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Juan Antonio Corrales Ramón3 and Youcef Mezouar1

Abstract— This paper proposes a new control framework
for manipulating soft objects. A Deep Reinforcement Learning
(DRL) approach is used to make the shape of a deformable object
reach a set of desired points by controlling a robotic arm which
manipulates it. Our framework is more easily generalizable
than existing ones: it can work directly with different initial and
desired final shapes without need for relearning. We achieve this
by using learning parallelization, i.e., executing multiple agents
in parallel on various environment instances. We focus our study
on deformable linear objects. These objects are interesting in
industrial and agricultural domains, yet their manipulation
with robots, especially in 3D workspaces, remains challenging.
We simulate the entire environment, i.e., the soft object and
the robot, for the training and the testing using PyBullet and
OpenAI Gym. We use a combination of state-of-the-art DRL
techniques, the main ingredient being a training approach for
the learning agent (i.e., the robot) based on Deep Deterministic
Policy Gradient (DDPG). Our simulation results support the
usefulness and enhanced generality of the proposed approach.

I. INTRODUCTION

The manipulation of deformable objects is currently a
relevant topic in robotics research [1], [2]. In particular, the
manipulation of Deformable Linear Objects (DLOs) has high
relevance in automation applications: examples of interesting
tasks that have been addressed include cable harnessing [3],
[4], USB wire soldering [5], or vegetable plant manipulation
[6]. One possible perspective on this problem is to study
model-based manipulation planning, as done in [7], [8] for
elastic rods. In this paper, we are instead interested in the
online control of the robot to deform a DLO in a desired way
in conditions of high uncertainty and with no knowledge of
the object’s mechanical deformation model. The works that
addressed a similar scenario considered mostly 2D workspaces
[3], [9], [10], while control in 3D is significantly more
challenging due to the higher complexity of object modeling
and perception. Some works addressed control in 3D for
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small deformations [4], [11]. Overall, while classical methods
have achieved important progress in this field, the existing
challenges motivate us to explore a solution based on Deep
Reinforcement Learning (DRL) [12].

Fig. 1. The setup we consider, including an illustration of some elements of
our solution. The robot deforms the soft linear object (green) by making the
selected mesh nodes (i.e., the blue points) reach the desired corresponding
positions (i.e., the red points). The points are marked as crosses. The robot
tip position has to remain within the deformation workspace (i.e., the red
box) for performing the desired deformation. The deformation workspace
used in testing is bigger than the training workspace. The blue box delimits
the robot’s workspace, i.e., the robot’s gripper tip cannot reach a position
out of that box due to the robot’s articular limits.

The robotics community has increasingly adopted the usage
of DRL algorithms to control robots [13]. Most of these
works involve working with rigid bodies with no or negligible
deformations [1], [14]. However, soft object manipulation has
many crucial applications, especially in household robotic
assistance, medicine, and industry [14], [15]. In industrial
automation, DRL has already been identified as interesting
in tasks with high modeling uncertainty and need for high
dexterity. For instance [16], [17] used reinforcement learning
for industrial assembly, albeit without having to deal with
deformable objects as we do here.

In the literature, the works based on DRL for manipulating
deformable objects are, on the one hand, only formulated
for simple tasks [1] such as hanging a cloth [14], [15] or
moving a rope [12]. On the other hand, most of the soft
objects used are 2D [1]: the mesh used to model the object
is a 2D mesh, i.e., formed by 2D polygons such as triangles.
Promoting progress in this regard, SoftGym [18] presented a
set of benchmarks for manipulating soft objects (including
3D objects) using OpenAI Gym [19] and Python interface.

The main drawback of the existing techniques, whether
used in simulation [12], [15] or in real experiments [14], is
that they are not easily generalizable [1], [12], [13]. Their
agent is trained to perform a manipulation from constant
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initial to constant target deformations, and it is not trained
to deal with different configurations. As an example in DLO
manipulation, in [12] the authors control the object shape
from some initial states to some desired deformations that
are not changeable.

This paper describes a new framework for the robotic
control of the shape of DLOs. We use a combination of
state-of-the-art DRL algorithms and techniques to build up
our framework. We use learning parallelization to make our
framework generalizable, i.e., we execute multiple agents
in parallel on various environment instances. We focus our
study on deformable linear objects. The contributions of our
framework are:

1) Its generalizability, i.e., we train the agent only once
(using a specific soft object), and it can deform the soft
object starting from a different initial position and end
up with a different desired shape. Moreover, the agent
can make the soft object reach an untrained position,
i.e., we train the agent on a small workspace and test
it on a bigger one.

2) The complexity of the accomplished task. As shown in
Figure 1, the robot deforms a foam bar by making some
selected mesh nodes reach the correspondent desired
positions in 3D space, potentially involving complex
torsion motions. This is made possible by modeling
the object with a 3D tetrahedral mesh and via our DRL
system design.

We train and evaluate our approach in simulation. Our
evaluation is carried out in diverse conditions and it validates
the capability of the proposed approach.

II. PROBLEM STATEMENT

We address the problem of controlling the deformation of
a DLO using a robot arm that manipulates it. For simplicity,
the robot grasps one end of the object, and the other end
is fixed to the ground. The object is represented by a mesh
and we describe its deformation by a set of selected mesh
nodes. The objective is to control the arm so that the positions
of the selected nodes are driven to prescribed values. The
difficulty of this indirect control problem lies in the fact that
the dynamical model of the system to be controlled is complex
and uncertain. We propose a generalizable architecture to
solve this problem based on DRL. The problem setup is
illustrated in Figure 1 and our solution will be detailed in
the remainder of the paper.

III. BACKGROUND ON SOFT OBJECT MANIPULATION
USING DRL

This section gives background on the problem of soft object
manipulation using DRL. We will focus on discussing aspects
that are particularly important for our application.

A. Representing deformable object shape

The most widely used technique is to represent the soft
object shape through images [15] instead of modeling it
since it is challenging to have a precise model [1]. In [14],
a Neural Network detects the soft object shape thanks to

supervised learning. The disadvantage of using images is
that the computational cost increases, and it is hard to learn
afterward (i.e., via DRL) because the resulting state-space is
large [15]. In [12], a method based on geometry calculations
is proposed to represent the object shape. Another method
is based on selecting some mesh nodes in the object model
describing the deformation and using their positions as state-
space inputs [1], [15]. We preferred to use the latter technique
because it is easier to set up, and it keeps the size of the
space-state relatively small, which facilitates the training.

B. Techniques to deal with the manipulation complexity

The most common technique in the state-of-the-art is to
combine imitation learning with reinforcement learning [1].
Imitation learning is used to reduce the complexity of the
manipulation by using demonstrations given by an expert.
Another method that we mentioned previously is to have
a detailed perception of the object’s shape through images
[15]. The drawback of both methods is that they have a high
computational cost and a large state-space [12], [15]. We
prefer to use only a DRL algorithm and select a few mesh
nodes that describe the deformation of the object as input
to the state-space. This way, our state-space is small, which
makes learning easier.

C. Physics-based simulator

Usually, the training of the agent is done in simulation,
using a physics-based simulation engine [13]. OpenAI Gym
[19] defines an architecture with the main components
needed to train the agent, such as resetting the environment,
making an action, getting an observation of the state of the
environment, and computing the reward. The environment
created on the simulator has to have such components. The
most popular simulators for deformable object manipulation
in the robotics community are MuJoCo [20] and Bullet [21].
We prefer to use PyBullet, the Python interface of Bullet,
because it is powerful and open-source.

IV. COMPONENTS OF OUR DRL FRAMEWORK

In this section, we present standard components of DRL
systems that we use in our framework. We focus on explaining
how we incorporate them in the framework. The elements
include the RL procedure, the Bellman equation, the DDPG
algorithm, and the reward function.

A. RL procedure

We consider a classical trial-and-error RL procedure consist-
ing of an agent (e.g., robot) interacting with the environment
(e.g., the soft object) based on the policy to maximize rewards
on discrete timesteps [22]. In each transition t, the agent starts
from the state st, and takes an action at, which changes the
state to a next state s′t [23]. The state st and the action at are
included in the continuous state space S , and the continuous
action space A, respectively, i.e., st ∈ S and at ∈ A.

The observation the agent got from the environment
describes the changes that happened by moving from state st
to s′t. The reward rt evaluates the action taken at according



Fig. 2. Overview of our proposed framework for controlling the deformation of a soft object via the DDPG algorithm. The structure of the full DRL
system and relevant parameters are displayed.

to the task goal. The agent’s goal is to learn the optimal
policy π∗ : S −→ A throughout the different transitions. A
transition t is made of an action at, a state st, a next state
s′t, a reward rt, and a variable called done, dt, that expresses
if the action achieved the task goal (dt = 1) or not (dt = 0).

B. Bellman equation

The Bellman equation [24] is used to calculate a Q-value
QBt(st, at) that evaluates the action at chosen in a current
state st. The Bellman equation (1) considers the discount
factor (γ ∈ [0.9, 1]) and the next Q-values Q′

t(s
′
t, a

′
t) to

calculate QBt
(st, at). The discount factor controls how much

the DRL learning is considering future rewards. The next Q-
values Q′

t(s
′
t, a

′
t) are calculated for choosing the next action

a′t in the next state s′t.

QBt
(st, at) = rt + γ ×Q′

t(s
′
t, a

′
t)× (1− dt). (1)

C. Off-policy vs on-policy learning

We choose to use an off-policy (as opposed to on-policy)
algorithm because it allows parallelizing the learning [25].
Parallelizing the learning means executing multiple agents
in parallel on various environment instances. The learning
parallelization technique speeds up the convergence, i.e.,
learning can be faster [26], [27]. We will discuss this concept
further in Section IV-F.

D. Deep Deterministic Policy Gradient (DDPG)

The DDPG is a DRL algorithm based on Actor-Critic
methods used for dealing with continuous action spaces [22].
It learns a Q-function and a policy by utilizing off-policy data

and the Bellman equation [15]. The actor network (policy
network) has as input the state st and gives as output the
optimal action at. The critic network (Q-function network)
evaluates the optimality of the action at chosen at state st by
attributing it the Q-values Qt(st, at) at transition t. Figure 2
presents an overview of the framework established to make
the robot deform a soft object using the DDPG algorithm.
Next, we detail the modules in the algorithm.

1) Pre-training procedure: The agent applies the action
at selected by the actor network within the state st to the
environment in order to store the inputs of the environment (at
selected in st) and its outputs (s′t, rt, and dt) that constitute
the transition t in the replay buffer (cf. Figure 2). The training
of the actor and critic networks can only begin once the replay
buffer contains enough transitions to extract a batch. A batch
is composed of elements (i.e., actions a, states s, next states
s′, etc.) coming from several non-sequential transitions. These
transitions are selected randomly.

2) Training procedure: Making the agent learn from pre-
vious memories, i.e., using batches, accelerates learning and
breaks undesirable temporal correlations [28]. The training of
the critic network consists of reducing the error between the
Q-values calculated using the Bellman equation QB(s, a) (cf.
(1)) and the Q-values estimated by the critic network Q(s, a)
(cf. Figure 2). The Q-values number equals the batch size N ,
i.e., the number of selected transitions to train the agent. The
Mean Square Error (MSE) optimization technique is used to
reduce that error, i.e., we use the following Critic loss:

Critic loss = MSE(QB(s, a), Q(s, a)). (2)

The weights of the critic network are updated based on the



Critic loss. The ADAM optimizer [29] is used to calculate the
gradient descent. The Q-values given by the critic network
Q(s, a) are used to evaluate the actions a chosen by the actor
at states s. Then, the actor’s training is based on the Q-value
given by the critic network, i.e., the actor loss is equal to
the Q-value. Since the agent’s training is made from a batch,
one obtains as many Q-values Q(s, a) (cf. Figure 2) as there
are transitions in the batch. The policy loss is calculated by
taking an average of the Q(s, a) [22]:

Policy loss = −Q(s, a) = −
∑N

t=1 Qt(st, at)

N
. (3)

The weights of the actor network are updated based on the
policy loss.

3) Target networks: Using a target network is a technique
to stabilize learning. A target network is a copy of the main
network’s weights held constant to act as a stable target
for learning for a fixed number of timesteps [22]. We use
Polyak averaging to update the target networks (also called
soft updating) once per the main network’s update [30]:

WAT
= τWA + (1− τ)WAT

(4)
WCT

= τWC + (1− τ)WCT
, (5)

where the used terms are:
• WAT

: the weights of the actor target network.
• WA: the weights of the actor network.
• WCT

: the weights of the critic target network.
• WC : the weights of the critic network.
• τ : the Polyak factor.
We choose to utilize the DDPG algorithm as our DRL

algorithm because it is suitable for continuous action spaces.
It has fewer parameters to set than other actor-critic DRL
algorithms. It is a powerful tool to generalize the training,
combined with parallel learning.

E. Reward function
The reward function is the key element that allows us to

control and optimize the agent policy of choosing actions [23].
More details about choosing the suitable reward function are
given in [31], [32]. The simplest dense reward function for
our task is to use a Euclidean distance-based calculation [12].
Therefore, our reward rt is calculated as the average Euclidean
distance between the current positions of the selected mesh
nodes, and their desired positions.

F. Learning parallelization
The actor-critic DRL algorithm A3C [33] proposes to

asynchronously execute multiple agents in parallel on various
instances of the environment. That parallelism decorrelates the
agent learning data since, at any transition, the parallel agents
will be experiencing a variety of different states. Combining
batch extraction and learning parallelization for off-policy
algorithms ensures that the training data are decorrelated
and can be collected faster [26], [27]. Thus, combining both
techniques improves the overall learning time while achieving
a better result from the generalization point of view. That is
why we train the agent using DPPG on a single multi-core
CPU, as in [33].

V. FRAMEWORK IMPLEMENTATION

After having introduced all the necessary DRL components,
we describe how we apply them in our novel framework to
address the specific problem scenario considered (Section II).
We provide the implementation details including all assigned
values for the DDPG and simulation parameters.

A. Framework overview

Before starting the learning phase, we create a deformation
space box within which the robot gripper tip moves to deform
the object, and we record the positions of the selected nodes
Pd in a database. The reason for using a deformation space
box is to record several deformations within a limited space
that is reachable by the gripper tip. We have created two
databases, each based on a box of different size: the training
one, which is smaller, and the testing one, which is larger. All
the details about the databases are mentioned in Section V-C.
The robot’s objective is to manipulate the object so that the
current positions of the selected nodes Pc reach the desired
positions Pd within a tolerance threshold.

Figure 2 gives an overview of our architecture. The
action at given by the DDPG to the agent (i.e., the robot)
is the Cartesian velocity of the gripper tip at ∈ A =
(Vx, Vy, Vz) =⇒ at ∈ R3. The action at is continuous
since each element of the velocity (Vx, Vy, or Vz) can have
any value within the interval [−1, 1]. Then, the action at is
integrated according to the timestep (which is equal to 0.06 s)
to calculate the new gripper tip position (Xn, Yn, Zn). The
classical position-based controller available in Bullet moves
the arm from its current position (Xc, Yc, Zc) to the new one
(Xn, Yn, Zn).

The state st ∈ S is made up of the gripper tip current state
sgt ∈ R6 and the current object shape sot ∈ R6m (cf. (6))
with m the number of selected mesh nodes. sgt includes the
gripper tip position (Xc, Yc, Zc) and velocity (Vx, Vy, Vz).
sot is composed of the positions of the selected mesh nodes
Pc ∈ R3m, and their desired positions Pd ∈ R3m.

st = (sgt , sot) ∈ S = (Xc, Yc, Zc, Vx, Vy, Vz, Pc, Pd). (6)

We calculate the reward rt as the average Euclidean distance
Dt between the current positions of the selected mesh nodes
Pc and their desired positions Pd (cf. (7)). Using subindex i
to denote the position of a single mesh node, we have:

rt = −Dt(Pc, Pd) = −
∑m

i=1 Dt(Pci , Pdi
)

m
. (7)

B. DDPG parameters

The actor, actor target, critic, and critic target Deep
Neural Networks (DNNs) have the same architecture: 3 Fully
Connected (FC) hidden layers, each of which comprises
256 neurons. We use the Rectified Linear Unit (ReLU) as
an activation function. We apply the Tanh function on the
actor outputs at to ensure that the gripper tip velocities
remain in the interval [−1, 1]. We add noise to the action
at using Ornstein–Uhlenbeck noise [22] for the exploration.
We initialize the DNNs of the actor and critic with random
values as in [22]. The actor target and critic target DNNs



weights copy those of the actor and critic DNNs. The ADAM
optimizer is used for gradient updates with learning rates
of αA = 0.0001 for the actor and αC = 0.001 for the
critic. A batch of 128 transitions is randomly sampled from
the replay buffer, containing 50000 transitions. We use a
constant discount factor γ = 0.99 and a constant Polyak
factor τ = 0.01.

Since we use parallel learning, in each episode, 32 agents
are trying to achieve a different deformation during 300
transitions. This means that each agent makes 300 actions
and passes through 300 different transitions to try to achieve
32 different goals (each agent has a different goal). Each
action will have a reward rt, and each agent will have a
global reward equal to the sum of the action reward over the
300 transitions. This leads to having different gradients that
are synchronized among the 32 agents, i.e., there will be one
final gradient equal to the sum of all the 32 gradients. Then
32 agents networks are updated based on that final gradient
so that all these networks keep having the same updated
weights. We train the 32 agents during 63 episodes, which
are equivalent to 32 ∗ 63 = 2016 episodes if we use a single
agent and do not parallelize the training. The training lasts
from 1000 to 1 million episodes in the literature [12], [15].
For training 32 agents, we used 32 CPU cores and the Python
library MPI [34]. All the conducted training lasted less than
three and a half hours.

C. Simulation parameters

We use PyBullet as physics engine of the simulator to
train our agent. The simulator’s physics engine uses the
FEM method to simulate the soft object. The model of our
soft object is built up from a 3D tetrahedral mesh. That
model comprises 200 nodes, 392 tetrahedrons, 789 links,
and 396 faces. The soft object has the following mechanical
parameters: the Young’s modulus is equal to 2.5 MPa, the
Poisson coefficient is equal to 0.3, the mass is equal to 0.2 Kg,
the damping ratio is equal to 0.01, and the friction coefficient
is equal to 0.5. The simulation timestep is equal to 0.003 s.
Note that we chose the timestep to integrate the action at as
equal to 20 ∗ 0.003 = 0.06 s., i.e., sufficiently larger than the
simulation timestep.

We created two databases, each based on a box of different
3D size. The gripper tip moves inside that box to deform
the object, and we recorded those deformations to use them
as desired positions Pd in the training and the testing phase.
Figure 3 shows the small and the large boxes. The small box
size is equal to: 0.15 m on the x-axis, 0.5 m on the y-axis,
and 0.25 m on the z-axis. The large box size is equal to: 0.2
m on the x-axis, 0.8 m on the y-axis, and 0.3 m on the z-axis.
The small box is used to generate the small database, which
contains 930 deformations. The large box is used to generate
the large database, which includes 2651 deformations. The
small database is used for the training, and both databases
are used for the testing.

Fig. 3. The left plot presents the small box (in red) used to generate the
small database. The right plot shows the large box (in red) used to generate
the large database.

VI. EXPERIMENTATION

This section presents our experimental results. We have
done three trainings, to control: two mesh nodes, four mesh
nodes, and six mesh nodes. We used an average distance error
threshold of 0.05 m. As mentioned in the previous section,
the training was parallelized: 32 agents were trained each
for 63 episodes, leading to having 2016 episodes in total.
We trained the agent using the small database to extract the
desired deformations, i.e., the desired positions Pd of the
mesh nodes. During the training, the environment was reset
to the initial configuration (the robot and the object returned
to their initial position) after each episode. Figure 4 shows
the average reward obtained by the 32 agents in each episode
when controlling two mesh nodes, four mesh nodes, and six
mesh nodes. As we can notice from Figure 4, there is no
need to smooth the learning curves, as in the literature [12],
[15]. This is thanks to the stability of the learning due to its
parallelization.

Fig. 4. Average reward obtained by the 32 agents in each episode when
controlling two mesh nodes, four mesh nodes, and six mesh nodes.

For the testing phase, all the results are calculated for
1000 testing episodes with 30 steps, i.e., the robot can take
a maximum of 30 actions to achieve the deformation. We
test the three trainings for an average distance error threshold
of 0.05 m and 0.03 m. We evaluate them using the small
and the large databases to extract the desired deformations.
We assess them finally with and without reinitializing the
environment. All these results are presented in Table I. In
Table I, the column ”done” indicates the percentage of the
agent’s success to achieve the desired deformations. The



Fig. 5. Example of the robot deforming the soft object: four mesh nodes reach their desired positions with an average distance error threshold of 0.05 m.

Mesh nodes number Database Testing error threshold (m) Done (%) Mean average distance error ±σ (m) Best (m)

With reinitialization 2 Small 0.05 99.5 0.03010 ± 0.00591 0.01156

0.03 80.2 0.02987 ± 0.00993 0.01156

Large 0.05 73.2 0.05886 ± 0.02730 0.02724

0.03 21.1 0.06866 ± 0.03214 0.01862

4 Small 0.05 99.8 0.04251 ± 0.00631 0.01012

0.03 88.7 0.02816 ± 0.00758 0.01012

Large 0.05 97.2 0.04386 ± 0.00840 0.02130

0.03 46.8 0.04650 ± 0.02306 0.01309

6 Small 0.05 99.1 0.04473 ± 0.00685 0.01009

0.03 73.4 0.02796 ± 0.01183 0.01009

Large 0.05 79.0 0.05144 ± 0.01506 0.02779

0.03 20.0 0.06415 ± 0.02563 0.01548

Without reinitialization 2 Small 0.05 87.9 0.04530 ± 0.01142 0.01579

0.03 47.5 0.04107 ± 0.01808 0.01236

Large 0.05 44.9 0.07411 ± 0.04454 0.01642

0.03 13.9 0.08038 ± 0.04536 0.02438

4 Small 0.05 93.7 0.04486 ± 0.01215 0.00569

0.03 45.2 0.05015 ± 0.02732 0.01399

Large 0.05 72.8 0.05365 ± 0.02201 0.01506

0.03 21.0 0.05873 ± 0.02551 0.01343

6 Small 0.05 36.8 0.08669 ± 0.03817 0.02106

0.03 15.7 0.07478 ± 0.03371 0.01826

Large 0.05 64.8 0.05914 ± 0.02447 0.02771

0.03 15.2 0.06244 ± 0.02655 0.01537

TABLE I
RESULTS OF ALL THE CONDUCTED TESTS

percentage is calculated on the 1000 episodes with 30 steps.
The ”Best” column reveals the minimum distance error
obtained within the 1000 episodes.

Figure 5 presents an example of the robot deforming a
soft object to reach a new deformation on which the robot
was not trained. Other deformations are presented in the
video available on https://youtu.be/MbFCS59ZZ_4.
As we can notice from Table I, in the case that we reinitialize
the environment and use the same database and distance error
threshold as in training, the agent achieves in the worst-case
scenario 99.1 % deformations. If we only change the distance
error threshold to 0.03 m, the agent succeeds in attaining
in the worst-case scenario 73.4 % deformations. If we only
change the database to the large one, the agent realizes in the
worst-case scenario 73.2 % deformations. For the last test,
we do not reinitialize the environment and we keep the other
parameters constant. Specifically, the initial position of the
soft object in the current episode is the desired one achieved
by the robot in the previous episode. Therefore, in order
to succeed in this scenario the agent needs to have learnt
a stronger, more general policy. In this more challenging
scenario, the robot succeeds in making 87.9 % deformations

while controlling two mesh nodes, 93.7 % deformations while
controlling four mesh nodes, and 36.8 % deformations while
controlling six mesh nodes. We can observe that the results
for four mesh nodes are better than for two mesh nodes. Our
interpretation is that describing the deformation of an object
using only two mesh nodes is not precise enough, hence the
agent has difficulty generalizing what it has learned during
training.

The results prove that our framework is generalizable.
We trained the agent using a small deformations database,
with a constant distance error threshold and reinitializing
the environment after each episode. The agent can be more
precise in the testing phase than in training, as shown by our
tests with lower distance error threshold. The agent achieves
other deformations than those used during training, without
needing to be retrained. The agent makes the soft object
reach the desired deformation even if the object position
is not reinitialized. Our method presents a limitation when
we combine the changes in the testing phase. Sometimes
it performs well, such as when we test the four mesh
nodes control on the large database without reinitializing
the environment: in this case the robot achieves 72.8 %

https://youtu.be/MbFCS59ZZ_4


deformations. Sometimes the test fails, such as when we
test the two mesh nodes control on the large database with
a distance error threshold of 0.03. The robot achieves only
21.1 % deformations in this case.

The entire code and results of tests conducted
on another database are available on https:
//github.com/MelodieDANIEL/robotic_
control_of_DLO_using_DRL.

VII. CONCLUSION AND FUTURE WORK

We have proposed a new control framework for the
manipulation of soft objects, addressing a DLO deformation
control task. We have assessed through experiments that our
framework is generalizable, i.e., the agent can deform the
soft object starting from a different initial position and end
up with a different desired shape without having to relearn.
We verified this by training the agent on a small deformations
database and testing it on a large deformations database.

We note that there are still some points to improve in future
work. Firstly, we want to use transfer learning techniques
for sim-to-real, such as domain randomization, to test our
framework on real experiments. Secondly, we want to evaluate
our framework on other types of deformable objects.
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