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Abstract— The usefulness of deep learning models in robotics
is largely dependent on the availability of training data. Manual
annotation of training data is often infeasible. Synthetic data is
a viable alternative, but suffers from domain gap. We propose
a multi-step method to obtain training data without manual
annotation effort: From 3D object meshes, we generate images
using a modern synthesis pipeline. We utilize a state-of-the-
art image-to-image translation method to adapt the synthetic
images to the real domain, minimizing the domain gap in
a learned manner. The translation network is trained from
unpaired images, i.e. just requires an un-annotated collection
of real images. The generated and refined images can then be
used to train deep learning models for a particular task. We also
propose and evaluate extensions to the translation method that
further increase performance, such as patch-based training,
which shortens training time and increases global consistency.
We evaluate our method and demonstrate its effectiveness on
two robotic datasets. We finally give insight into the learned
refinement operations.

I. INTRODUCTION

Robotic systems need to address several key challenges in
order to be able to autonomously act in complex environ-
ments. Among these are computer vision tasks like semantic
segmentation, object recognition, and 6D pose estimation.
Nowadays, these tasks are most commonly solved using deep
learning techniques. With increasing computation resources
available, more complex network architectures are devel-
oped, raising the need for increasing amounts of training
data. Acquiring training data, however, often involves tedious
manual annotation of images with semantic labels or 6D
poses. It is typically not feasible to create custom datasets
for every specific task at hand.

To overcome this issue, previous approaches successfully
relied on fine-tuning of networks pre-trained on generic
datasets, reducing the required annotation effort [1], [2].
Recently, approaches were introduced that generate synthetic
training images, e.g. from 3D object meshes like Still-
leben [3]. The benefit of such techniques is that ground truth
data like 6D object poses or semantic segmentation masks
are trivially available from the renderer, eliminating the
need for manual annotation while providing highly accurate
annotations. Although Stillleben yields good generalization
to real test images on the YCB-Video dataset [4] for semantic
segmentation [3], the achieved results are still considerably
inferior compared to training on real images. The reason for
this difference is the so-called domain gap between synthetic
and real data, i.e. the discrepancy between the synthetic

1All authors are with Autonomous Intelligent Systems, University of
Bonn, Germany. benedikt.imbusch@uni-bonn.de

Robotic Application Prediction

3D Object Models Unannotated Real Images

(1)S
cene

R
endering

(2) Syn2Real
Adaptation

(4) Segmentation
Network

(3)

Fig. 1. Our method yields robust task performance in real settings, just
from 3D object models and unannotated real images (top). We simulate and
render plausible scenes from the 3D meshes (1). Our adaptation model aligns
the synthetic and real image distributions more closely (2). The refined
image dataset is used to train a task-specific network (3), which is applied
in the target domain (4). None of these steps requires annotations.

data distribution and the real data distribution. Therefore,
the model learned by a segmentation network trained on
synthetic data is able to only partly capture the real data
distribution from which test data is sampled.

We aim to obtain better results from purely synthetic data
and therefore need to align the distributions more closely.
We propose to perform this domain adaptation by learning a
mapping from the synthetic to the real image distribution
in an unsupervised manner. Specifically, this means that
we only require synthetic data with ground truth and un-
annotated real data without direct correspondences between
the images of both datasets. To learn this mapping, we apply
the GAN-based CUT approach by Park et al. [5] in a patch-
based manner. Key challenges to be addressed here include
the handling of backgrounds and ensuring shape consistency.
We evaluate the method on a semantic segmentation task
on both the YCB-Video dataset and the HomebrewedDB
dataset [6]. The individual steps of our method are visualized
in Fig. 1. To understand how the observed performance
improvements can be explained, we further examine deep
image features of real, synthetic, and refined synthetic frames
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using t-SNE embeddings. In short, our contributions include:

1) A multi-step method to obtain annotated training data
from 3D object meshes and un-annotated images which
can later be used for downstream applications like
robotic manipulation, yielding performance close to
training on real data,

2) a patch-based application of the CUT approach to
domain adaptation for two robotics datasets, and

3) an analysis of the learned refinement operations using
t-SNE embeddings.

In the following, we denote the synthetic data distribution
as X and a set of samples thereof as x ∈ X ( X . Likewise,
the real data distribution is denoted by Y . Thus, the learned
mapping can be formalized as

f : X → Y. (1)

II. RELATED WORK

Domain adaptation using deep neural networks is an
established area of research. Wang and Deng [7] group
the approaches into two main categories: heterogeneous and
homogeneous domain adaptation. The former refers to the
case when the domain gap arises from source and target
domain having different feature spaces. In the latter case,
both domains share their feature space but still the respective
distributions X and Y do not match. In this work, we address
the homogeneous case, as do the related approaches below.

Stein and Roy [8] apply domain adaptation to warehouse
and outdoor scenes using the CycleGAN [9] approach. Sim-
ilar to our method, they address a semantic segmentation
task and use separate networks for domain adaptation and
segmentation. However, the system is applied to robotic
navigation and larger-scale scene understanding, compared to
robotic manipulation in small-scale scenes in our case. This
might explain why our initial experiments with CycleGAN
did not yield satisfactory results. The CUT architecture
employed by our approach is easier to train and generally
yields better results [5].

In similar manner, Mueller et al. [10] successfully showed
the use of CycleGAN-based domain adaptation for synthetic
training data. Their application domain is hand pose tracking.
To ensure accurate preservation of the hand poses, they
propose GeoConGAN, adding a geometric consistency loss
to the CycleGAN objective. Using the newer CUT approach,
we are able to avoid geometric inconsistencies by applying
it in a patch-based manner. Therefore, adding complexity
in the form of another loss component calculated using an
additional CNN appears not justified to us.

Shrivastava et al. [11] use a GAN approach with a patch-
based discriminator for synthetic-to-real domain adaptation
of hands and eyes with the goal of pose estimation. They use
L1-regularization on (identity or more complex) transformed
image features to constrain the GAN towards content preser-
vation. The GAN’s discriminator is trained on batches of
refined images accumulated over time, to stabilize the adver-
sarial learning. CUT’s contrastive learning-based approach

for content consistency appears far more flexible and data-
adapting to us, compared to the proposed L1-regularization.

Bousmalis et al. [12] propose PixelDA, another GAN-
based approach for domain adaptation. Like in our scenario,
they apply it to small objects but focus more on classification
and pose estimation while highlighting broader applicabil-
ity. In addition to the standard setup based on a genera-
tor and a discriminator, they add a task-specific classifier
to their model, trained on both synthetic and generator-
refined synthetic images to support the domain adaptation.
To maintain correspondences between the synthetic images
and their refined versions, they propose to penalize content
dissimilarities using a masked pairwise mean squared error,
given depth data available from the renderer. The resulting
generated backgrounds, mainly replacing black backgrounds,
appear rather noisy to us. While this might even bene-
fit generalization for classification, we expect that more
consistent backgrounds are needed in our case. Additional
experiments that we performed at full resolution with the
CUT architecture have shown a detrimental effect of masking
out the backgrounds in our application domain.

CyCADA by Hoffman et al. [13] is another domain adapta-
tion approach derived from the idea of CycleGAN. This tech-
nique guides the adaptation process in two ways: The authors
propose loss components for aligning the distributions both
in the pixel space and the feature space. Besides, the authors
suggest to use loss components specific to the subsequent
deep learning task to enforce semantic consistency. Hoffman
et al. [13] report better performance on a semantic seg-
mentation task after domain adaptation than for the existing
unsupervised adaptation approaches. However, the training
is computationally costly and complex—compared to the far
simpler but still very effective objective of CUT.

The DLOW technique proposed by Gong et al. [14] is
based on the CycleGAN concept as well. It generalizes the
idea of domain adaptation beyond mapping a source domain
S to a target domain T : The authors introduce a model for
“domain flow generation”. Intuitively, a parameter z ∈ [0, 1]
is introduced to control how far an image from S should
be adapted towards T . A mentioned key benefit of this
technique is that learning the intermediate steps supports the
domain adaptation process. In their experiments, Gong et al.
[14] show improved results on a semantic segmentation task
compared to plain CycleGAN domain adaptation. However,
the improvement is not very substantial. The previously
mentioned shortcomings of CycleGAN compared to CUT
apply for this approach as well.

III. METHOD

We propose a method to obtain images for the training of
a deep neural network for tasks like semantic segmentation,
focusing on training data for robotic manipulation. It consists
of multiple sub-steps, as illustrated in Fig. 1: First, we gener-
ate synthetic images using the Stillleben [3] library. Based on
the image-to-image translation architecture CUT [5] and un-
annotated real images, we then refine these synthetic images
towards more realism. The refined images can then be used



for training the task network. In the following, we describe
the components of our approach.

A. Stillleben
The Stillleben [3] library is a framework for generation &

rendering of cluttered tabletop scenes. Stillleben operates on
arbitrary input meshes and generates random arrangements
through the use of a physics engine. The arranged scenes are
then rendered with a modern physics-based-rendering (PBR)
pipeline, producing realistic images. A post-processing step
adds effects simulating the usage of a real camera, such as
noise, chromatic aberration, white balancing errors, and over-
/underexposure. A segmentation model trained with purely
Stillleben-generated synthetic data has been shown to reach
respectable performance on the YCB-Video dataset [3].

B. Contrastive Unpaired Translation (CUT)
Our domain adaptation approach is largely based on

Contrastive Unpaired Translation (CUT) as introduced by
Park et al. [5], which we briefly introduce here. It is an
image-to-image translation technique, aimed at preserving
the image content while adapting the appearance to the
target domain. CUT is related to the well-known CycleGAN
approach by Zhu et al. [9] which pursues the same objective.
Both are GAN-based, can be used for unpaired image sets,
and have to address the same key issue: Training a GAN for
unpaired image-to-image translation is in general an under-
constrained task. CycleGAN employs a second GAN for a
reverse mapping from the target to the source domain. The
method enforces correspondences between input and output
image by a cycle-consistency loss that penalizes differences
resulting from passing an image through both the forward
and the reverse GAN subsequently. This avoids collapse of
the generator, i.e. mapping all inputs to a single output in
the target domain.

CUT removes the second GAN and replaces the cycle
consistency loss with a contrastive loss on image patches,
the so-called PatchNCE loss. In brief, the idea is to achieve
content preservation by ensuring that a patch of the translated
image has more information in common with the same patch
in the source image (positive) than with N other patches from
the source image (negatives). Technically, this is realized by
training a small MLP classifier to select the positive from
the N +1 source patches, given the translated patch. This is
done in the GAN encoder’s feature space, separately for each
layer used. The concept is illustrated in Fig. 2. In CUT, the
PatchNCE is also calculated for the image from the target
distribution to stabilize the training by hinting the network to
keep images from the target domain identical. The complete
loss function thus is given by

L = LGAN (G,D,X, Y )

+ λNCE · (LPatchNCE (G,H,X) + LPatchNCE (G,H, Y )),
(2)

where G denotes the GAN’s generator, D the discriminator,
X the source image and Y the target image. H denotes the
MLPs used for the PatchNCE. Park et al. [5] suggest to
choose λNCE = 1.

x

ŷ

Fig. 2. The PatchNCE is calculated based on the selected patch x from
the synthetic image and the corresponding generated refined image ŷ. From
these smaller images, subpatches are selected for the calculation. Adapted
from [5].

(a) synthetic (b) refined

Fig. 3. A synthetic image and a CUT-refined version of it with CUT
trained on full-resolution images. Note how training at full resolution leads
to deformations and hallucinations of objects in the background image.

C. Modifications to CUT

Compared to CycleGAN, we selected the CUT approach
for its lesser complexity at better performance (see [5]).

Its authors propose to apply CUT to images at full
resolution. However, we decided to train it in a patch-
based way. There are several reasons for this: First, we have
substantial variability in the images produced by Stillleben,
especially with respect to the backgrounds, and a large
set of real images. It seems sensible to us to use many
of these images for the training in order to achieve good
generalization to unseen images. Working at full resolution
(640×480 for YCB-Video), however, induces long training
times when following the learning duration of 400 epochs
proposed by Park et al. [5]. Second, the changes to the source
image we aim to achieve are at small scale. Ideally, our
domain-adapted images reflect the visual properties induced
by the camera used for the real images but are content-
wise very close to the source data to keep the segmentation
labels usable. Experimental results support this motivation.
CUT models trained at full resolution often deform relevant
objects or hallucinate parts of them in new places, as can
be seen in Fig. 3. While the training is performed on
patches, inference is still possible at full resolution, thanks
to the GAN generator’s architecture. We thus argue that it is
sufficient and even beneficial to work on image patches.

The selected patch size has to be small enough to notably
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Fig. 4. Test IoU on YCB-Video for training on synthetic images over 300
epochs shows significant variance between epochs.

reduce the computation effort and prevent global effects. At
the same time, it has to be large enough to still contain
sufficient information and to ensure that sampling sub-
patches for the PatchNCE is still possible in a meaningful
way. We propose and evaluate patch sizes between 602 and
1602 pixels. The patch selection is done by random cropping.

IV. EVALUATION

A. Experimental Setup and Evaluation Metric

In many applications, the goal of visual domain adapta-
tion is to create images that look appealing to the human
eye. In our robotics use case, however, we are not mainly
interested in well-looking images but in images that yield
better results on subsequent data processing tasks than the
original synthetic images.

Therefore, we evaluate our method on a semantic seg-
mentation task similar to how it is done in [3]: We use
RefineNet [15], an established network architecture for se-
mantic segmentation, and train it from scratch on 450k
images, subdivided into 300 epochs of 1500 images. The
segmentation performance is evaluated on a test set of
annotated real images by calculating the mean intersection
over union (mean IoU or mIoU) over all classes present in
the dataset. All IoU values in the following are calculated
on the respective test sets.

We are interested in the performance on test data after
training on three image sets: synthetic images from Still-
leben, CUT-refined synthetic images from Stillleben, and also
real images (disjoint from the test set) for comparison. For
the refined images, we use the ground-truth labels provided
by the renderer for the corresponding unrefined images.
Ground-truth labels for both the training and test real images
are provided as part of the datasets used for the evaluation.

As can be seen in Fig. 4, the performance on the test
data differs significantly between epochs during the training
of RefineNet. In the following, we therefore always visualize
the distribution of IoU values over the 50 last training epochs
instead of just indicating the IoU value for the final epoch.

To obtain the refined images, we pass the synthetic im-
ages through the CUT generator. Before, we train CUT on

unpaired sets of synthetic and real images for 400 epochs,
following the curriculum suggested by Park et al. [5]. For the
training of CUT, we choose a batch size of 40—irrespective
of the patch size. This is to keep the sources of variation
between the results for different patch sizes limited. The
deviation from the standard batch size of 1 for CUT has two
main reasons: First, the training time can be substantially
reduced while improving memory usage. Second, we argue
that for the patch-based application of CUT it is beneficial
to use more averaged gradients, especially as some of the
randomly sampled patches may consist entirely of irrelevant
background information. Besides, we do not horizontally flip
images for data augmentation to only expose the network to
images that could occur in reality. Further deviations from
the defaults of the standard implementation are stated in
the respective experiment descriptions for the two datasets
considered. All training of CUT has been performed using
NVIDIA A100-SXM4-40GB accelerator cards.

We mainly work with the YCB-Video dataset but demon-
strate the broader applicability of our approach on the
HomebrewedDB dataset as well.

B. Results on YCB-Video

Stillleben has been evaluated on the YCB-Video
dataset [3], thus this is the best-suited dataset for a com-
parative evaluation. For the training of CUT, we use 10k
images generated using Stillleben and 10k images from the
training set of YCB-Video.

The first investigated aspect is the patch size, which we
choose between 602 and 1602 pixels as mentioned above. It
is worth noting that internally, CUT works with patch sizes
that are multiples of 4. Otherwise, patches are rescaled to
have such size using bicubic interpolation. While it appears
possible that this interpolation would introduce some benefi-
cial or detrimental smoothing to the input images, we saw no
consistent effect on the results. We evaluate the performance
for the following patch sizes: 602, 702, 902, 1002, 1202, and
1602 pixels. The results are shown in Fig. 5, alongside the
results for RefineNet trained on purely synthetic and real
YCB-Video images. It can be seen that especially at patch
size 602, but to some degree still for 702, only insufficient
information is conveyed for this dataset—compared to the
larger patch sizes. 1602 and 902 appear to yield the best
results. Given the fact that the training time for CUT largely
depends on the patch size (see Table I), 902 seems to be
the best trade-off. Consequently, using CUT-refined synthetic
images offers a significant benefit over using pure Stillleben
images as the performance is close to what training on real
data yields.

Apart from the general performance increase, CUT-
refining synthetic images offers another benefit: Irrespective
of the patch size, refining the images leads to a significantly
narrower distribution of the IoU values, closer to real data,
which yields the narrowest distribution. In contrast, the
variance is rather high for training on synthetic images.
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Fig. 5. Results on YCB-Video. The test IoU distribution over the last 50
training epochs for CUT-refined images for CUT patch sizes 1602, 1202,
1002, 902, 702, and 602. The leftmost plot depicts the test results for
training with synthetic images, the rightmost plot for training with real
images. Training with CUT-refined synthetic images not only yields higher
IoU values than pure synthetic images but also narrower distributions.

TABLE I
PATCH SIZE & TRAINING EPOCH TIME

patch size [px] time [s]

160×160 181
120×120 110
100×100 82

90×90 66
70×70 54
60×60 43

C. Modifications

Synthetic images can imitate image noise, for instance
as proposed by Foi et al. [16]. Noise from real cameras,
however, exposes properties that are hard to model and is
inherently random. It could be the case that at the synthetic-
to-real domain adaptation task, it is hard for a GAN to add
such noise to an image. To address this and even further in-
crease the IoU, we tested noise injection to add noise within
the translation process. Given the GAN’s encoder-decoder
architecture, we decided to inject it directly at the input
of the decoder by adding N normally-distributed random
feature maps to the M feature maps from the encoder, where
N � M . To ease the noise integration and return to the
previous number of feature maps, we add three convolution
layers before the actual decoder part. Using a patch size of
1602 pixels, we tested injecting 0, 4, 8, 16 and 32 random
feature maps. The results can be seen in Fig. 6. While 8
feature maps appear to even have a detrimental effect across
multiple runs of this experiment, the general impression is
that injecting noise is not beneficial. This contradicts the
hypothesis that additional randomness apart from the noise
added by Stillleben’s camera model helps the GAN to closer
match the real image distribution. We hypothesize that the
artificial image noise from Stillleben is sufficient to produce
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Fig. 6. Noise injection. The test set IoU distributions for 0, 4, 8, 16,
and 32 injected random feature maps show no beneficial effect of injecting
noise.
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Fig. 7. Using exponential moving average (EMA) for the RefineNet
parameters improves the performance and reduces the IoU variability.

images that cannot too easily be distinguished from real
images by the GAN discriminator based on the kind of noise.

Another change however is beneficial, but not directly
related to CUT: Using an exponential moving average (EMA)
of the RefineNet model parameters for the evaluation on
the test set does significantly improve the performance and
reduce the variability of the IoU (decay factor: 0.995). This
is consistent over all patch sizes for CUT-refined images as
well as synthetic and real images, as can be seen in Fig. 7.
Note that we achieve more than 99% of the mean IoU for real
training data, see Table II. We therefore use this modification
in the following for the experiments with HomebrewedDB.

D. Results on HomebrewedDB

Encouraged by the promising results on the YCB-Video
dataset, we also evaluate our approach on the Home-
brewedDB [6] dataset. Both datasets consist of small objects
on a table. However, the overall image appearance and the



TABLE II
RESULTS ON YCB-VIDEO (WITH EMA).

Training mode mIoU (↑) vs. Real (↑) vs. Syn. (↑)

synthetic [3] +EMA 0.701 0.910 —

CUT160px 0.757 0.983 +8.0%
CUT120px 0.745 0.968 +6.3%
CUT100px 0.760 0.987 +8.4%
CUT90px 0.763 0.991 +8.8%
CUT70px 0.759 0.986 +8.3%
CUT60px 0.720 0.935 +2.7%

real [3] +EMA 0.770 1.000 +9.8%

presented arrangements differ by a lot. We use the Home-
brewedDB data offered in the BOP challenge1. For both the
offered test images (BOP’19/20 test images (Primesense))
and the validation images (Validation images (Primesense)),
ground truth semantic annotations are included. No real
training images are provided. However, 3D meshes for all
objects are available, allowing us to use Stillleben.

We restrict our evaluation to the subset S of Home-
brewedDB objects which are present in the test images.
We generate synthetic scenes with objects from S and train
CUT on validation images containing objects from S. The
model trained on real data is trained analogously. In all
cases, the official test set is used to evaluate the segmentation
performance of the trained RefineNet models.

For generating the synthetic images using Stillleben, we
make two slight modifications compared to the process
proposed for YCB-Video by Schwarz and Behnke [3], based
on the appearance of the real images: We remove the stickers
randomly added to the objects and instead of rendering the
objects on a textured table, a white table is used. Without any
further adaptation to HomebrewedDB, we reach IoU values
around 0.5 which are inferior to those achieved for YCB-
Video. The achieved IoU for real images is slightly lower
than for YCB-Video, see Fig. 8.

For the training of CUT, we use 10k synthetic images
and all 1020 real validation images. Obviously, most real
images are presented multiple times during each epoch. Due
to our patch-based training, the shown part of the image
however varies. Based on our results on YCB-Video, we
restrict ourselves to patch sizes of 702 and 902 pixels.

With the same hyperparameter choices as for YCB-Video,
we saw segmentation performance inferior to that of pure
Stillleben. Looking at the produced images, the reason is
a mode collapse: Most of the images are grey-textured,
with the object shapes barely visible. This is consistent over
multiple runs and patch sizes. A reason might be that for
this dataset and the respective synthetic images produced by
Stillleben, the loss weighting insufficiently ensures content
preservation. Therefore, we propose to increase the weight
of the PatchNCE while keeping it low enough to allow
for meaningful changes to the appearance. The results for
λNCE = 2, 5, 7 can be seen in Fig. 8 for both patch

1https://bop.felk.cvut.cz/datasets/
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Fig. 8. Results on HomebrewedDB. We show the test IoU distribution
over the last 50 training epochs for CUT-refined images for CUT patch size
902 and λNCE = 2, 5, 7 as well as patch size 702 with the same values
for λNCE (from left to right), complemented by the results for training on
synthetic (left) and real images (right).

TABLE III
RESULTS ON HOMEBREWEDDB (WITH EMA).

Training mode Mean IoU (↑) vs. Real (↑) vs. Syn. (↑)

synthetic 0.481 0.653 —

CUT90px,λNCE=2 0.499 0.677 +3.7%
CUT90px,λNCE=5 0.481 0.653 +0.0%
CUT90px,λNCE=7 0.511 0.693 +6.2%
CUT70px,λNCE=2 0.558 0.757 +16.0%
CUT70px,λNCE=5 0.556 0.754 +15.6%
CUT70px,λNCE=7 0.542 0.735 +12.7%

real 0.737 1.000 +53.2%

sizes considered. A modest increase of λ = 2 appears to
be favorable, as does a patch size of 702—with regards to
the IoU and it’s variability as well. With these changes, we
see a significant improvement over the results using raw
Stillleben images, quantitatively larger than for YCB-Video
(with EMA), see Table III. Not only the IoU is increased by
CUT-refining the synthetic images, but also the IoU variance
over the training epochs of RefineNet is reduced—consistent
with what we see for YCB-Video.

Thus, our approach is applicable also beyond YCB-Video
with only minor changes needed for a related dataset.

E. Combination with Real Training Data

Until now, we considered the case where we have no real
training data and aim to enhance the usefulness of synthetic
data. However, there might also be cases where we have
real training data available but the achieved performance is
not good enough. In their experimental setup, Schwarz and
Behnke [3] have shown that it is beneficial to train RefineNet
on synthetic and real data at the same time by randomly
choosing the mini-batches from both datasets. One might
wonder whether the use of CUT-refined images enhances this
effect. The results for both YCB-Video and HomebrewedDB
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Fig. 9. Mixing synthetic and real data. We show the test IoU distribution
over the last 50 training epochs for real training images, real and synthetic
images mixed, as well as real and refined synthetic images mixed, for YCB-
Video and HomebrewedDB, respectively.

are depicted in Fig. 9. While the achieved IoU on the
respective test sets is still higher with refined images than
without, the effect is less pronounced than is for synthetic
data. From this, we hypothesize that using synthetic data has
a regularizing influence on the training with real data, namely
that the learned features are more domain-invariant. This
effect is smaller for images refined towards more realism.

F. Analysis of Refinement Operations

We are mainly interested in achieving good segmentation
performance to improve the value of synthetic training data
for robotic applications. Still, it is worth analyzing what CUT
is actually doing to the synthetic images. Figs. 10a) and b)
show three synthetic images based on the YCB-Video objects
and their CUT-refined versions, respectively.

While some refined images look more natural, some do
not seem realistic to the human eye at all. Still, we achieve
generalization to real data on the YCB-Video segmentation
task that is close to what we get when training on real
data. Hence, we hypothesize that—even if not for the human
eye—refining the images aligns the synthetic and real image
distributions more closely in the feature space of a CNN.

As we cannot investigate this in the high-dimensional
feature space directly, we employ t-SNE embeddings [17]
to project the data into two dimensions. Specifically, we use
the YCB-Video keyframes, render corresponding Stillleben
images using the pose annotations and refine them using a
trained CUT generator. As we are more interested in what
happens to the appearance of the objects in the images
rather than in the backgrounds, we mask out the backgrounds
using the segmentation masks provided by Stillleben. For
the resulting set of triples, we calculate the feature maps
of one extraction layer of RefineNet trained on real YCB-
Video images. We apply adaptive average pooling with
output size 1×1 to each feature map to obtain a vector

(a) synthetic (b) refined

Fig. 10. Synthetic images and their CUT-refined versions.

of scalar values. Based on these vectors for all images, we
calculate the t-SNE embeddings. The results vary based on
the regarded layer. Embeddings based on features from an
early extraction layer are depicted in Fig. 11. It can be
seen that subsequent keyframes of the real YCB-Video video
sequences are closely aligned. Besides, the synthetic images
appear to form two clusters for which it was not possible
to reliably determine their origin. We hypothesize that this
split might be an artifact introduced by the tendency of
t-SNE embeddings to form clusters, see [18]. The general
impression is that CUT-refining the images both spreads the
distribution and also aligns the distribution closer to the real
image distribution. For some images, the refined synthetic
images are embedded quite close to the corresponding real
images, as indicated by the exemplary red line in Fig. 11. In
later extraction layers of RefineNet, the effect is less clearly
visible but still present, see Fig. 12. We saw similar effects
for the early layers of AlexNet [19] trained on ImageNet2,
supporting the hypothesis that the domain adaptation actually
does align the distributions more closely.

V. DISCUSSION & CONCLUSION

We have presented a combined approach to generate
training data from 3D object meshes using the synthesis
pipeline Stillleben and unsupervised domain adaptation. We
demonstrated the beneficial effect of our approach compared
to purely synthetic data for a segmentation task on two
robotics datasets, with only minor differences in the hy-
perparameters. For YCB-Video, the achieved segmentation
performance is close to the performance with real training
data. We explicitly remark that to apply our approach in new

2https://www.image-net.org/index.php



Fig. 11. t-SNE embeddings for an early extraction layer of RefineNet
(turquoise: synthetic, orange: refined synthetic, blue: real images). The red
line connects a corresponding synthetic-refined-real tuple.

Fig. 12. t-SNE embeddings for a late extraction layer of RefineNet
(turquoise: synthetic, orange: refined synthetic, blue: real images). The red
line connects a corresponding synthetic-refined-real tuple.

situations, like robotic competitions, only object meshes and
images from real cameras are required, thus no annotation
is necessary. With state-of-the-art GPU hardware, obtaining
the necessary refined training data for a new environment
is possible in far less than a day. From that, we conclude
that our approach has the potential to be applicable in real
robotic setups without requiring any real annotations.

A limitation inherited from Stillleben is the dependence
on high-quality object meshes. Additionally, the performance
we achieve is close to what is possible on real data but does
not yet match it and the variation of the performance over the
segmentation training is notably higher than for real images.
Another point worth mentioning is that the analysis of the
t-SNE embeddings only partly explains the good results;

more research into this direction would be beneficial, also
to find further room for improvement.
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