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Abstract— Robot skills systems are meant to reduce robot
setup time for new manufacturing tasks. Yet, for dexterous,
contact-rich tasks, it is often difficult to find the right skill
parameters. One strategy is to learn these parameters by
allowing the robot system to learn directly on the task. For a
learning problem, a robot operator can typically specify the type
and range of values of the parameters. Nevertheless, given their
prior experience, robot operators should be able to help the
learning process further by providing educated guesses about
where in the parameter space potential optimal solutions could
be found. Interestingly, such prior knowledge is not exploited in
current robot learning frameworks. We introduce an approach
that combines user priors and Bayesian optimization to allow
fast optimization of robot industrial tasks at robot deployment
time. We evaluate our method on three tasks that are learned in
simulation as well as on two tasks that are learned directly on a
real robot system. Additionally, we transfer knowledge from the
corresponding simulation tasks by automatically constructing
priors from well-performing configurations for learning on the
real system. To handle potentially contradicting task objectives,
the tasks are modeled as multi-objective problems. Our results
show that operator priors, both user-specified and transferred,
vastly accelerate the discovery of rich Pareto fronts, and
typically produce final performance far superior to proposed
baselines.

I. INTRODUCTION

In modern manufacturing settings, the setup of a robot
system for a new task should be fast and easy. At the
same time, to assure safety of equipment and workers it
is important that robot behavior is always predictable and
explainable.

One way to combine all these requirements is a system
based on modular and explainable robot skills [1]. Robot
skills (or just skills) are semantically defined parametric
actions where parameters have to be chosen based on the task
at hand through planning, sensing and knowledge integration.
For contact-rich tasks, however, it can still be very chal-
lenging to find well-functioning skill parameter values, as
even human operators may encounter difficulties identifying
a successful and robust parameter set [2]. One solution is
to allow a robot system to find these parameters through
reinforcement learning (RL) directly on the task. A recent
approach [3] to RL in the industrial context suggests to model
explainable policies with behavior trees (BTs) and a motion
generator (MG) [4], and to optimize these through efficient
policy learning and domain randomization within a digital
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Fig. 1. The visualization of two dimensions of a multimodal prior formed
by results from learning in simulation that can be used as a prior for
learning on the real robot. Well-performing configurations in simulation
(red diamonds) are used to construct a probability density over optimal
parameter settings, enabling accelerated learning on the real task through
Bayesian optimization.

twin. However, beyond the straight learning problem, there
are two important aspects to consider:

(1) Learning often needs to balance various key perfor-
mance indicators (KPIs) such as robot speed, safety or the
need to minimize interaction forces with manufacturing parts.
While [3] is able to handle only single-objective learning,
we argue that many tasks are best described as multi-
objective learning problems where the outcome is a variety
of policies for different trade-offs between the objectives [2].
An operator can then choose a solution with the desired
properties.

(2) The learning problem can be reduced by constraining
the parameter space within which the RL approach is search-
ing for suitable skill parameters. Given some prior experi-
ence, a robot operator can typically not only help to constrain
the search space, but further accelerate the learning process
by providing guesses on where in the parameter space
optimal solutions may be found, and have these regions be
emphasized throughout the learning process. These guesses
could be based on the operator’s intuition or experience,
or be generated from previously utilized policies on similar
tasks through transfer learning. Fig. 1 visualizes how guesses
regarding good configurations can be represented through a

ar
X

iv
:2

20
8.

01
60

5v
1 

 [
cs

.R
O

] 
 2

 A
ug

 2
02

2



probability density over optimal parameter settings. In fact,
by utilizing knowledge in the form of a probability density
over the optimum, the search can focus on promising areas
of the search space without explicitly restricting the search
space to these regions.
With this paper we make the following contributions:

1) We introduce an approach to incorporate parameter
priors in the form of probability densities for the opti-
mal configuration, in conjunction with multi-objective
Bayesian optimization, into the learning process of
industrial robot tasks.

2) We assess the performance of our method and evaluate
the influence of well-placed and misleading priors on
various tasks.

3) We show priors learned in simulation can enable
accelerated optimization on the real system, without
the requirement of explicit operator knowledge.

II. RELATED WORK

A. Reinforcement Learning with Robot Systems

Reinforcement Learning (RL) [5], and especially Direct
Policy Search (PS) methods [6], [7], have been successful
in robotics applications as they can be applied in high-
dimensional continuous state-action problems. In order to
apply PS methods successfully in robotics applications, one
must do one (or a combination) of the following: (a) provide
prior structure in the policy, (b) learn models of the dynamics
or the expected return, and/or (c) use prior information about
the search space [6].

The type of the policy structure plays an important role
for the effectiveness of learning in practical robotics appli-
cations. However, there is always a tradeoff between having
a representation that is expressive enough (e.g. large neural
networks), and one that provides a space that is efficiently
searchable [6]. Another important property is choosing the
level on which the policy interacts with the robot (e.g. task-
space vs joint-space); it has been shown that it can strongly
influence the learning speed and the quality of the obtained
solutions [8], [9].

Traditionally, the robotic controllers (or policies) are hand-
designed; either via an analytic model-based approach (e.g.
inverse dynamics controllers) [10] or as more general finite
state machines (FSMs) [11]. These hand-designed policies
usually come with a small amount of parameters (thus
efficiently searchable), but might need to be re-designed
when changing task or robot. In principle, most of the hand-
designed policies are easily intepretable and we can infer
why the robot is choosing a specific action.

The most popular way of defining a policy in the RL
literature is as a function approximator (e.g. a neural net-
work) [12], [6], [7]. In this case, policies can be very expres-
sive and task-agnostic, which means that the same policies
can be re-used on different tasks or robots without substantial
changes. The commonly used policy representations for
learning systems include radial basis function networks [13],
dynamical movement primitives [14], [15] and feed-forward

neural networks [13], [16]. In recent years, in RL settings,
deep artificial neural networks (ANNs) have become the
default policy type [17], [6]. ANN policies enable us to easily
increase the expressiveness and generality of the policy, but
can make optimization difficult due of the large number of
parameters. In contrast to the previous policy types, this type
of policy is harder to interpret, and it is generally a difficult
task to know why the robot is choosing a specific reaction
to an environmental change. Therefore, [3] and [2] suggest
to learn interpretable policies based on BTs and a MG [4]
that are well suited for the requirements of an industrial
environment.

B. Meta-learning for Bayesian Optimization

For the optimization of black-box functions, Bayesian
Optimization (BO) constitutes a sample-efficient [18] choice
across multiple fields, including machine learning [19],
robotics [20], and hardware design [21]. In BO, there are
several means of injecting prior knowledge, the most com-
mon of which is through the choice of the Gaussian Process
kernel. However, several approaches have been proposed to
explicitly bias or direct the optimization, based on accumu-
lated data or knowledge from previous tasks.

Transfer learning approaches make use of data obtained
from previous experiments to guide current ones. Feurer
et. al. [22] propose to combine surrogate models from
previous experiments, and use the combined surrogate when
performing a new task. Perrone et. al. [23], restrict the search
space of the new task to some convex region based on optima
found on previous tasks, excluding suboptimal regions in the
outer edges of previous search spaces.

Injecting explicit prior distributions over the location of
an optimum is an emerging topic in BO. In these cases, the
user explicitly defines a prior probability distribution π(x)
that encodes their belief on where the optimum is likely to be
located. Souza et. al. propose BOPrO [24], which combines
π(x) with a data-driven model into a pseudo-posterior. From
the pseudo-posterior, configurations are selected using the
Expected Improvement (EI) acquisition function. Hvarfner
et. al. [25] propose πBO, which weights the acquisition
function by π(x), and decays the prior’s influence over time.
Consequently, it retains conventional convergence rates [26]
for any choice of π(x) when used in conjunction with EI.

III. APPROACH

In order to learn robot tasks, we utilize two main com-
ponents: 1) SkiROS2 [27], [1] is a skill-based system for
ROS. It provides a world model (digital twin) and a skill
representation based on behavior trees (BT), and has an
integrated task planner. 2) An RL framework that integrates
optimizers and provides a simulation as well as reward
calculation [3], [2].

When setting up the system for a new task, the operator
typically specifies a high-level goal using the Planning
Domain Definition Language (PDDL). Once the planner
finds a valid sequence of skills, the learnable parameters
in the skills are automatically identified. The operator can



state lower and upper bounds for the parameters to be
learned. A more detailed description can be found in [2].
In this work, we additionally allow for specification of a
unimodal or multimodal prior for the optimum. Therefore,
expert knowledge and previous experiences can be actively
integrated into the learning process.

A. Skill Representation

We adopt the skill definition from [1], [27] that defines a
skill as an ability to change the world state. To support task
planning, a skill has a set of pre-conditions that must be
satisfied before the execution is started and post-conditions
that state and verify the effects. Skills usually model instruc-
tions from standard operation procedures (SOPs), such as
pick<object>, insert<object>, press<object>, etc.

Our parametric skills can utilize the world model to re-
trieve knowledge and are implemented with BTs. A BT [28],
is a plan representation and execution tool that is used in
many areas including computer games and robotics [28],
[29]. As in [30], [31], we define it as a directed acyclic graph
with nodes and edges. It consists of control flow nodes or
processors that link execution nodes. Three common types of
control flow nodes are 1) sequence (logical AND), 2) selector
(logical OR) and 3) parallel. A BT always has one initial
node with no parents, called Root node. During the execution
of a BT, a periodic tick signal is injected into the Root node.
The signal is routed according to the control flow nodes and
the return statements of the children. The leaves of the BT
are the execution nodes that execute one cycle and output
one of the three signals when being ticked: success, failure
or running. Execution nodes subdivide into 1) action and
2) condition nodes. An action node performs its operation
iteratively at every tick and returns running while it is not
done, and success or failure otherwise. A condition node
performs an atomic operation and can only return success or
failure, but never running. One significant difference between
BTs and FSMs is that BTs implement a two-way control flow
like function calls in programming languages. In contrast,
classical FSMs implement a one-way control flow similar to
GOTO statements, which often becomes challenging to scale
and maintain.

For modeling parametric movements, our movement skills
use a MG in combinations with BTs [4]. This formulation
is a type of trajectory-based policy structure that explicitly
operates in end-effector space. The advantages of such move-
ment skills are that they are modular, interpretable and allow
for an easy adaption to environmental changes, e.g. if objects
are relocated. In line with [4], we require a compliant robot
controller that operates in end-effector space and utilize the
same Cartesian impedance controller as in [2].

B. Policy Optimization

In order to optimize for policy parameters, we adopt the
policy search formulation in [13], [6], [16]. We formulate a
dynamical system of the form:

xt+1 = xt +M(xt,ut,φR), (1)

with continuous-valued states x ∈ RE and actions u ∈ RU .
The transition dynamics are modeled by a simulation of
the robot and the environment M(xt,ut,φR). They are
influenced by the domain randomization parameters φR.

The goal is to find a policy π,u = π(x|θ) with policy
parameters θ such that we maximize the expected long-term
reward when executing the policy for T time steps:

J(θ) = E

[
T∑

t=1

r(xt,ut)|θ

]
, (2)

where r(xt,ut) is the immediate reward for being in state x
and executing action u at time step t. The discrete switching
of branches in the BT and most skills are not differentiable.
Therefore, we frame the optimization in Eq. (2) as a black-
box function and pursue the maximization of the reward
function J(θ) only by using measurements of the function.
The optimal reward function to solve the task is generally
unknown, and a combination of reward functions is usually
used. In the RL literature, this is usually done with a
weighted average, that is, r(xt,ut) =

∑
i wiri(xt,ut). In

this paper, we choose not to use a weighted average of reward
functions that represent different objectives (as the optimal
combination of weights cannot always be found [32]), but
optimize for all objectives concurrently (Sec. III-D) using
Bayesian Optimization.

C. Bayesian Optimization

As mentioned in Section III-B. we view the of optimiza-
tion of our policy as an unknown black-box optimization
problem. In this setting, information about the objective
function f can only be extracted through the potentially
noisy output y yielded by an given input x. We wish to find
x∗ ∈ arg maxx∈X f(x) for some bounded, D-dimensional
input space X . As the function f is typically expensive in
some resource of interest, one wishes to optimize f with a
low total number of evaluations.

To solve the aforementioned black-box optimization prob-
lem, we employ BO. It aims to find x∗ by sequentially
selecting new design points {xi}Ni=1 through some measure
of utility, then receiving their corresponding output {yi}Ni=1,
for some maximal number of iterations N . This is achieved
through the use of a probabilistic surrogate model p(f |Dn),
which uses all available observations Dn = {xi, yi}ni=1

at a given iteration n to emulate the objective f . After
obtaining an initial number of observations through some
space-filling design (Design of Experiments, DoE). BO uses
the aforementioned utility measure, commonly called an
acquisition function, to decide on subsequent queries. A
query is selected xn+1 by considering a trade-off between
uncertain regions (exploration) and regions of high predicted
value (exploitation) under p(f). After evaluation, the obser-
vation yn+1 is obtained, and the surrogate model is updated.
The most commonly used acquisition function is Expected
Improvement (EI) [33], [26], which is defined as

xn+1 ∈ arg max
x∈X

Ey

[
[(y∗n − y(x)]+

]
(3)



where y∗n is the best obtained (noisy) output at iteration n. EI
is simple to implement, and can be computed closed-form.

For tasks with a substantial level of noise, such as robot
learning, the consideration of noise in the objective f is of
particular importance [34]. EI can potentially struggle in such
noisy settings [35], [36], [37] due to its consideration of the
improvement of a noisy observation. As such, we utilize a
noisy-robust version, called Noisy EI (NEI) [36], defined as

xn+1 ∈ arg max
x∈X

Ef

[
[(f∗n − f(x)]+

]
(4)

which, despite similarities to EI, requires approximation
through Monte Carlo by sampling latent function values at
each prior observed location. Through its consideration of
the noiseless optimum f∗ as opposed to y∗, NEI, yields
desired robustness to noise and converges to EI in a noiseless
setting. For our experiments, we use the HyperMapper [21],
[38] framework, and the NEI acquisition function introduced
in Eq.(4), modified for a multi-objective setting. The modi-
fication is covered exhaustively in Section III-D.

D. Multi-objective Optimization

In the multi-objective optimization setting, we consider a
set of K objectives f = (f1, . . . , fK), all defined over the
same D-dimensional input space X and observed through a
noisy output y = y1, . . . , yK . Our goal is to find the set of
points that are not dominated by any other point in X . For
a pair of inputs x and x′ with corresponding multi-objetive
outputs y and y′, x′ is said to dominate x if y′k ≥ yk,∀k ∈
{1, . . .K}, i.e. y′ is superior in every objective. The set of
non-dominated points, known as the Pareto frontier, is in turn
expressed as Γ = {x ∈ X : @x′ s.t. x′ ≺ x}, where ≺ is
the domination relation. Γ thus contains the set of maximally
desired points, with various trade-offs in the objectives.

For our experiments, we use the random scalarizations
approach proposed by Paria et. al. [39], which computes the
acquisition function across objectives as

α(x,λ) =
K∑

k=1

λkαk(x),
K∑

k=1

λk = 1 (5)

on the K objective-wise acquisition functions {αk}Kk=1 and
the scalarization λ, sampled from a Dirichlet distribution. To
quantify the quality of the obtained Pareto front, we use the
Hypervolume Indicator (HV) [40] metric. HV computes the
volume spanned by the Pareto-optimal observations {yp}|Γ|p=1

from some reference point r as HV(Γ, r) = λK (∪p[yp, r])
where [yp, r] denotes the hyperrectangle bounded by vertices
yp and r, and λK is the K-dimensional Lebesgue measure.

E. Priors for the Optimum

For our experiments, we use the HyperMapper imple-
mentation of πBO [25], combined with the NEI acquisition
function. Moreover, we utilize the prior for sampling during
DoE. Critically, π(x) is defined on the input space X . As
such, the user defines one prior jointly over all objectives,
so that the prior emphasizes regions that are believed to

contribute to the Pareto front, with no emphasis towards any
particular objective.

The tasks use two types of priors over the optimum:
Simulation: We consider Gaussian densities for each param-
eter. These are set once, prior to conducting the experiments
by an expert operator. The priors are left untouched for the
whole duration of the experiments to avoid bias.
Real system: In addition to the operator priors, we use πBO
in a transfer learning setting, as we form the prior based on
previous data. The Pareto front designs obtained from simu-
lation are used to form a Gaussian kernel density estimator
(KDE) [41]. KDE places a Gaussian density on each point on
Γ, which enables the automatic construction of multimodal
distributions, exemplified by Figure 1. The obtained Pareto
front from simulation then serves as a starting point for
learning in the real system, without involving the operator.

IV. EXPERIMENTS

We evaluate the influence of priors for the optimum on the
learning process for three different tasks. Their setup on the
workstation is shown in Fig. 2; Fig. 3 shows the learnable
parameters. One of the tasks is a contact-free movement from
one side of an object (e.g., the engine block in Fig. 2) to the
other side. The other two tasks are contact-rich manipulations
where a peg needs to be inserted into a hole and an object
with an uneven weight distribution needs to be pushed to
another location, respectively. All tasks have in common
that they are solved with existing skills that use BTs and a
MG to actuate the robot and where some skill parameters
need to be found via learning. For each task, a learning
scenario configuration file describes attributes such as the
robot system to use, the configured reward functions and the
learnable skill parameters with their bounds and optionally
their priors.

All learning problems are defined as multi-objective prob-
lems where one objective assesses the performance and speed
of solving the task and the other one is either a safety metric,
defined by distance between the robot and a fragile item
when passing it, or an impact metric, which considers the
interactions forces of the robot and the work pieces. None
of the tasks have a single best policy, and since they balance
trade-offs between the competing objectives (KPIs), it is up
to an operator to decide which one to use as a final policy.
We utilize the HV defined by the Pareto-optimal points to
measure how much of the solution space is covered. We
locate the reference point r for the HV calculation based on
the worst value of the respective objective that is typically
seen on a Pareto front for that task.

We evaluate the influence of priors that are defined by
a domain expert and represent a typically chosen trade-off
between task performance and safety or impact. Furthermore,
we evaluate the impact of misleading priors, which are
purposely designed to not adequately solve the task. In
practice, the operator prior puts high density on regions of
the search space that are believed to yield Pareto-optimal
policies, whereas the misleading prior puts very high density



Fig. 2. The experimental setup for the tasks. The orange block is used
for the peg insertion. The engine is the obstacle that must be avoided with
the use of movement skills when transitioning from one side to the other.
The push task requires the blue object to be pushed from its current pose
to the corner between the box and the fixture when the engine is not at the
workstation.

on an outer edge of the search space - a choice a reasonable
operator would likely not make.

A. Learning in Simulation

As suggested in [3] and [2], we learn the tasks in simu-
lation based on a digital twin of the experimental setup. To
have a performance reference, we compute two performance
baselines for each of the three tasks where we learn the skill
parameters through (1) random search and (2) BO with no
priors. We repeat every experiment configuration 20 times to
account for noise.

1) Peg Insertion Task: The goal of the peg insertion task
is to insert a peg into a hole with a 1.5 mm larger radius.
The setup imitates a piston insertion into the engine shown
in Fig. 2. The configuration of such an insertion does not
allow to tilt the piston. Therefore, the insertion strategy is to
hold the object upright and to perform an Archimedes spiral
as a search motion. The realization of a spiral is defined by
the path velocity of the reference point, the pitch (i.e. the
distance between lines in the spiral) and the maximal radius.
Furthermore, the insertion skill sets a downward force that
is applied by the arm while searching.

As in [2], this task has two objectives: 1) the performance
of the insertion which is assessed with the distance of the
peg to the hole as well as a success reward if the peg is
inserted by more than 0.01 m and 2) an integral over the
commanded force while searching.

In order to learn a robust solution, each candidate param-
eter set is evaluated 7 times: (1) each execution randomly
selects one out of the five start positions for the robot arm, (2)
in simulation the hole is translated horizontally by a Gaussian
offset with a standard deviation of 7 mm. See [2] for more
details about the experiment.

2) Object Pushing Task: This task requires to push an
object with an uneven weight distribution from a start

Fig. 3. A depiction of the learnable parameters of the different tasks. a)
The setup of the obstacle avoidance task with the parametric goal points
g1 and g2 and the adjustable thresholds p1 and p2 in one possible motion
configuration. b) The spiral of the search motion for the peg insertion is
defined by the pitch d, the maximal rmax and the path velocity vp. In
addition, a downward force is set. c) The learnable offsets for the start and
goal location of the push task are shown.

location (shown in Fig. 2) to the corner between the block
and the metal fixture. The pushing is done with a square peg
that is 0.07 m wide. The parametric push skill first moves
the end effector to a location above the object, before it
lowers it and performs a Cartesian linear motion towards
the goal. The start and goal location of the push movement
can be altered in both horizontal directions. This allows for
learning of a push motion that starts from a location at the
side of the object, and which implicitly takes the center of
mass into consideration. Every parameter set is evaluated 7
times where (1) the start position is randomly selected from
a set of 4 initial positions and (2) the position of the object
and the target are slightly perturbed by Gaussian offsets to
avoid overfitting.

The performance of the task is assessed by the distance of
the end effector to the target pose and by the position and
orientation error of the object with respect to the target pose.
The other objective assesses the total amount of force that
the robot arm applies on the environment by integrating over
the error between the actual pose of the end effector and the
reference pose. See [2] for a more detailed description.

3) Obstacle Avoidance Task: The goal of the task is to
find a policy that uses parametric movement skills to avoid
a static obstacle in the workspace. The structure of the skill
is pre-defined and set up so that an obstacle can be passed
from above. As shown in Fig. 3, the end effector starts at
the point s and moves towards the goal (g1) until it is above
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Fig. 4. The learning progress of the peg insertion, the object pushing and the obstacle avoidance tasks in simulation. The dashed line denotes the end
of the DoE phase and the shaded regions are the standard error of the mean. BO with operator priors improves substantially on both BO without priors
and prior sampling for two tasks. For the less difficult peg insertion tasks, all approaches but random sampling achieve comparable performance.

the parametric threshold p1 in z-direction. When above p1,
the reference point will move towards the goal (g2) until
the threshold p2 in y-direction is reached. Then, the motion
towards the point g3 is started. The learnable parameters
include the thresholds p1 and p2 as well as the y and z
coordinates of the parametric goal points (g1) and (g2).
See [3] for additional details.

This task uses a positive reward that evaluates the distance
between the end effector and the goal position. Furthermore,
there is a fixed reward when reaching the goal. The safety
objective evaluates the distance between the end effector and
the object and the table.

4) Results: The experimental results are summarized in
Fig. 4. In the peg insertion task BO without priors (blue)
performed equally well than with the operator priors (green).
This task also allowed for a quick recovery from misleading
priors (red), indicating that it is easier to learn than the other
tasks. In the other two tasks operator priors (green) greatly
improved the learning speed and learning results. Operator
priors vastly outperformed the baselines, as it yielded an
increase in final HV of about 40% over BO with no priors. At
the same time, less than 40% of the iterations were needed
to achieve the final performance of the baselines. The tasks
also showed that the usage of deliberately misleading priors
can generally hamper the learning performance. To provide
an additional indication of the performance of the operator
priors for a specific task, we performed random sampling
in the space that is defined by these priors (brown). While
priors sampling performs equally well in the peg insertion
task it shows significantly worse performance in the other
two tasks.

B. Learning with the Real system

While learning in simulation has several advantages, it
also has limitations: Especially contact-rich tasks require an
accurate model of the robot system and the workstation to
allow the learning policies to transfer to the real system.
This can be difficult to achieve and to maintain. Therefore,
we learn the peg insertion task and the obstacle avoidance
task directly on the real system.

We learn using the same operator priors as in simulation.
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Fig. 5. The learning progress of the peg insertion task on the real
robot system. The dashed line denotes the end of the DoE phase and the
shaded regions are the standard error of the mean. Both operator priors
and simulation priors yield substantial performance gains over BO without
priors.

As a baseline we use BO without priors. In addition, we also
use the Pareto-optimal points that were obtained by learning
in simulation as a multimodal prior when learning on the
real system as an application of transfer learning. This can
be particularly interesting, because it does not necessarily
require operators to be able to specify priors. Moreover, the
approach allows further refinement on the real system in case
the task was not accurately modeled in simulation.

For each of the tasks, we do four repetitions of each
configuration to reduce measurement noise. When using the
Pareto-optimal points from simulation for a learning process
on the real system, we use the points of a single run in
simulation that applied BO without priors. This means that
the operator never needed to explicitly state any priors.

1) Peg Insertion Task: When learning this task on the real
system, we utilize the same five start positions as above when
learning in simulation. Every parameter set is evaluated three
times, randomly selecting one of the start positions for each
run.

2) Obstacle Avoidance Task: Since learning this task on
the real robot system can result in collisions with the object,
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Fig. 6. The learning progress of the obstacle avoidance task on the real
robot system. The dashed line denotes the end of the DoE phase and the
shaded regions are the standard error of the mean. Both operator priors
and simulation priors yield substantial performance gains over BO without
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the engine in Fig. 2 is replaced by an object that avoids
damages to the robot. Furthermore, since successful policies
do not interact with the environment in this task, every
parameter set is evaluated only once.

3) Results: The experimental results are summarized in
Fig. 5 and 6. They demonstrate again that well-placed
operator priors could accelerate the learning and yielded
to better learning results. In both tasks the priors derived
from simulation results perform equally well initially, but can
eventually be outperformed by the operator priors. However,
since the simulation priors do not need to be defined ex-
plicitly, they are particularly interesting for new tasks or less
experienced operators. In both tasks it takes less than 30% of
the iterations to achieve the same performance as BO without
priors. When learning the peg insertion task, the average
force applied by the robot was 32 % lower when using
priors from simulation and 47 % lower with operator priors
compared to a policy search without priors. In the obstacle
avoidance task, the average amount of required interferences
by robot operators due to forceful collisions with the object
was much lower when learning with operator (10.75± 4.43)
and simulation priors (4.5± 0.8) than with BO without priors
(24.25± 4.43). This indicates that even the safety of a policy
search can be increased by incorporating well-chosen priors.

V. CONCLUSIONS
We evaluated the influence of prior beliefs about the

location of good candidate solutions when learning several
industrial robot tasks. Since the parameters of interpretable
robot skills often have a concrete meaning, they offer a
natural opportunity for robot operators to incorporate their
knowledge and experiences into the learning process. We
have shown that expert operator priors can substantially
speed up the search and yield higher performing policies, and
seldom harm the performance. We have also demonstrated
how using results from learning in simulation as priors can
automate the prior design, and how this choice accelerates
the learning of the same task on the real robot system. Lastly,

we have highlighted the risk and potential performance loss
associated with specifying a drastically incorrect prior.

We believe that the usage of priors for robot tasks learning
in a combination with skills and the knowledge integration is
a promising direction to achieve intelligent robot systems that
can quickly learn to adapt. Moreover, the usage of priors can
ease the adaption of RL in industrial robot tasks by providing
operators an intuitive tool to guide a learning process. We are
planning to look more into the transfer of knowledge between
different tasks and robot configurations. Furthermore, multi-
fidelity learning could combine a small amount of executions
on the real system with learning in simulation to allow for
a quicker and safer adjustment to new tasks.

APPENDIX

The implementation as well as additional information
are available at: https://github.com/matthias-mayr/
SkiREIL
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