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Towards Online Socially Acceptable Robot Navigation
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Abstract— When robots move through social spaces (i.e.,
environments shared with people) such as museums and
shopping centers, they must navigate in a safe and socially
acceptable manner to facilitate their inclusion and adoption.
Therefore, robots operating in such settings must be able
not only to avoid colliding with nearby obstacles, but also
to show socially accepted behaviors, e.g., by minimizing the
disruption in the comfort zone of nearby people. While there
are well known approaches for social robot navigation, they
are mostly based on social force models, which suffer from
local minima. Meanwhile, other robot navigation frameworks
do not consider social aspects. In this paper, we present an
online social robot navigation framework, which is capable of
generating collision free and socially acceptable paths online in
uncontrolled crowded environments. Our proposed framework
employs a modified sampling-based planner together with a
new social relevance validity checking strategy. To evaluate our
approach, we have designed a simulated social space in which
the Pepper robot can safely navigate in a socially accepted
manner. We compare our approach with other two alternative
solutions while measuring specific social navigation metrics.

I. INTRODUCTION

New and potential applications of service robots (e.g., a
robot guide in hospitals or a waiter robot) require them to
navigate around people in narrow and indoor dynamic envi-
ronments [1] (see Fig. 1). Such applications pose additional
challenges and considerations, such as maximizing human
safety and comfort of nearby people [2]. Therefore, social
robot navigation differs from other robot navigation cases in
which the environment includes static and dynamic obstacles,
but no social aspects must be considered when planning the
paths that guide the robots (e.g., underwater exploration [3]).

In general, socially aware robot navigation considers com-
fort, naturalness and sociability [4], and it refers to robots
that are capable of moving around while considering social
aspects, for example, maintaining a comfortable distance to
nearby people [5]. Kivrak et al. [6], for instance, describe a
social compliant robot as one that moves around people while
taking them into account as social entities, and not only as
simple obstacles, thus requiring to minimize the discomfort
of an individual or group of people. Therefore, since humans
usually follow certain social conventions and behaviors, it is
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Fig. 1. Start-to-goal query from the Start point (lower right side) and the
Goal destination (upper left side).

important for robots to exhibit and respect such conventions
and behaviors while navigating social spaces [7].

Prior work has tried to generate socially-aware navigation,
and an important number of the existing approaches are
based on the Social Force Model (SFM) that was introduced
by Helbing et al. [8]. The SFM seeks to express the social
human navigation behavior as a resultant force, which is
calculated as the sum of repulsive and attractive forces. While
objects and pedestrians exert repulsive forces depending on
factors such as proxemics and gaze direction, a desired
destination exerts an attractive force [9]. Each of the forces
is dependent on a scalar factor (also known as force factor)
that controls the force magnitude. The total resulting force
is finally used to calculate the desired velocity vector, which
corresponds to the motion that a person would follow.

Nevertheless, SFM-based approaches suffer from limi-
tations that are well known in other potential-field-based
planning approaches, e.g., the possibility of encountering
local minima that do not correspond to the final goal, thus
preventing the robot from reaching the intended destina-
tion [10]. In this paper, we present an online social robot
navigation framework that is capable of solving requests to
guide a robot from a start to a goal position (i.e., start-to-
goal queries), while also providing social acceptable paths
in low controlled and crowded social spaces. To do so, our
framework seeks to minimize the potential discomfort to
surrounding people. Our approach works in an online manner



and avoids collisions with surrounding obstacles (including
moving people). Our framework is composed of three mod-
ules: 1) a world modeling module that provides information
about the obstacles and the agents in the environment, 2)
a planning module to generate collision-free and socially
admissible paths, and 3) a differential control module that
allows the robot to follow the calculated path.

In proposing this novel framework, this paper makes the
following contributions. First, we present an online social
robot navigation framework that is capable of solving start-
to-goal queries in social spaces, which uses a cost optimiza-
tion function that is based on the individual’s human comfort
zone model, thus allowing to generate socially accepted
robot motions. Second, we have proposed a social relevance
validity checking strategy to reduce needless computation
consumption by considering the limited sensors’ detection
range. Lastly, we have tested and compared our approach in
simulation against two alternative approaches, including the
widely used SFM.

II. RELATED WORK

Social robot navigation approaches can be classified in two
main categories: those that are based on the SFM, and those
that use robot path planning approaches which formulate
social criteria as optimization cost functions.

A. SFM-based Approaches

The originally proposed SFM can be extended by incorpo-
rating additional forces to obtain different desired behaviors,
thus resulting in what is commonly referred to as Extended
Social Force Model (ESFM). One example of ESFM was
proposed by Kivrak et al. to model new collision predic-
tion repulsive force based on the agents’ velocities, future
distance, bearing angle and time of collision [11]. Other
modifications of SFM include a combination of ESFM and
Hybrid Reciprocal Velocity Obstacle (HRVO) [12], which
considers the desired output velocity to avoid collisions [13].
This latter approach also allows considering groups of people
and human-objects interactions (e.g., a person interacting
with a TV).

Similarly, Ferrer et al. [14] presented another ESFM that
allows a robot to follow a person, where both navigate an
outdoor environment among obstacles and other pedestrians.
This approach includes an anisotropic factor that scales the
interaction forces depending on the velocity and distance
between the robot and nearby people. Their work makes use
of a learning-based method to modify the ESFM’s parameters
and force factors according to the environment.

Although prior works [6], [13], [14], [15] have proved
to be effective in several cases, they inherit some common
limitations from the originally proposed SFM. First, they
can suffer from local minima induced by both obstacles and
pedestrians [10]. Second, SFM-based approaches consider an
unrealistic infinite range of perception to detect surrounding
obstacles and people, thus assuming that every social agent
in the scene can be tracked all the time, which is not the case

with a real-world robot. Lastly, this group of approaches de-
pends on several parameters that are heuristically determined
and cannot be easily generalized for different scenarios.

B. Robot Path Planning Based Approaches

Other common robot path planning approaches (e.g.,
search-based and sampling-based methods [16]) have been
used to solve start-to-goal social robot navigation queries.
Patompak et al. [17] proposed the Social Relationship Model
(SRM), another ESFM, which takes into consideration peo-
ple’s characteristics like motion velocity, gender as well as a
social distance factor that is based on whether the individuals
are related to each other or not. SRM results in a cost
function that is used by a T-RRT algorithm [18] to generate
socially acceptable paths. While the presented results show
efficacy in solving the given start-to-goal queries, they limit
their analysis to the path quality in terms of its length,
without discussing other relevant metrics in social navigation.
Furthermore, their experiments assume static environments,
which is unrealistic in social spaces.

Similarly, Ngo et al. [19] uses a human interaction detec-
tion module, a personal space model and Truong’s Dynamic
Social Zone (DSZ) [20] to establish a cost function. The
resulting cost function is then used by a Dynamic Window
Approach (DWA) planner [21] to generate socially accept-
able paths. They also present two social physical safety
metrics, the Collision Index (CI) and the Interaction Index
(CII), which are used to assess their own approach.

While the previous works by Ngo et al. and Patompak et
al. show simulation and experimental tests, the pedestrians
involved are static and the spaces are uncrowded. Therefore,
those approaches still have limitations in highly dynamic and
indoor environments. Finally, the aforementioned approaches
assume a fixed priori and complete knowledge of the sur-
roundings, i.e., common obstacles in the environment do not
change and all social agents’ state is known, which is not
the case in real-world changing scenarios.

C. Social Robot Navigation Metrics

There are different metrics that can be used to estimate the
human acceptance in social robot navigation. Some of those
metrics are focused on aiming to maintain human comfort.
Below we present some examples of such metrics:

1) Total Number of Collisions: represents collisions that
the robot has with both people or any object. It can be
presented as the amount of collisions per minute or total
of collisions for a range of time [22].

2) Social Individual Index (SII): this metric was firstly
introduced by Truong et al. [13]. It measures the acceptable
distance between the robot and a person. SII can be cal-
culated as shown in Eq. (1), where (xp

i , y
p
i ) corresponds to

the position of the human and (xr, yr) corresponds to the
position of the robot. N is the number of humans near the
robot, while σp

0 = dc

2 , where dc is suggested to be between
[0.45-1.2 m] according to Hall’s personal space [23].
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3) Relative Motion Index (RMI): this metric was intro-

duced by Truong et al. [13], and it expresses the probability
of a collision between the robot and a person. It considers
the velocity and orientation of both the robot and people,
and it has a maximum value when a robot and a human are
moving towards each other at their highest velocity.

RMI is calculated as shown in Eq. (2), where βi is the
angle between the robot orientation and the vector projected
from the robot to the human pi. ϕi is the angle between the
person orientation and the vector projected from the person
to the robot. vpi and vr are the velocities of the person pi in
reference to the main world frame, respectively.

RMI = max
i=1:K

2 + vrcos(βi) + vpi cos(ϕi)√
(xp

i − xr)
2
+ (ypi − yr)

2
(2)

III. PROBLEM DEFINITION

The solution to the general start-to-goal robot path plan-
ning problem consists in finding a path p that connects a
start and a goal configuration, qstart and qgoal, such that
p : [0, 1]→ C, such that p(0) = qstart and p(1) = qgoal, and
C corresponds to robot’s configuration space (C-Space) [24].
Social robot navigation has some aspects that differ from
other path planning related problems, since it requires not
to consider people surrounding the robot as simple dynamic
obstacles. In this paper, we call this problem start-to-goal
social robot path planning.

A. Definitions

Definition 1: A social agent is a social entity (i.e., a
person), that is capable of expressing social behaviors, e.g.,
discomfort when interacting with their surroundings includ-
ing other social agents or objects.

Definition 2: C, is divided into free space (Cfree) and
obstacle space (Cobs), i.e., C = Cfree ∪ Cobs [24]. While
Cobs includes all the obstacles, in this work we would like
to differentiate between social agents and other static and
dynamic objects, i.e., Cobs = Csocial agents ∪ Ccommon obs.

B. Social Robot Path Planning

In social robot path planning, the main objective is still to
connect qstart and qgoal, but the solution path p must be not
only collision free and feasible, but also socially accepted.
In order to do so, we include a function U(qstart, qgoal)→
ℜ that represents the discomfort of nearby social agents.
Therefore, the optimal path P ∗ is given by:

P ∗(qstart, qgoal) =
P (qstart,qgoal)∈Cfree

argmin U(qstart, qgoal)
(3)

Fig. 2. Proposed framework for online social robot navigation (three
modules inside the blue dashed square).

IV. ONLINE SOCIAL ROBOT
NAVIGATION FRAMEWORK

In this section, we present a framework that seeks to solve
the aforementioned social robot path planning problem. The
framework consists of three functional modules: world mod-
eling, online social robot path planning, and path following
control.

A. World Modeling

World modeling refers to the representation of the robot’s
surroundings, which in the case of robot social navigation
includes social agents, and other static and dynamic obsta-
cles. The main reason for making this distinction (between
social agents and other obstacles) is due to the necessity
for providing enough flexibility when considering different
human aspects (e.g., age, gender, disabilities, among others),
which could potentially lead to further developing more ad-
vanced robot social behaviors. Therefore, the world modeling
module will not only report all the obstacles (both social
agents and other objects) for collision checking purposes,
but also the required social agents’ information for social
validity checking purposes.

In the context of this work, we assume that the world
modeling module represents obstacles with a volumetric
representation given by the Octomap library [25] for collision
checking purposes, and separately a social agent descriptor
that includes the agent’s position and velocity for social
validity purposes.

B. Online Social Robot Path Planning

The online social robot path planning module is in charge
of generating paths that are both collision-free and socially
acceptable. In order to do so, this module iteratively calls a
sampling-based tree planner (see Alg. 1), which is inspired
by the RRT* algorithm [26], but it has been extended to
solve the start-to-goal social robot path planning problem.
Such a problem involves navigating highly dynamic social
spaces, thus requiring the robot to continuously replan the
path to ensure its validity. In order to do so, we propose to
endow our sampling-based tree planner with two strategies
that we have extended for the social navigation context.



Algorithm 1: Start2GoalSocialPathPlanning(qstart, qgoal)
Input:
qstart: Start configuration.
qgoal: Goal configuration.
Output:
P∗: An array of configuration waypoints.

1 begin
2 planner ←

SamplingBasedPlanner(SE2StateSpace)
3 last best known solution← {}
4 qnew start ← qstart
5 while not stop condition do
6 world model←reqUpdatedWorldModel()

7 planner.updateWorldModel(world model)

8 planner.startFrom(last best known solution)

9 planner.solve(qnew start, qgoal)
10 if solution not found then
11 P∗ ←

planner.getPartialSolution()

12 else
13 last best known solution←

planner.getSolution()
14 P∗ ← last best known solution

15 return P∗

When the sampling-based tree is expanding to find a path
towards the goal, we consider that any part of the tree that lies
in unknown regions of C is assumed to be both collision-free
( ̸∈ Ccommon obs) and socially valid (̸∈ Csocial agents). This
extends the Opportunistic Collision Checking [3] strategy to
a more general Opportunistic Validity Checking strategy. The
main objective of using this strategy is to avoid running
unnecessary checking routines in areas that have not been
explored by the robot.

Second, our modified planner reuses the last best known
solution [3] (see Alg. 1 line 3) to rapidly fix paths that
have become locally invalid. This strategy is particularly
useful in cases in which the robot is incrementally acquiring
information of a partially known and changing environment,
as it is the case in the social navigation context. Furthermore,
we extend this strategy to deal with social agents that can
rapidly change their behavior which often leads to locally
invalid paths, e.g., in situations where new social interactions
among agents can make a path invalid, but where a valid path
can be found nearby by avoiding the interacting agents.

1) Social Comfort Optimization Cost Objective: to gen-
erate socially acceptable paths for the motion of the robot,
we have decided to use the Extended Personal Space Model
(EPSM) [20] as the cost optimization function for our plan-
ning module. The EPSM is a Gaussian function presented

in Eq. (4) which expresses the individual human discomfort
around a person pi. In this function Ap and (σpx

0 , σpy
0 ) cor-

respond to the amplitude factor and the standard deviations
of the Gaussian function, respectively.

fp
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where d, θ and θpi are calculated as shown below, having
(xr, yr), (x

p
i , y

p
i ), θ

pv
i and θphi as the robot position, social

agent position, velocity vector angle and the gaze angle
respectively:

d =

√
(xr − xp

i )
2
+ (yr − ypi )

2 (5)

θ = atan2 ((yr − ypi ) , (xr − xp
i )) (6)

θpi =

{
θpvi if vip > 0

θphi if vip = 0
(7)

Finally, σpy
0 is modified depending on the robot’s posi-

tion around the agent as shown in Eq. (8), where vpi , fv ,
ffront and ffov are the social agent’s velocity, the velocity
factor, the front factor and the Field Of View (FOV) factor,
respectively:

σpy
0 =


(1 + vpi fv + ffront + ffov)σ

py
0

if robot is
in agent FOV

(1 + vpi fv + ffront)σ
py
0

if robot is not
in agent FOV

(8)
The EPSM is considered along the path length evaluation

of our sampling based planner, such that the final cost of each
state is computed as the integral of the social comfort with
respect to the distance as defined in Eq. (9) and Eq. (10).
As a result, our planning algorithm returns the path with the
lowest found discomfort cost surrounding social agents.

U(q) = max(fp
i (q → xr, q → yr)) (9)

Cost(q) =

∫ q

0

U(q)dq (10)

2) Social Relevance Validity Checking: there is a limita-
tion from the sensors that restricts the range of detection and
tracking of social agents. To reduce computation consump-
tion, we have defined a FOV for the robot (see Fig. 3), where
only the agents inside the FOV are considered as part of
Csocial agents, while the rest of the space is taken as free of
social agents. The distance range D of the FOV, is increased
by a ratio factor between the current and maximum speed of
the robot.



Fig. 3. Robot’s field of view, where β and D are the angle and distance
range.

3) Partial Solution: in some cases the positioning of
social agents can invalidate a current solution and avoid
generating a new one. To prevent possible collisions when
no new valid solution has been found (e.g., because the
previous solution has become invalid due to a change in
the surroundings), a partial solution (see Alg. 1 line 11),
which corresponds to a portion of the previous solution that
is still valid, is returned as the solution of our sampling-based
path planner. By doing this, we enable the robot to move to
the goal without colliding while our sampling-based planner
finds another valid solution within the surroundings.

C. Path Following Control

This module corresponds to a base controller, which uses
the path obtained from our sampling-based planner as inputs
to move the robot using differential kinematics. In general the
controller seeks to lower the yaw and distance error from the
robot position to the configuration of the next waypoint. For
the final waypoint, the robot decelerates and moves slower
until the yaw and position error is less than a specified
tolerance.

V. EXPERIMENTS AND RESULTS

To validate our proposed approach, we designed two case
scenarios in which our framework was compared with two
alternative approaches: the SFM and a RRT* based solution
that optimizes the path length.

A. Simulation and Experimental Setting

In order to validate the different approaches, we conducted
experiments in a simulated indoor office-like environment
(see Fig. 1). In this scenario, a social robot that navigates the
surroundings must deal with static obstacles (e.g., walls) and
dynamic obstacles such as social agents that move around
randomly to pre-defined waypoints.

The proposed framework has been implemented in ROS11

and the simulations conducted in Gazebo2. In order to
simulate social agents and their behavior, we have used a

1https://www.ros.org/
2http://gazebosim.org/

customized version of pedsim ros3 which has been modified
to represent smoother pedestrians simulations by detecting
and overcoming frozen agents that get trapped among objects
in the surroundings due to local minima [10]. This paper is
focused on the social robot navigation problem, particularly
how to plan socially valid paths by obtaining the agents’
position from pedsim ros as one of the inputs of the world
modeling module.

In our validation, a simulated Pepper Robot must solve dif-
ferent start-to-goal queries required to safely navigate the en-
vironment. During the experiments, different metrics such as
the SII, RMI, and the amount of collisions were gathered and
analyzed. To better understand the experiments, the reader is
referred to: https://youtu.be/aZf27nthmX8.

B. Case 1: Start-to-goal Navigation Query
In the first scenario, we simulated 10 social dynamic

agents moving randomly between 13 different waypoints
located in the environment. While the agents move around,
they also consider the robot as an additional social agent (i.e.
the social agents react to robot’s position and movement). In
this situation, the main mission is to move the robot from
the start position to the goal position as illustrated by Fig. 1.

The results from the metrics obtained are presented in Ta-
ble I. For SFM, the success rate is none. The main reason is
because of the presence of local minima in the zone of the
start point generated by the surrounding walls.

Our approach has a much higher success rate than the
original RRT* planner. Although both the social navigation
metrics of SII and RMI are pretty similar, the successful
attempts of the RRT* method only happen when the most
favorable situation is presented, e.g., when the social agents
are not in between the robot and the desired destination.

TABLE I
METRICS OBTAINED WITH EACH APPROACH IN CASE 1 (100 TESTS)

Success rate SII RMI
Mean (SD) Mean (SD)

SFM 0% - -
RRT* 57% 0.030 (0.012) 0.881 (0.099)

Our framework 90% 0.030 (0.015) 0.881 (0.102)

Fig. 4 presents a graph of the SII measured during one
complete experiment. While our framework generates less
local maximum peaks, the graph of RRT* shows values
higher than 0.5 which corresponds to possible collisions.

Something similar can be seen in Fig. 5, as the RRT*
graph shows more abrupt and higher measurements than our
approach. In addition, Fig. 5 shows how a general run of
the RRT* planner could take more than double the time
to complete the query mission even when best possible
condition is presented.

C. Case 2: Start-to-goal Navigation Query with Social
Agents in Close Proximity

We validated our approach with a second scenario as seen
in Fig. 6, where we included a queue of social agents in

3https://github.com/sasilva1998/pedsim ros

https://youtu.be/aZf27nthmX8


Fig. 4. SII graphs for our framework and RRT* in case 1.

Fig. 5. RMI graphs for our framework and RRT* in case 1.

the narrow passage right before the goal (destination). This
is a common scenario in social spaces like hospital halls or
school buildings.

Fig. 6. Start-to-goal query from the Start point (lower side) and the Goal
destination (upper side) including a static queue of agents.

Since the SFM depends on several factor values, for this
specific situation we heuristically decided to test it with the
Social Force Factor (SFF) with values of 22 and 27, for
which the method had a significant change in its behavior.
The results can be observed in Table II.

When using a SFF= 22, the SFM is successful in all
cases. Yet by looking at these metrics in Table II, the SII and
RMI values are considerably high. With this SFF, the forces
generated by the social agents are not repulsive enough,
hence highly increasing the probability of a collision.

When increasing the SFF above 27, no success was ob-
tained in the query as a result of the local minima generated
by the social agents. This latter means that the SFM can
get the robot stuck not only in between obstacles but also
between social agents, even when there is enough space
within the corridor for the robot to reach the goal. For
the original RRT* approach, a really low success rate is
obtained from the experiments because of the highly dynamic
environment. This approach struggles to find a collision free
path with all the dynamic agents moving around discarding
continuously a possible solution. In addition, RRT* needs
replanning a path all over again, barely being able to solve
the query. Our framework shows to have an acceptable
success rate of 81% compared to the RRT* and the SFM. By
looking at Table II, the social navigation metrics are quite
low for the crowded and narrow corridor that is presented.

Figure 7 shows a graph of the measured SII. Our approach
generates values that are barely higher than 0.5 and the graph
is smooth without many changes. In the case of the SFM,
the graph shows higher values than 0.7 certainly representing



collisions with the social agents. In addition, the SFM shows
more local maxima than in our framework.

TABLE II
METRICS OBTAINED FOR EACH APPROACH IN CASE 2 (100 TESTS)

Success
Rate

SII RMI # Collisions
Mean (SD) Mean (SD) Mean (SD)

SFM
SFF = 22

100% 0.28 (0.01) 2.12 (0.09) 1.3 (0.70)

SFM
SFF = 27

0% - - -

RRT* 12% - - -
Our framework 81% 0.15 (0.04) 1.51 (0.15) 0.11 (0.32)

Fig. 7. SII graphs for our framework and the SFM with a SFF = 22 in
case 2.

As illustrated in Fig. 8, our approach hardly reaches a
value of 3.0 RMI. However, in the case of the SFM, the
value is much higher than 6 RMI meaning that it is more
likely to make the social agents uncomfortable with a higher
chance of collision.

VI. DISCUSSION AND CONCLUSIONS

We proposed a flexible framework with three modules
(world modelling, online social robot path planning, path
following control), by extending a sampling-based planner,
capable of generating socially acceptable paths for a robot
in highly dynamic and crowded spaces. The framework
considers a social cost optimization function based on the
Gaussian distribution that models the social comfort space

Fig. 8. RMI graphs for our framework and the SFM with a SFF = 22
in case 2.

around humans. The framework also includes the use of
Reusing the Last Best Known Solution and the Opportunistic
Validity Checking strategies which helped vastly for online
path planning in social environments. We also proposed a
new Social Relevance Validity Checking strategy, considers
the robot’s FOV to reduce unnecessary computation con-
sumption from the interaction with social agents.

We tested the feasibility of our proposed approach through
simulation and comparing with two other important ap-
proaches (RRT* and the SFM) in two complementary use
case scenarios. The results from the social navigation metrics
showed that our framework has an acceptable success rate
in the experiments, while keeping the SII and RMI lower
than the other two approaches, enabling the robot to work in
dynamic crowded places reasonably. In contrast to SFM that
requires several heuristically adjustments of its parameters,
our framework has a more flexible and scalable structure
since the world modeling can support more social interac-
tions as input, e.g., a gaze tracing can be included as part of
the cost optimization function without heuristic adjustments.

Our future work includes implementing a more complex
social comfort model based on the DSZ model [20] to ensure
a more holistic and acceptable navigation with groups and
human-object interactions in social environments. Finally,
we plan to conduct real-world experiments by using our
proposed approach with a Pepper Robot while also extending
the use case scenarios presented in this work.
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