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NLOS Ranging Mitigation with Neural Network Model for UWB

Localization

Muhammad Shalihan, Ran Liu, and Chau Yuen

Abstract— Localization of robots is vital for navigation and
path planning, such as in cases where a map of the environment
is needed. Ultra-Wideband (UWB) for indoor location systems
has been gaining popularity over the years with the introduction
of low-cost UWB modules providing centimetre-level accuracy.
However, in the presence of obstacles in the environment,
Non-Line-Of-Sight (NLOS) measurements from the UWB will
produce inaccurate results. As low-cost UWB devices do not
provide channel information, we propose an approach to decide
if a measurement is within Line-Of-Sight (LOS) or not by using
some signal strength information provided by low-cost UWB
modules through a Neural Network (NN) model. The result of
this model is the probability of a ranging measurement being
LOS which was used for localization through the Weighted-
Least-Square (WLS) method. Our approach improves localiza-
tion accuracy by 16.93% on the lobby testing data and 27.97%
on the corridor testing data using the NN model trained with
all extracted inputs from the office training data.

I. INTRODUCTION

Localization is a crucial step to achieving autonomous

movement. The literature shows different techniques, such

as the Ultra-Wideband (UWB) localization approaches. For

example, the authors in [1] proposed a UWB NLOS iden-

tification approach using the LiDAR point cloud. With the

LiDAR point cloud map, NLOS ranging measurements can

be identified by judging whether obstacle occlusions exist

between the mobile tag and anchor. Authors in [2] pro-

posed an enhanced tightly coupled sensor fusion scheme

using a monocular camera and UWB ranging to perform

Simultaneous Localization And Mapping (SLAM). UWB

is a robust solution in Global Navigation Satellite System

(GNSS) denied environments. It can provide accuracy up to

a centimetre level, making it ideal for replacing complex

and expensive motion-capture approaches such as with the

LiDAR or monocular camera [3].

Research work to utilize UWB in various localization

applications is shown in the literature. Localization can be

achieved with UWB modules installed on quadcopters to

actively record ranging information, which can be exchanged

between different quadcopters to determine the position of

its neighbouring Unmanned Aerial Vehicle (UAV) relative to

itself. To account for the lack of information from distance-

only measurements for the relative position estimate, a com-

bination of nonlinear and linear trajectory [4] was utilized.

A similar approach proposes using multiple ground robots

and achieves relative localization. By determining the posi-

tion of the other robots relative to itself, the approach then
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Fig. 1: Overview of the problem where UWB tag on robot

may receive longer ranging measurements due to NLOS con-

ditions. This will affect localization accuracy if not mitigated.

fuses the optimized pose with odometry information [5].

Authors in [6] used UWB ranging measurements in a graph

optimization approach with an outlier rejection algorithm to

mitigate the effects of NLOS signals. However, the outlier

rejection was achieved by setting fixed criteria in an inequal-

ity equation, which may not generalize well for different

NLOS scenarios. While both these works produce significant

improvements for relative localization, not dealing with Non-

Line-Of-Sight (NLOS) situations effectively may cause the

results to degrade significantly.

Recent research shows the popularity of UWB for po-

sitioning, especially within the robotics community, due

to its low cost, low power consumption, and small size.

Robust localization can be achieved through the use of UWB

ranging measurements fused with data from onboard sensors

such as the Inertial Measurement Unit (IMU) through an

Extended Kalman Filter (EKF) and utilizing UWB based

communication to transfer the quadcopter’s orientation as

proposed in [7]. UWB ranging measurements are also fused

with visual odometry to remove visual drift and improve

robustness through a pose graph optimization from visual

tracking constraints and the proposed smoothness and range

constraints [8]. Although UWB can provide up to centimetre-

level accuracy and a maximum reading range of up to

100 metres, NLOS measurements could significantly degrade

localization results. Figure 1 shows a scenario where the

robot will receive measurements from UWB anchors which

are blocked by obstacles. UWB measurements are based

on the signal Time Of Arrival (TOA) or Time Difference

Of Arrival (TDOA) [9]. Obstacles and occlusions in the

environment would cause the TOA to be much larger than
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it is, leading to a longer ranging measurement. On the

other hand, the TDOA could be smaller. This error in

ranging measurement due to NLOS conditions causes sub-

optimal localization results. Removing these measurements

would not be ideal as it may cause significant errors since

not enough measurements were considered for localization,

making it essential to identify these NLOS measurements

and mitigate their effect on localization.

The effort to mitigate NLOS range measurements to

improve localization accuracy can be seen in the literature.

For example, [6] proposes an outlier rejection algorithm for

NLOS scenarios. This was done by setting criteria in an

inequality equation to determine if the range measurement

satisfies this equation. The range constraint is rejected and

not included in the cost function if the inequality is satisfied.

However, excluding all measurements deemed NLOS may

result in worse results because there may not be enough range

measurements to get an accurate relative estimation of the

robot position. Instead, the ranging measurements deemed

NLOS should be mitigated and included in localization.

Therefore, this paper proposes an approach to identify

NLOS ranging measurements by giving a probability to

each ranging measurement used for localization through

Weighted-Least-Square (WLS). We first collected data be-

tween a UWB tag carried on a moving robot and fixed UWB

anchors in the environment in NLOS conditions, followed

by Line-Of-Sight (LOS) conditions. This data is used to

train a NN model capable of computing the probability that

a ranging measurement is LOS. To verify the localization

accuracy, the model trained previously is then used in a

series of experiments on the data collected in different envi-

ronments by using the probability of ranging measurement

being LOS computed by the NN model in a WLS localization

and comparing the results to the Non-Weighted Least-Square

(NWLS) localization. The effects of having more NLOS

mitigated are also evaluated in the corridor environment. The

contributions of this paper are summarized as follows:

• We built a NN model trained using the data we collected

and labelled according to its LOS and NLOS conditions,

which returns a probability of the ranging measurement

being LOS based on the UWB data provided.

• We performed WLS localization using the probabilities

generated for each ranging measurement through our

NN model and compared the results with NWLS local-

ization.

• We have conducted experiments (in office, lobby and

corridor environments) to evaluate the accuracy of the

proposed approach and improve the localization accu-

racy by 16.93% on the lobby testing data and 27.97%

on the corridor testing data using the NN model trained

with all extracted inputs from the office training data.

The remainder of this paper is as follows: Section II intro-

duces the related work. Section III introduces the method and

design of our approach. Extensive experiments were carried

out in Section IV to validate the effectiveness of the proposed

approach. Finally, we conclude in Section V.

II. RELATED WORK

Research and literature in the robotics field show a grow-

ing interest in navigation and path planning localization.

The use of the Global Positioning System (GPS) cannot be

applied indoors as the signals from satellites are efficiently

diffracted by surrounding buildings and obstructions [10].

This leads to a growing interest in research focused on

localization in GPS-denied environments using UWB de-

vices with different methods of mitigating the NLOS errors.

For example, authors in [11] proposed a robust range-only

beacon localization through trilateration and implementing

a voting scheme where each consistent measurement pair

”votes” for its solution. The most significant number of

votes will be taken as the location estimate. However, the

method is not robust to NLOS scenarios which could degrade

localization results.

Authors in [10] proposed to model and characterize am-

plitude and delay statistics of UWB channels and identify

NLOS signals using the model. WLS localization is then

performed to evaluate their performances. Authors in [12]

proposed to employ a method based on Convolutional Neural

Network (CNN) to extract non-temporal features from raw

channel impulse response (CIR) signals from the UWB

and Long-Short Term Memory Recurrent Neural Network

(LSTM-RNN) to classify LOS/NLOS signals. Finally, au-

thors in [13] proposed a robust trilateration method by using

a confidence-based trilateration method using data from

the Multipath Fading Channel (MPF). However, data from

channel statistics may not be available in many scenarios in

low-cost UWB devices.

Authors in [9] proposed an NLOS identification and mit-

igation technique for low-cost UWB devices using different

machine learning algorithms on data that were collected

specifically for two situations when in NLOS. Authors in

[14] proposed an NLOS error compensator using the princi-

ple of inertia through a ”virtual inertial point” built from

the IMU and the motion trend of the UWB. Authors in

[15] proposed a New Hypothesis Test method for NLOS

identification and mitigation by comparing the Mean Square

Error (MSE) of the range estimates with the variance of

the LOS range estimates. However, these approaches can

replace their NLOS mitigation techniques with a NN model

to classify signals better without complex architectures.

III. PROPOSED NLOS IDENTIFICATION METHOD &

DESIGN

An overview of the approach is shown in Figure 2. In

this section, we will explain the input data extracted from

the UWB tag carried by the moving robot, which consists

of the distance measurement, the Residual Received Signal

Strength Indicator (RxRssi), the First Path Received Signal

Strength Indicator (FpRssi), the difference between Received

Signal Strength (RSSD), and the Standard Deviation (STD)

of ranging measurements made between a 0.5-second win-

dow, between UWB tag carried by the moving robot and

fixed UWB anchors in the environment. These input data

will be fed



Robot

Traverses the

Environment

collecting

Ranging data

Feature

Extraction

RxRssi

FpRssi

||RxRssi - FpRssi||

Standard Deviation

of ranging in 0.5

seconds

Distance

Measurement

Probability

of LOS (Rho)

Known UWB

anchor

Positions

Location

Estimate

WLS

NN

Model

Fig. 2: Overview of NLOS mitigation localization process.

into our trained NN model to generate the probability of

the ranging measurement being LOS, which refers to a

number between 0 to 1, used as the weight for the ranging

measurement in the WLS localization.

A. System Overview

UWB plays an essential role in range-only localization

in GPS-denied areas. However, even though UWB is robust

to NLOS scenarios due to its ability to penetrate different

materials such as walls, metals, and liquids [16], NLOS

measurements will return a larger ranging measurement,

which will affect localization accuracy. Therefore, NLOS

measurements need to be identified and mitigated.

Low-cost UWB devices do not provide data from channel

statistics used in other NLOS ranging mitigation approaches.

Therefore, the NN model in this work can be applied in

different environments to mitigate the effects of NLOS

ranging measurements, using only data available from low-

cost UWB devices. The model returns a probability of the

ranging measurement being LOS, based on the UWB data

extracted from the UWB node carried by the robot and fed

into the NN model. The probability, distance measurement

and known UWB anchor locations are then used in a WLS

localization process to estimate the robot’s position.

B. Neural Network Model

The NN model used in this paper was built using Tensor

Flow, an open-source deep-learning library for building [17].

UWB data collected from the UWB tag carried by the

moving robot in different environments is used as the model’s

input vector. The input data then goes through the fully

connected layers, and finally, the probability of ranging

measurement being LOS is received at the output layer.

1) Input Features: The input layer takes in data extracted

from the UWB node attached to the robot as it traverses the

environment. As shown in Figure 2, the feature extraction

process refers to the use of the RxRssi, which refers to the

relative power present in the received signal, and FpRssi,

which refers to the power present in this first signal detected,

at each timestamp to calculate the RSSD, and using the

timestamp and ranging measurement to calculate the STD

within a 0.5-second window. Experiments were carried out

with the

FpRssi RxRssi RSSD STD Ranging Error

FpRssi

RxRssi

RSSD

STD

Ranging Error

1 0.755684 -0.926179 -0.670436 -0.630678

0.755684 1 -0.528755 -0.514561 -0.59953

-0.926179 -0.528755 1 0.623685 0.524575

-0.670436 -0.514561 0.623685 1 0.649383

-0.630678 -0.59953 0.524575 0.649383 1
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Fig. 3: Correlation of input data vs ranging error

NN models trained with different combinations of input data.

Input data includes the RxRssi and FpRssi extracted from

the UWB node at every timestamp, the RSSD, which is

also a good indicator for LOS/NLOS conditions, and lastly,

the STD of ranging measurements made within a 0.5-second

window between the UWB node attached to the robot and

each anchor as a higher STD will indicate that there is an

NLOS ranging measurement [18]. The relationship between

the inputs and the ranging error is represented as Spearman’s

coefficient and expressed in a heatmap in Figure 3. It

assesses how well two variables correlate to each other with a

monotonic function [19]. Spearman’s coefficient ranges from

-1 to +1, where -1 indicates a perfect negative relationship,

0 indicates no correlation and +1 indicates a perfect positive

relationship. A positive relationship indicates that the other

variable increases as one variable increases. A negative

relationship indicates that the other variable decreases as one

variable increases. For example, Figure 3 shows that FpRssi

and RxRssi have a negative monotonic relation with ranging

error. In contrast, RSSD and STD of ranging have a positive

monotonic relationship with ranging error. The combination

of inputs chosen through experimentation will go through

the Fully Connected layer (FCN), which uses the Rectified

Linear Units (ReLU) activation function. Finally, the output

layer uses the Sigmoid activation function, which outputs a

value between zero to one. This is mainly used in models to

predict the probability as an output, which can be used as

weights for the localization algorithm.

2) Model Architecture: Different hyperparameters were

experimented with during training to select the proper hy-

perparameters for the NN model. In particular, the number

of hidden layers, neurons per hidden layer, learning rate and

the number of epochs trained. The results were evaluated

based on the model’s accuracy and precision on test data.

The classification results with different hyperparameters are

listed in Table I below.



TABLE I: Evaluation of hyperparameters for NN model.

Hidden Layers Neurons Epochs Accuracy Precision

3 100 100 79.96 0.7886

3 300 50 83.91 0.8542

15 100 100 81.75 0.8265

10 300 50 82.64 0.8288

10 300 300 93.29 0.9321

Using the best hyperparameters, which produce the best

accuracy and precision, as shown in Table I, four different

models which take different combinations of inputs were

trained for NLOS mitigation experimentation.

C. Weighted Least-Square Localization

The NLOS identification results from the NN model was

used to improve the localization results. In this section, we

present the WLS localization technique to mitigate the effects

of NLOS ranging measurements. By considering the known

UWB anchor positions, we can express the WLS estimate of

the robot’s position as follows [10]:

x̂ = argmin
x=(x,y)

{

N∑

i=1

(βid̂i− ‖ x −Xi ‖)
2} (1)

where βi, is the weight for the ranging measurement

derived from the probability of a ranging measurement being

LOS computed by the NN model, d̂i refers to the ranging

measurement to the ith anchor, x refers to the robot position

to be minimized, Xi refers to the location of the ith anchor,

and N is is the number of anchors in the environment.

Minimizing (1) is done through numerical search methods

like Levenberg-Marquardt or Newton’s method. In this exper-

iment, Trust Region Reflective (TRF) algorithm was used as

it is a generally robust method. To avoid convergence to local

minima of the loss function, the constraints and initial guess

must be close to the solution [10]. Therefore, for evaluation

purposes, the known starting position of the robot is used for

localization, and every estimate for the previous position is

used as the initial position for the next estimate.

IV. EXPERIMENTAL RESULTS

Experimental results presented here are performed on

different environments from where the NN model was trained

to demonstrate the effectiveness of mitigating NLOS rang-

ing measurements for localization. In addition, results were

compared to ground truth obtained with the use of RPLiDAR

A3 to perform Adaptive Monte Carlo Localization (AMCL)

[20] given a map created through GMapping [21].

Experiments were carried out using corridor test data with

a different number of UWB anchors to test the effects of

mitigating more NLOS ranging measurements and including

them in localization.

A. Measurement Campaign

1) Training Data – Office and Lobby: In this work, we

carried out a measurement campaign for training using low-

cost UWB devices in the office and lobby

UWB Anchor/ Node

RPLiDAR A3

TurtleBot2 Mobile

Base

Fig. 4: Overview of data collection. LOS data was collected

along this path, while NLOS data was collected in a path

obstructed by the wall.

of Building 3 at the Singapore University of Technological

Design (SUTD), Singapore.

The training data was collected using LinkTrack UWB

devices, a low-cost UWB that uses TDOA protocol that

provides IMU information and measures up to 100 metres

with a 50Hz sampling rate. As Channel Impulse Response

(CIR) must be extracted from the chip, which adds com-

plexity to the system [9], our approach focuses mainly on

data readily available from the UWB. Therefore, we only

use data recorded by the UWB devices: the timestamp,

RxRssi, FpRssi, and distance measurement. Data collected

is separated between NLOS and LOS scenarios. For LOS

measurements, the robot carrying a UWB node moves along

a path with no obstructions collecting UWB data from UWB

anchors within LOS as shown in Figure 4. For NLOS mea-

surements, the UWB anchors were obstructed from the robot

during data collection. Data collected were then labelled

accordingly at each timestamp, with LOS measurements

labelled as 1 and NLOS measurements labelled as 0. Each

ranging data recorded consists of a timestamp, the distance

measurement, RxRssi, FpRssi, the RSSD values, the STD

of ranging measurements made within a 0.5-second window,

and the LOS/NLOS indicator.

Different inputs were used to train the NN model to

determine the inputs that produce the best results.

2) Testing Data – Office, Lobby and Corridor: Testing

data was collected in the office, lobby, and corridor envi-

ronments. Data collected in this section was used to test

the NN model after being trained in a different environ-

ment. The robot traversing around the environment carries

a single LinkTrack UWB node. Fixed UWB anchors are

placed around the environment with known locations. The

robot collects ranging measurements, RxRssi, FpRssi and

timestamp data from detected UWB anchors as it travels

around different environments. At the same time, AMCL

poses data is also collected with the help of a map of the

environment built through GMapping to be used for ground

truth and evaluation purposes.



Unlike training data collection, testing data was not sep-

arated between LOS or NLOS measurements and therefore

contains both LOS and NLOS measurements.

B. Lobby Test Data Results Using NN Model Trained Using

Office Training Data

UWB

Anchor

Fig. 5: Map of lobby environment using GMapping algorithm

with 2D-LiDAR.

The NN model in this section was trained using the office

training data mentioned in Section IV.A1 and tested using

the lobby testing data mentioned in Section IV.A2. The lobby

environment, as shown in Figure 5 is wider as compared to

the office environment where the model was trained.

There is a large wall in the lobby environment where

the robot traverses. The wall causes much more ranging

measurements to be NLOS due to the signals from the UWB

anchors being reflected off the walls to reach the UWB node

carried by the robot or the fixed UWB anchors placed around

the lobby environment.

Different combinations of inputs from the office training

data were used to train the NN model to determine which

inputs produced the best results. The best results according to

Table II and Figure 6(b) for NWLS vs WLS localization is

as shown in Figure 6(a). As seen from Table II, all WLS

approaches using different inputs to train the NN model

produced improvements in the localization results.

There is a 16.93% improvement in the estimated position

error in terms of metres for WLS localization using the NN

TABLE II: Localization results of WLS localization using

NN model trained with different combinations of inputs from

office training data vs NWLS localization tested on lobby

testing data with 5 UWB anchors.

Approach Error in metres
Used Mean Median SD Improvement

NWLS 2.79 2.65 1.43 Nil

WLS All inputs 2.32 2.01 2.03 16.93%

WLS No FpRssi 2.35 2.03 2.05 16.06%

WLS No RxRssi 2.33 2.04 2.00 16.65%

WLS No RSSD 2.37 2.07 1.92 15.34%

WLS No STD 2.44 2.06 2.16 12.75%
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(a) WLS using NN model trained using office training data with all
inputs vs NWLS localization tested on lobby testing data using 5 UWB
anchors.
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(b) CDF for NN models trained with different combinations of input
tested on lobby testing data with 5 UWB anchors.

Fig. 6: Lobby localization results with 5 UWB anchors

model trained with all inputs compared to NWLS localization

using AMCL pose as ground truth. Figure 6(b) shows

the Cumulative Distribution Function (CDF) for WLS and

NWLS localization approaches using different models that

indicate there is a higher probability of having a minor error

with WLS localization as compared to NWLS. The results

show that the NN model can mitigate the effects of NLOS

ranging measurements and improve localization results for

WLS localization compared to NWLS localization.

C. Corridor Test Results Using NN Model Trained Using

Office Training Data

The NN model in this section was trained using the office

training data mentioned in Section IV.A1 and tested using

the corridor testing data mentioned in Section IV.A2. The

approach was experimented on in a larger map as shown in

Figure 7, which will cause fewer anchors to be detected for

localization and more NLOS ranging measurements recorded

at each timestamp. Experiments were carried out in this

environment using 5, 8 and 9 UWB anchors placed
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Fig. 7: Map of corridor environment using GMapping algo-

rithm with 2D-LiDAR.
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(b) CDF for NN models trained with different combinations of input
tested on corridor testing data with 5 UWB anchors.

Fig. 8: Corridor localization results with 5 UWB anchors

in the environment. For experiments carried out with 5 UWB

anchors placed in the environment, as seen from Table III,

all WLS approaches using different combinations of input

extracted from the office testing data to train the NN model

produced improvements in the localization results. Using the

TABLE III: Localization results of WLS localization using

NN model trained with different combinations of inputs from

office training data vs NWLS localization tested on corridor

testing data with 5 UWB anchors.

Approach Error in metres

Used Mean Median SD Improvement

NWLS 3.41 2.88 2.47 Nil

WLS All inputs 2.45 2.36 1.39 27.97%

WLS No FpRssi 2.65 2.43 1.64 22.09%

WLS No RxRssi 2.35 2.26 1.23 31.10%

WLS No RSSD 2.36 2.28 1.38 30.57%

WLS No STD 2.52 2.45 1.36 25.11%

TABLE IV: Localization results of WLS localization using

NN model trained with different combinations of inputs from

office training data vs NWLS localization tested on corridor

testing data with 8 UWB anchors.

Approach Error in metres

Used Mean Median SD Improvement

NWLS 2.97 2.64 1.96 Nil

WLS All inputs 1.72 1.23 1.53 41.98%

WLS No FpRssi 1.75 1.25 1.45 41.14%

WLS No RxRssi 1.68 1.21 1.46 43.49%

WLS No RSSD 1.66 1.20 1.43 44.05%

WLS No STD 1.70 1.24 1.36 42.81%

TABLE V: Localization results of WLS localization using

NN model trained with different combinations of inputs from

office training data vs NWLS localization tested on corridor

testing data with 9 UWB anchors.

Approach Error in metres

Used Mean Median SD Improvement

NWLS 3.39 3.29 1.75 Nil

WLS All inputs 1.42 1.18 0.91 58.02%

WLS No FpRssi 1.53 1.45 0.92 54.79%

WLS No RxRssi 1.50 1.41 0.91 55.72%

WLS No RSSD 1.50 1.39 0.92 55.62%

WLS No STD 1.55 1.45 0.91 54.15%

NN model trained with all inputs, a 27.97% improvement in

the estimated position error in terms of metres was achieved

for WLS localization compared to NWLS localization. The

results of the experiment using 5 UWB anchors in the

environment according to Table III is as shown in Figure

8(b). Figure 8(b) shows that the probability of minor error

in localization for WLS approaches is higher than that of

NWLS localization. Figure 8(a) shows the localization results

using the NN model trained with all inputs compared to

NWLS localization. This shows that our approach can im-

prove localization results by using the weights computed by

the NN model. Furthermore, our approach includes all NLOS

ranging measurements, which was mitigated through a WLS

localization as excluding NLOS ranging measurements from

localization could produce worse results. For experiments

conducted with 8 UWB anchors as seen in Table IV and 9

UWB anchors as seen in Table V, all WLS approaches using



different inputs to train the NN model produced improve-

ments in the localization results. The results for the WLS

localization using the model trained with all inputs improved

by 41.98% with 8 UWB anchors and improved by 58.02%

with 9 UWB anchors compared to NWLS localization.

D. Office And Corridor Test Results Using NN Model

Trained using Lobby Test Data

The NN model in this section was trained using the lobby

training data mentioned in Section IV.A1 and tested using

the lobby and corridor testing data mentioned in Section

IV.A2. A model was trained using LOS and NLOS data

collected from lobby training data to prove that the approach

can improve localization accuracy. The data was collected

separately and labelled accordingly, as mentioned in Section

IV-A1. The NN model trained with all inputs shown in Table

VI shows localization accuracy improving by 43.64% with

WLS on the office testing data. There is also a significant

improvement on the corridor testing data, as shown in Table

VII.

TABLE VI: Localization results of WLS localization using

NN model trained using lobby training data with all inputs

vs NWLS localization tested on office testing data with 5

UWB anchors.

Approach Error in metres
Used Mean Median SD Improvement %

NWLS 2.02 1.98 0.67 Nil

WLS 1.14 0.95 0.65 43.64%

TABLE VII: Localization results of WLS localization using

NN model trained using lobby training data with all inputs

vs NWLS localization tested on corridor testing data with

different number of UWB anchors.

Approach Error in metres

Used Mean Median SD Improvement

NWLS 5 UWB 3.41 2.88 2.47 Nil

WLS 5 UWB 2.99 2.75 2.09 12.20%

NWLS 8 UWB 2.97 2.64 1.96 Nil

WLS 8 UWB 2.09 1.53 1.99 29.68%

NWLS 9 UWB 3.39 3.29 1.75 Nil

WLS 9 UWB 2.04 1.77 1.49 39.80%

V. CONCLUSION

We proposed an approach to mitigate NLOS ranging

measurements for UWB-only localization with a NN Model

trained and experimented with in different environments.

We showed the effectiveness of mitigating NLOS ranging

measurements and including them in localization. Our NN

models were trained using UWB data extracted from the

office and lobby environments. Experiments with the NN

model trained using office training data and tested with lobby

testing data improved localization results by 16.93% for the

case of 5 UWB anchors. Experiments using corridor testing

data showed an improvement of 27.97% for the case of 5

UWB anchors, 41.98% for the case of 8 UWB anchors and

58.02% for the case of 9 UWB anchors. Experiments with

the NN model trained using lobby training data and tested

on the office and corridor testing data showed significant

improvements in localization accuracy.
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