given when the robot collides with the environment or
reaches the goal.

The first environment has a free space with no obstacles in
which the observations are only the distance and angle from
the robot to the goal. There are eight dynamic obstacles in the
second environment with random velocities and trajectories
that the robot must avoid using a LIDAR sensor. The second

environment observations consist of the distance and angle
from the robot to the goal and LIDAR measurements.

The third environment is a maze with two dynamic obsta-
cles. In this environment, the mapless navigation resembles
a local planner used in mobile robotics, as some pre-planned
trajectories are provided to the robot. The RL mapless
navigation algorithm is fed with points from the pre-planned
trajectory as the desired goals; when the robot reaches a
point, the next in the trajectory is sent until the last point
of the trajectory is detected. The observation vector is the
same as the second environment. Figure 3 displays the third
environment.

C. Sim2Real Transfer

To test the ease of deployment of a trained RL network
using the library, we trained a reacher application using the
ABB IRB140 manipulator. As the ABB robot available in
the LabSIR does not have a capability of motion streaming,
i.e., to stream the joint commands in real-time, we used
a motion download strategy, i.e., we pre-planned 100 tra-
jectories with different random valid goal poses and saved
the joint commands in a rosbag. After obtaining the rosbag,
we formed the trajectories comprising every movement until
the goal was reached. The created trajectories were sent to
the robot to evaluate the performance of the movements and
the RL network. We obtained 100% successful trajectories,
i.e., all trajectories reached the desired goal pose in less
than 100 movements and did not have self-collisions in their
movements. Figure 4 shows the robot setup used to test the
trained model *.

Fig. 3: Kobuki maze environment implemented using
FRobs_RL.

V. DISCUSSION

We presented the FRobs_RL library, which facilitates the
implementation and deployment of RL tasks and environ-
ments in robotics applications using ROS, Gazebo, OpenAl
Gym, and SB3. The core advantage of FRobs_RL is the
considerable time reduction to implement intelligent robotics
applications with RL algorithms in a great variety of tasks
and robotic architectures. By directly using ROS and a
realistic physics simulator as Gazebo for the training steps,
the deployment or Sim2Real transfer of the trained model

4Video with the results: https:/youtu.be/x6QIPuHeOSo

Fig. 4: Setup used to test the Sim2Real capabilities of the
library in a reacher task.

is straightforward, which also reduces the effort of the user
to implement an RL algorithm in a real-world application.
We hope that FRobs_RL will enable a broader adoption and
testing of RL algorithms in robotics. Not only in research but
also on industrial projects so that users obtain another tool
to solve complex robotics problems using machine learning
techniques such as RL.

A. Comparison

We compared our library to OpenAl Gym, which supports
communication with MUJOCO simulator, and PyREP [32],
a tool for the CoppeliaSim simulator. Although Gym and
MUJOCO are some of the most widespread tools for RL,
they are not focused on robotic applications, this results in
some difficulties when setting up environments for tasks such
as manipulation grasping or mobile robot navigation. PyREP
and FRobs_RL use specialized robotics simulators, which
enable the creation of complex environments and reduce
their creation time. Among the compared libraries, FRobs_RL
is the only one that uses Gazebo, which is the simulator
recommended when using RL not only in simulation but
also in real life systems [33].

PyREP is a library focused on the simulator control and
not on the robot control nor the creation of RL environment;
this results in a more time-consuming task to create any
RL task even when the robots are supported. Both OpenAl
Gym and FRobs_RL have methods to directly create an
RL environment defining its initialization, the action, the
observation, and the reward of the agent.

Finally, between the compared libraries, only FRobs_RL
has integration with ROS, which enables the use of many
packages created in this middleware for robotic applications
such as packages for control, odometry, planning, perception,
among others. Consequently, the required time to create com-
plex robotic learning environments with different algorithms
is reduced. The integration of ROS with FRobs_RL also
provides a direct way for Sim2Real transfer to compatible
robots with ROS, this means that using a trained model
through simulation, it can be transferred directly to an actual
robot with minimal effort.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented the FRobs_RL library, a
specialized tool in the creation of environments to train

TABLE I: Comparison of robotic oriented RL libraries.

Direct Sim2Real with ROS

Integration of RL | Support of URDF | Complexity of creation

Library Integration with ROS | Use of robotics simulator Compatible robots algorithms robot descriptions of new enviroments
OpenAl Gym (Mujoco) No No No No Limited Low
PyRep No Yes - CoppeliaSim No No Yes Medium
FRobs_RL Yes Yes - Gazebo Yes Yes Yes Low
reinforcement learning models applied in robotics and their [12] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer

later deployment in real hardware. FRobs_RL has integration
with ROS, which allows an easy and straightforward transfer
process from Gazebo to actual robots. The developed library
also features an Application Programming Interface (API)
to stable-baselines3 that facilitates the usage of SOTA RL
algorithms.

FRobs_RL was tested in two typical robotics applications,
a reacher task with an industrial manipulator arm and a
mapless navigation task with a mobile robot. The reacher task
model was deployed to an actual robot showing the direct
and easy transfer from a simulation to an actual setup using
the library. Although the library currently supports different
manipulator arms and a mobile robot, its resources library
needs to be populated with more models.

Another pending feature is the implementation of other
tasks, e.g., navigation, perception using depth maps, among
others, that would include different robotic algorithms al-
ready deployed in ROS, which would further demonstrate the
value of the integration of the library with the middleware
ROS. Even though a feature comparison was carried out
between FRobs_RL and other RL frameworks, in the future,
a quantitative comparison could offer accurate data about the
time performance FRobs_RL when training RL models.

REFERENCES

[1] J. Kindle, F. Furrer, T. Novkovic, J. J. Chung, R. Siegwart, and J. 1.
Nieto, “Whole-body control of a mobile manipulator using end-to-end
reinforcement learning,” CoRR, vol. abs/2003.02637, 2020.

[2] A. Rajeswaran, V. Kumar, A. Gupta, J. Schulman, E. Todorov, and
S. Levine, “Learning complex dexterous manipulation with deep rein-
forcement learning and demonstrations,” CoRR, vol. abs/1709.10087,
2017.

[3] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238-1274, sep 2013.

[4] A.G. Barto, P. S. Thomas, and R. S. Sutton, “Some recent applications
of reinforcement learning,” in Workshop on Adaptive and Learning
Systems, 2017, p. 6.

[5] Y. Li, “Reinforcement
abs/1908.06973, 2019.

[6] T. Haarnoja, A. Zhou, S. Ha, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” CoRR, vol.
abs/1812.11103, 2018.

[7] D. Kim, J. Lee, and L. Sentis, “Robust dynamic locomotion via
reinforcement learning and novel whole body controller,” CoRR, vol.
abs/1708.02205, 2017.

[8] P. Chen and W. Lu, “Deep reinforcement learning based moving object
grasping,” Information Sciences, vol. 565, pp. 62-76, jul 2021.

[9] A.Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine, “End-to-end

robotic reinforcement learning without reward engineering,” CoRR,

vol. abs/1904.07854, 2019.

M. Sharma, J. Liang, J. Zhao, A. LaGrassa, and O. Kroemer, “Learning

to compose hierarchical object-centric controllers for robotic manipu-

lation,” CoRR, vol. abs/2011.04627, 2020.

W. Guo, G. Dong, C. Chen, and M. Li, “Learning Pushing Skills Using

Object Detection and Deep Reinforcement Learning,” Proceedings of

2019 IEEE International Conference on Mechatronics and Automa-

tion, ICMA 2019, pp. 469-474, aug 2019.

learning applications,” CoRR, vol.

[10]

[11]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

in deep reinforcement learning for robotics: a survey,” CoRR, vol.
abs/2009.13303, 2020.

I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, “Extending
the openai gym for robotics: a toolkit for reinforcement learning using
ROS and gazebo,” CoRR, vol. abs/1608.05742, 2016.

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “Ros: an open-source robot
operating system,” in Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA) Workshop on Open Source Robotics, may 2009.
E. Tsardoulias and P. Mitkas, “Robotic frameworks, architectures and
middleware comparison,” 2017.

N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 3, pp.
2149-2154, 2004.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540,
2016.

A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto,
and N. Dormann, “Stable baselines3,” https://github.com/DLR-RM/
stable-baselines3, 2019.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: A Bradford Book, 2018.

M. T. J. Spaan, “Partially observable markov decision processes,”
Adaptation, Learning, and Optimization, vol. 12, pp. 387414, 2012.
V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait:
Planning and control of quadrupedal gaits using deep reinforcement
learning,” CoRR, vol. abs/1909.08399, 2019.

A. Martinez-Tenor, J. A. Fernandez-Madrigal, A. Cruz-Martin, and
J. Gonzdlez-Jiménez, “Towards a common implementation of rein-
forcement learning for multiple robotic tasks,” Expert Systems with
Applications, vol. 100, pp. 246259, jun 2018.

A. Ezquerro, M. A. Rodriguez, and R. Tellez, “Openai_ros package,”
2018. [Online]. Available: https://bitbucket.org/theconstructcore/
openai_ros/src/kinetic-devel/

V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529-533, feb 2015.
J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
0. Klimov, “Proximal policy optimization algorithms,”
vol. abs/1707.06347, 2017.

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function ap-
proximation error in actor-critic methods,” CoRR, vol. abs/1802.09477,
2018.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft actor-
critic algorithms and applications,” CoRR, vol. abs/1812.05905, 2018.
P. Aumjaud, D. McAuliffe, F. J. Rodriguez Lera, and P. Cardiff,
“rl_reach: Reproducible reinforcement learning experiments for robotic
reaching tasks,” Software Impacts, vol. 8, p. 100061, may 2021.

I. A. Sucan and S. Chitta, “Moveit,” 2011. [Online]. Available:
https://moveit.ros.org/

J. C. de Jesus et al., “Soft actor-critic for navigation of mobile robots,”
Journal of Intelligent and Robotic Systems: Theory and Applications,
vol. 102, pp. 1-11, 5 2021.

N. Duo, Q. Wang, Q. Lv, H. Wei, and P. Zhang, “A deep reinforce-
ment learning based mapless navigation algorithm using continuous
actions,” Proceedings - 2019 International Conference on Robots and
Intelligent System, ICRIS 2019, pp. 63-68, 6 2019.

S. James, M. Freese, and A. J. Davison, “Pyrep: Bringing V-REP to
deep robot learning,” CoRR, vol. abs/1906.11176, 2019.

M. Korber, J. Lange, S. Rediske, S. Steinmann, and R. Gliick,
“Comparing popular simulation environments in the scope of robotics
and reinforcement learning,” 2021.

and
CoRR,

