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Abstract— Intention inference of autonomous vehicles is
crucial to guarantee safety and to mitigate risk. This paper
reports a performance objective extraction from expert’s data
trajectories for experience transference and to uncover the
hidden cost associated to the intent. The algorithm is inspired
in the hippocampus learning system for experience exploitation
that exhibits the human brain. The hippocampus is responsible
of memory and to store past experiences to enable transfer
learning and fast convergence.

The proposed algorithm extracts, from expert’s data, the
performance matrices associated to a hidden utility function
using a complementary approach based on an off-policy policy
iteration and a matrix extraction inverse reinforcement learning
algorithms. Exact performance extraction is obtained by adding
a constraint in terms of the measurements of the utility function
in a batch-least squares algorithm. Convergence of the proposed
approach is verified using Lyapunov recursions. Simulation
studies are carried out to demonstrate the effectiveness of the
proposed approach.

I. INTRODUCTION

In the last years the number of datasets [1], [2] regarding

to regression, classification, and control problems has been

increasing due to the high capabilities that exhibit artificial

intelligence (AI) and machine learning (ML) algorithms [3],

[4] for decision making in a human-behavior perspective [5],

that is, they have generalization and inference properties.

In a control perspective, these data belong to states, inputs,

or any signal of interest that depicts a desired performance

or an expert behavior [6], [7]. This performance/behavior

or intention objective is in most cases hidden and requires

knowledge of the physics of the system to extract it; this

is known as physics-informed intention inference or model-

based inference. Furthermore, model-free approaches [8]

cannot infer adequately the performance objective due to

the lack of constraints [9]. The main problem regards in

extracting the performance from expert’s data to enable

transfer learning [10] and intention inference.

The performance objective is directly related to a cost,

utility function, or reward to be optimized in an infinite or

discounted horizon. This function serves as a stimuli [11] that

receives the system to adjust the control actions similarly as

humans do [12], [13]. Reinforcement Learning (RL) [14],

[15] is one of the main machine learning algorithms that
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seeks to optimize a reward function using either model-

based, e.g., Linear Quadratic Regulator (LQR) and Adaptive

Dynamic Programming (ADP) algorithms [16]–[18], critic

[19] and actor-critic algorithms [20]–[22]; or model-free

algorithms, e.g., Q-learning [23]–[25] and policy iterations

[26] algorithms. These algorithms obtain the optimal control

policy by using a pre-defined performance objective which

differs from the expert’s performance objective/reward. In

addition, the reward function is considered as the most

succinct, robust [27], and transferable definition of the task.

This is why it is of high importance to extract the hidden

reward function from the expert’s data. There exists several

model-based approaches to infer the performance matrices

associated to a quadratic performance objective. In general,

these approaches solve an inverse optimal control (IOC)

problem [28]–[30] and its model-free version is known as

inverse reinforcement learning (IRL) [31] which are gener-

ally solved by linear (LP) or quadratic programming (QP)

algorithms under a binary reward function which is a very

restrictive approach [32].

In the last decade, a novel perspective known as human-

behavior learning [33] has been used as a general approach

that combines different sources of knowledge to enhance

decision making [34]. This approach models the three main

learning systems of the brain cortex: the hippocampus, the

neocortex, and the striatum. The hippocampus is related to

memory and experiences [35]–[37] and enables fast learning

and experience transference. The neocortex provides of well-

distributed structures [38], [39] for pattern dependent learn-

ing which is slow in comparison to the hippocampus. The

striatum [40] is mainly a communication channel that relates

the hippocampus and neocortex to enable complementary

learning that enhances decision making [41]–[43].

In this context, expert’s data is directly associated to the

hippocampus learning system. The hippocampus is respon-

sible to teach the neocortex the best way to execute a task

[44], [45]. Analogously, the expert’s data are used as a

demonstration of how the system has to behave. Further-

more, the extraction of the performance objective enables:

i) experience transference and ii) intention inference. In

this paper, a performance objective extraction based on a

hippocampal learning approach is proposed. The algorithm

is able to extract the hidden performance objective using

only expert’s data that models an optimal desired behavior.

The approach is divided in two main parts: 1) an off-policy

learning algorithm that computes an optimal control policy

in terms of an initial performance objective function and 2)

an objective extraction algorithm that updates the objective
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function in each episode. Convergence to the real expert’s

performance is achieved by adding a constraint in terms of

the measurements of the reward/utility function. Simulations

studies are carried out to verify the proposed approach.

The main contributions of this paper are: i) a model-

free performance objective extraction for linear systems, ii)

the estimates of the performance matrices converge to the

expert’s matrices by incorporating constraints in the learning

law, iii) convergence of the proposed approach is verified

using Lyapunov recursions.

Throughout this paper, N, Z+, R, Rn, Rn×m denote the

spaces of natural numbers, positive integers, real numbers,

real n-vectors, and real n ×m-matrices, respectively; In ∈
R

n×n denotes an identity matrix; ⊗, ⊗̄, vec(A), and vech(A)
defines the Kronecker product, the symmetric Kronecker

product, the matrix vectorization, and the half-vectorization;

the norms ‖A‖ =
√

λmax(A⊤A) and ‖x‖ stand for the

induced matrix and vector Euclidean norms, respectively;

where x ∈ R
n, A,B ∈ R

n×n and n,m ∈ N.

II. HIPPOCAMPUS LEARNING

The hippocampus is directly related with experiences and

memory. These experiences are generally stored in datasets

that provide an effective way to exhibit a desired performance

under a hidden objective function or reward function. Whilst

many reinforcement learning architectures use online data

measured from system trajectories to derived the optimal

control policy, the hippocampus learning uses stored data

to derived new control policies under iterative objective

functions until the same expert policy is achieved.

Assume we collect expert’s data [41] from the mea-

surements of the states xe ∈ R
n, the inputs ue ∈ R

m,

and the values of the utility function ξ(xe, ue) ∈ R of

an expert trajectory in a time t = kT with sampling

period T > 0 and k ∈ Z
+. These data are stored in

the following matrices Xe = [xe(0), · · · , xe((k − 1)T )] ∈
R

n×k, Ue = [ue(0), · · · , ue((k − 1)T )] ∈ R
m×k, and

Ξ = [ξ(0), · · · , ξ((k − 1)T )] ∈ R
1×k. The states xe and

control input ue verify the following dynamic equation

ẋe = Axe +Bue. (1)

where A ∈ R
n×n and B ∈ R

n×m are the matrices that define

the dynamics of the unknown linear system. In addition, the

expert’s input ue is the control input that minimizes the utility

function ξ(xe, ue) in an infinite horizon [46] and satisfies the

following value function

V (xe) =

∫ ∞

t

ξ(xe, ue)dτ

=

∫ ∞

t

(x⊤
e Sexe + u⊤

e Reue)dτ
(2)

where Se = S⊤
e ≥ 0 ∈ R

n×n and Re = R⊤
e > 0 ∈ R

m×m

define the unknown performance objective matrices of the

utility function. In terms of the classic ADP/RL formulation,

the optimal value function V ∗(xe) is quadratic in the state

[47], i.e.,

V ∗(xe) = x⊤
e Pexe, (3)

for some positive definite kernel matrix Pe = P⊤
e > 0 ∈

R
n×n which is the solution of the following algebraic Riccati

equation [48]

A⊤Pe + PeA− PBR−1
e B⊤Pe + Se = 0. (4)

The Hamiltonian associated to (2) with respect to (1) and

(3) is

H(xe, ue) = x⊤
e Pe(Axe +Bue) + (Axe +Bue)

⊤Pexe

+x⊤
e Sexe + u⊤

e Reue = 0.
(5)

Applying the stationary condition
∂H(xe,ue)

∂ue

= 0 [49] and

solving for ue yields the optimal control policy

u∗
e = −Kexe = −R−1

e B⊤Pexe, (6)

where Ke = R−1
e B⊤Pe ∈ R

m×n is the optimal stabilizing

gain. Notice that Ke cannot be computed since Re, B, Pe

are unknown. However, we can compute an estimate of Ke

denoted by K̂e ∈ R
m×n using only the control input and

states measurements from the expert trajectory as

Ue = −K̂eXe

K̂e = −UeX
⊤
e (XeX

⊤
e )−1. (7)

The equation (7) is a least-squares (LS) solution for K̂e

which is affected directly by the measurement noise. To

overcome this issue, let construct the following matrix

A =

[
Xe

Ue

]
∈ R

(n+m)×k. (8)

Then, we can use a matrix approximation using singular-

value-decomposition (SVD) or principal component analysis

(PCA) [1] to maintain only the relevant dimensions associ-

ated to the largest singular values and delete the dimensions

associated to the measurement noise.

At this point, we cannot apply any iterative algorithm since

the expert’s data is fixed. To fix this issue, an additional

control input can be added to (1) as

ẋe = Axe +B(ue + v
j
i − v

j
i ), v

j
i = −K

j
i xe,

= (A−BK
j
i )xe +B(ue +K

j
i xe)

= Akxe +B(ue +K
j
i xe)

(9)

where K
j
i ∈ R

m×n, P
j
i ∈ R

n×n, Si ∈ R
n×n, and

Ri ∈ R
m×m denote the control gain, kernel matrix, and

performance matrices which will be iteratively updated in

each step j of episode i until they converge to the optimal

values, that is, K̂e, Pe, Se, and Re. The Hamiltonian (5) in

terms of (9) under the new control policy vj+1 = −Kj+1xe

where K
j+1
i = R−1

i B⊤P
j
i yields the following Bellman

equation [50]

H(xe, ue) =x⊤
e Sixe + x⊤

e P
j
i (Akxe +B(ue +K

j
i xe))

+ (Akxe +B(ue +K
j
i xe))

⊤P
j
i xe

− 2(ue +K
j
i xe)

⊤RiK
j+1
i xe

+ x⊤
e (K

j
i )

⊤RiK
j
i xe = 0. (10)



The performance objective is directly related to the un-

known matrices S and R, that is, they determine the impor-

tance of each state and boundedness in the optimal control

design. The performance matrices S and R will be extracted

iteratively in each episode from the expert’s data. Integrating

(10) in a time window of length [t : t + T ] for some small

T > 0 gives

x⊤
e (t+ T )P j

i xe(t+ T )− x⊤
e (t)P

j
i xe(t)

− 2

∫ t+T

t

(ue +K
j
i xe)

⊤RiK
j+1
i xedτ

=−

∫ t+T

t

x⊤
e (Si + (Kj

i )
⊤RiK

j
i )xedτ (11)

A least-squares (LS) algorithm is used to find the optimal

kernel matrix P
j
i and the optimal control gain K

j
i associated

to the initial performance matrix Si. Then, a system of

equations composed of κ equations are constructed from the

collection of measurements of the extended trajectories (9).

The following matrices are constructed

z =

[
xe(τ)⊗̄xe(τ)

∣∣∣
t+T

t
, · · · , xe(τ)⊗̄xe(τ)

∣∣∣
t+κT

t+(κ−1)T

]⊤
,

Ixx =

[∫ t+T

t

xe ⊗ xedτ, · · · ,

∫ t+κT

t+(κ−1)T

xe ⊗ xedτ

]⊤

,

Ixu =

[∫ t+T

t

xe ⊗ uedτ, · · · ,

∫ t+κT

t+(κ−1)T

xe ⊗ uedτ

]⊤

So, the system of equations written in matrix form can be

solved as

ΦΘ = Ω

Θ = (Φ⊤Φ)−1Φ⊤Ω, (12)

where

Θ =

[
vech(P j

i )

vec(Kj+1
i )

]
∈ R

p, p =
1

2
n(n+ 1) + nm

Φ =
[
z,−2[Ixx(In ⊗ (Kj

i )
⊤Ri) + Ixu(In ⊗Ri)]

]
∈ R

κ×p

Ω = −Ixxvec(Si + (Kj
i )

⊤RiK
j
i ) ∈ R

κ

If the regressor Φ fulfils a persistent excitation condition

[51], then both the kernel matrix P
j
i and the control gain

K
j
i converge to their optimal value respect to the initial

performance matrices Si and Ri. In the next section the

performance matrices are updated and extracted from the

expert’s gain K̂e. Convergence of a similar approximation of

the batch-least squares algorithm (12) is discussed in [26].

III. PERFORMANCE MATRIX EXTRACTION

The hippocampus learning finds an optimal/near optimal

control gain K
j
i in terms of the initial performance matrices

Si and Ri. For instance, let write K
j
i as Ki and P

j
i as

Pi since we will work at the episode level. Define the

gain error between the approximate expert gain K̂e and the

hippocampus gain Ki as

ek = Ki − K̂e

= R−1
i B⊤Pi + UeX

⊤
e (XeX

⊤
e )−1.

(13)

The kernel matrix Pi is the only free parameter than can

be adjusted to reduce the gain error ek. Therefore, the first

main goal is to find the kernel matrix that minimizes the

following cost index

E = tr{e⊤k ek} (14)

Taking the partial derivative of E respect to the kernel

matrix Pi and equalling to zero gives

∂E

∂Pi

= tr{BR−1
i ek + e⊤k R

−1
i B⊤} = 0.

Two considerations are needed: i) the solution of the

optimization problem is a new kernel matrix Pi = P⊤
i >

0 ∈ R
n×n which is only used to extract the performance

matrices S and R, and ii) the term R−1
i B⊤ = KiP

−1
i which

holds due to the invertibility of the kernel matrix Pi. Then

the kernel matrix can be computed using the following one-

step gradient rule

Pi = Pi − α[P−1
i K⊤

i ek + e⊤k KiP
−1
i ] (15)

where α > 0 is the learning rate of the gradient rule. At

instance, a LS rule cannot be used to compute the kernel

matrix P since it requires to solve a linear Lyapunov equation

[19] of the form M⊤P+PM+Q = 0, for some matrix M ∈
R

n×n and Q ∈ R
n×n. However, matrix Q is not positive

definite and hence multiple solutions for Pi can be obtained

which are not necessarily positive definite.

Notice that if P̂i = Pi implies that the gain error ek =
0m×n which means that Ki is equivalent to K̂e. From this

fact, is easy follow that

R−1
i B⊤ = R−1

i B⊤

KiP
−1
i = KiP

−1
i

Ki = KiP
−1
i Pi

(16)

for some stabilizing gain Ki ∈ R
m×n which is associated

to the updated kernel matrix Pi. After the updated kernel

matrix Pi and gain Ki are found, then we can follow a similar

approach to the hippocampus learning algorithm to estimate

the performance matrices Si and Ri associated to the expert’s

data using an inverse reinforcement learning algorithm (IRL).

We can build a new extended dynamics from the expert’s

trajectories as

ẋe = Axe +B(ue + wi − wi), wi = −Kixe,

ẋe = Awxe +B(ue +Kixe),
(17)

where Aw = A−BKi. Then the Hamiltonian associated to

the new extended dynamics (17) is

H(xe, ue) =x⊤
e Si+1xe + x⊤

e Pi(Awxe +B(ue +Kixe))

+ (Awxe +B(ue +Kixe))
⊤Pixe

+ 2u⊤
e Ri+1wi − w⊤

i Ri+1wi = 0. (18)

The gain Ki and the kernel matrix Pi in (18) are fixed.

Integrating (18) in a time window of length [t : t+ T ] gives
∫ t+T

t

x⊤
e Si+1xedτ + 2

∫ t+T

t

η⊤i Ri+1widτ

=x⊤
e (t)Pixe(t)− x⊤

e (t+ T )Pixe(t+ T )
(19)



where ηi = ue−
1
2wi. To find the next performance matrices

Si+1 and Ri+1, a set of ι linear equations are constructed

and subsequently a batch-least squares algorithm is applied.

Define the following matrices

Ixs =

[∫ t+T

t

xe⊗̄xedτ, · · · ,

∫ t+ιT

t+(ι−1)T

xe⊗̄xedτ

]⊤

Iuw =

[∫ t+T

t

ηi ⊗ widτ, · · · ,

∫ t+ιT

t+(ι−1)T

η⊤i ⊗ widτ

]⊤

In contrast to the hippocampus learning, we cannot com-

pute the performance matrices Si+1 and Ri+1 simultaneously

because multiple solutions can be obtained, furthermore

some solutions cause divergence in the hippocampus learn-

ing. To solve this issue we need to add constraints in the

performance matrices so, the easiest constraint is to take into

account the value of the cost ξ(xe, ue) using the expert’s

trajectories. Therefore, we can collect ι samples of the

expert’s utility function Ξ(xe, ue) and define the following

matrices

Ixξ =
[
xe(t)⊗̄xe(t), · · · , xe(t+ ιT )⊗̄xe(t+ ιT )

]⊤
,

Iuξ =
[
ue(t)⊗ ue(t), · · · , ue(t+ ιT )⊗ ue(t+ ιT )

]⊤
.

Then, the ι samples of Ξ(xe, ue) denoted as Ξ̄(xe, ue) ∈
R

1×ι ⊆ Ξ(xe, ue) are written as

vec(Ξ̄(xe, ue)) = Ixξvech(Si+1) + Iuξvec(Ri+1) (20)

The system of equations written in matrix form is solved as

ΣΨ = Π

Ψ = (Σ⊤Σ)−1Σ⊤Π, (21)

where

Ψ =

[
vech(Si)
vec(Ri)

]
∈ R

s, s =
1

2
[n(n+ 1) + 2m2]

Σ =

[
Ixs 2Iuw
Ixξ Iuξ

]
∈ R

2ι×s

Π =

[
−Ixxvech(P)
vec(Ξ(xe, ue))

]
∈ R

2ι

By adding the constraint we are able to extract both

performance matrices and guarantee convergence to their

real values under the fulfilment of a PE condition. If the

restriction is not added we can only estimate one perfor-

mance matrix but convergence to their real values cannot be

guaranteed.

The following theorem establishes the convergence of the

proposed performance extraction algorithm as the number of

episodes increases infinitely.

Theorem 1: The matrices Si+1 and Ri+1 of the perfor-

mance objective converge if the LS rule (21) restricts the

possible solutions of the performance matrices as the number

of episodes i increases. Here convergence mean that

lim
i→∞

Si = lim
i→∞

Si+1 and lim
i→∞

Ri = lim
i→∞

Ri+1.

Furthermore, the constraint in (21) implies that the matrices

Si+1 and Ri+1 converge to the expert’s performance matri-

ces.

Proof: A Lyapunov recursions approach will be used

to prove Theorem 1. The kernel matrix Pi of the inverse re-

inforcement learning part (18) satisfies the following Riccati

equation

−Si+1 =A⊤Pi + PiA− PiBR−1
i+1B

⊤Pi. (22)

Equivalently, the hippocampus learning model verifies the

following Riccati equation in the episode i+ 1

−Si+1 = A⊤Pi+1 + Pi+1A− Pi+1BR−1
i+1B

⊤Pi+1. (23)

Substituting (23) in (22) gives

A⊤Pi+1 + Pi+1A− Pi+1BR−1
i+1B

⊤Pi+1

=A⊤Pi + PiA− PiBR−1
i+1B

⊤Pi. (24)

The rule (15) updates the kernel matrix P in each episode

i such that the error ek is minimized, that is, Ki → K̂e,

then lim
i→∞

∂Ei

∂Pi

= 0. From the above result it follows that

lim
i→∞

Pi = Pi. Then

A⊤Pi+1 + Pi+1A− Pi+1BR−1
i+1B

⊤Pi+1

=A⊤Pi + PiA− PiBR−1
i+1B

⊤Pi ± PiBR−1
i B⊤Pi.

(25)

Hence, for an infinite number of episode i the Riccati

equation (25) is simplified to

lim
i→∞

(Si+1 − PiBR−1
i+1B

⊤Pi) = lim
i→∞

(Si − PiBR−1
i B⊤Pi),

(26)

Notice that the above equality has multiple solutions for

the performance matrices Si and Ri. However, the constraint

(20) asserts that Si and Ri have unique values in the limit

such that the only way that (26) is fulfilled is when

lim
i→∞

Si+1 = lim
i→∞

Si, lim
i→∞

Ri+1 = lim
i→∞

Ri.

This implies that the kernel matrix also converges, that

is, lim
i→∞

Pi+1 = lim
i→∞

Pi and consequently the control gain

converges, lim
i→

Ki+1 = lim
i→∞

Ki. This completes the proof.

IV. SIMULATION STUDIES

The F-16 aircraft dynamics used in [21] was considered

as case of study. The following matrices are used

A =



−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1


 , B =



0
0
1


 .

Assume we have a collection of data measurements of

the states, control input, and utility function of an expert

trajectory. These data are collected under the following

performance matrices Se = 10I3 and Re = 1. Fig. 1(a) and



Fig.1(b) exhibit the expert’s trajectories. The optimal kernel

matrix and gain are

Pe =



13.7583 11.1733 −0.5819
11.1733 13.8172 −0.6719
−0.5819 −0.6719 2.3524




Ke =
[
−0.5919 −0.6719 2.3524

]
.

Assume measurements without noise. So, K̂e is equivalent

to the expert’s gain Ke. The initial performance matrices are

set to S0 = I3 and R0 = 0.8. The learning rate is manually

tuned until the best convergence results are achieved. The

final learning rate is α = 0.5. Fig. 1 shows the results of the

performance extraction algorithm.
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Fig. 1. Results for diagonal performance matrices

Fig. 1(c) shows the convergence results of the the gain

matrix Ki, the kernel matrix Pi, the weight matrix Si, and

the weight matrix Ri. Convergence of the matrices means

the any of the above matrices in episode i + 1 is equal

to its previous value in episode i. Convergence to the real

expert’s values can only be guaranteed by adding constraints.

Fig. 1(d) shows the estimates of the each element of the

performance matrices where we can observe the convergence

of the estimates to the real expert’s weight matrices, that is,

limi→∞ Si = Se and limi→∞ Ri = Re.

The approach is further verified by considering non-

diagonal expert’s performance matrices. Consider that the

expert’s data are obtained from an optimal control law using

the next performance matrices

Se =



5 2 1
2 3 2
1 2 4


 , Re = 2.

Fig. 2(a) and Fig. 2(b) exhibit the expert’s trajectories

under the new performance matrices. The optimal kernel

matrix and control gain for the above matrices are

P =



8.8656 7.9481 −0.1
7.9481 8.0622 0.1703
−0.1 0.1703 1.4469


 ,

Ke =
[
−0.05 0.0852 0.7235

]
.

The same initial performance matrices are considered

and also the same learning rate. Fig. 2 shows the results

of the proposed performance extraction for non-diagonal

performance matrices. Notice that we are able to extract the

same performance matrices by using only the expert’s data.

Furthermore, the addition of the constraint associated to the

values of the utility function avoids the multiple solutions

problem.
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Fig. 2. Results for non-diagonal performance matrices

V. CONCLUSIONS

This paper reports a performance objective extraction us-

ing data from expert’s trajectories. The algorithm is inspired

in the hippocampus functionality to store past memories and

experiences for experience transference to facilitate decision

making. Two steps are considered: an hippocampus learning

algorithm that estimates an optimal control policy from initial

performance matrices and an extraction algorithm that obtain

the improved performance matrices iteratively until they

converge to the real expert’s performance matrices. Unique

solutions are guaranteed by adding constraints to the perfor-

mance matrices. This is achieved by using the measurements

of the expert’s utility function. Simulation studies are carried

out to verify the proposed algorithm under diagonal and non-

diagonal performance matrices. Further work will investigate

which other constraints can be used when the measurement

of the utility function is not available. Furthermore, non-

quadratic utility functions will be investigated to enhance

the scope of the approach.
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