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Object-centric Representations for Interactive Online Learning with
Non-Parametric Methods

Nikhil U. Shinde, Jacob Johnson, Sylvia Herbert, and Michael C. Yip

Abstract— Large offline learning-based models have enabled
robots to successfully interact with objects for a wide variety of
tasks. However, these models rely on fairly consistent structured
environments. For more unstructured environments, an online
learning component is necessary to gather and estimate infor-
mation about objects in the environment in order to successfully
interact with them. Unfortunately, online learning methods like
Bayesian non-parametric models struggle with changes in the
environment, which is often the desired outcome of interaction-
based tasks. We propose using an object-centric representation
for interactive online learning. This representation is generated
by transforming the robot’s actions into the object’s coordinate
frame. We demonstrate how switching to this task-relevant
space improves our ability to reason with the training data
collected online, enabling scalable online learning of robot-
object interactions. We showcase our method by successfully
navigating a manipulator arm through an environment with
multiple unknown objects without violating interaction-based
constraints.

I. INTRODUCTION

Automated robot manipulation is rapidly being adopted
throughout industry to improve efficiency and accuracy
across several manufacturing tasks [1], [2]. For applications
that require interaction with objects in the environment
(e.g. assembling automobile components), current success-
ful methods require highly structured and consistent envi-
ronments, such as assembly lines. This structure enables
established planning algorithms and offline learning-based
models to work well. Unfortunately, these offline methods
are usually parametric and have the drawback of being nearly
impossible to update online as new data is observed. In many
unstructured environments that are not perfectly modeled,
this becomes a drawback, as there are many attributes of
the environment that are difficult to learn without actively
interacting with the environment.

Navigating and interacting with objects in less structured
environments like warehouses, construction sites, or even
a common household remains challenging. As an example,
picture a household pantry with many opaque containers.
Multiple parameters (e.g. center of mass, friction coeffi-
cients) are difficult to estimate without active interaction,
and may drastically affect the results of the interaction. In
these cases, it becomes important to have an online learning
component that can help bridge this gap by learning through
interaction.

Most work on online learning focuses on estimating par-
ticular model parameters or uncertainty pertinent to the robot
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Fig. 1. Method Overview: Top: We apply our framework to the task of
reaching a goal by pushing unknown objects on a table without knocking
any over. The robot has no prior knowledge of how to interact with
the objects, and reasons online using composable object-centric Gaussian
process regression. A cartoon example of the robot’s learned model is shown
in the top figure. Bottom: The chart shows an overview of our method and
how our online model would fit into a general planning framework.
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model itself rather than interactions with objects. One pop-
ular approach is the use of Bayesian non-parametric models
for online learning [3]. These can readily incorporate priors,
these can be in the form of offline-learned base models,
which enable predictions in low-data scenarios. They provide
interpretable confidence metrics around their predictions in
the form of a posterior distribution. These methods are data-
driven and create Bayesian models on an effectively infinite-
dimensional parameter space where the complexity of the
model is allowed to grow with the size of the data [4]. In
particular, in this work, we use a form of Bayesian modeling
called Gaussian processes (GPs) to model the robot-object
interaction attributes.

GPs are data-driven and rely on a new observation’s
similarity to the support set formed by its training data points.
In interaction-based tasks, this can become challenging as
the state of the objects and the robots, which form the
datapoints, are constantly changing. The notion of finding the
right data representation for a task has been very popular in
offline learning methods [5]. Because the interaction between
a robot and an object during manipulation tasks is largely
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object-centric in nature, recent literature in offline learning
for manipulation have used object-centric representations to
improve automation [6], [5], [7].

Inspired by these recent developments, we apply object-
centric representations to improve online learning for manip-
ulation tasks. Our framework is shown in Fig. |I} We show
that using an object-centric representation for online learning
can be beneficial for capturing task-relevant features in our
input representation and allow the model to learn better and
be used online for the task at hand.

II. RELATED WORKS

Different sensor modalities using images [8], sound [9],
and touch [10] have been proposed in the literature to
capture object-centric properties like deformation, relative
pose, mass, friction, and texture. But these sensor values are
subject to noise and need to be actively tracked. Numerous
works have shown the benefits of tracking these errors for
downstream robotic tasks [11]—-[13]. In [14], the authors use
GPs to estimate object deformation. The model uses prior
data to fit the GP model and cannot generalize to new
objects with different material characteristics. In [15], the
authors actively track deformations using GPs, but it is not
generalizable to other modalities. An application of this work
looks at how environment uncertainty can be reduced by
moving objects occluding the sensors [16]. Still, it is not
object-centric and doesn’t consider how to interact with the
environment. The authors in [17] track the noise in pose
estimates using an ensemble of learning models, but these
cannot capture object properties like friction and mass.

Recent works have looked at object representation, all
specifically using neural networks. Zhu et al. [7] propose an
object-centric learned representation using different camera
views and proprioceptive data and uses the fused features
to accomplish downstream manipulation tasks. Similarly,
SORNet [5] uses a transformer-based architecture to generate
latent embeddings for different objects that generalize to
objects with similar shapes and textures. Still, since it uses
images, it can’t capture physical properties like friction and
mass. Kofinas et al. [18] propose object representation that
is rotation and translation invariant, which makes learning
more efficient.

Most similar to our work with regards to learnable rep-
resentations, the authors in [19] describe an object-centric
embedding specifically for task and motion planning. The
authors train an encoder-decoder structure by optimizing for
task representations and pixel-wise segmentation of images.
These models require large datasets for training, and the
generated latent representations are difficult to interpret.
In unstructured environments, we are data deprived, and
data is costly to acquire, rendering these neural network
representations unrealistic to train and inadapatable.

In summary, there continue to exist many challenging
unstructured environments where interaction dynamics are
unknown and must be estimated through online interaction.
Most prior object representation work have focused on neural
networks that are data-hungry to train and difficult to adapt

online. On the other hand, methods that leverage online
adaptation tend to be specialized towards tracking a singular
or very small set of parameter errors in a given system model,
with fewer considering the involved challenge of learning
the potentially nonlinear, potentially stochastic, parameter
function online. To address this gap, we described the paired
use of (i) non-parametric methods that can learn, online, a
statistical model of the measureable outcomes of interaction,
and (ii) a task-relevant, object-centric representation that
result in more scalable online learning.

III. GAUSSIAN PROCESS REGRESSION

GPs are Bayesian non-parametric models that capture the
distribution over continuous functions using a set of Gaussian
random variables. The distribution over all functions f :
R™ — R is parameterized with a mean function, pu,(z),
and a covariance or kernel function, k(z, z), written as

f(@) ~ GP(pp(), k(2 2)) ()
pp(r) = E[f (2)] 2)
k(x, z) = E[(f(2) = pp(2))(f(2) — pp(2))]  (3)

where E[-] represents the expectation operation.

Given a set of training data inputs X =
{zo,x1...2n},x; € R™ and their corresponding
noisy target values Y = {y1,y2,...,yn} where
yi = f(z;) + NN ~ N(0,02), the posterior mean
and variance for a new point z* is given by:

F@)X, Y, 2" ~ N(u*,o") 4)
1= () + K(X, ") KN (Y — (X)) (5)
o" =k(z",x") — K(QC*,X)Ky_lK(X7 x") (6)

where K, = K + 021, K € R™" and K(X,z*)T =
K(z*,X) € R". The matrix K is constructed by comparing
all pairs of points in the given dataset using the kernel
function ie., K(i,j) = Fk(x;,x;). Similarly, the vector
K(X,z*) is constructed by comparing all values in X with
x*. The prior mean function, up(x), can be set to 0 without
loss of generality.

For this paper, we used the radial basis function (RBF)
kernel function for k& given by

k(z,2) = aexp (—117%(z — 2)T(x — z)) 7

where scaling factor o and lengthscale [ are hyperparameters
that can be tuned. Any kernel function that belongs to the
class of covariance functions can be chosen. An example of
an alternate kernel is the forward kinematics kernel [20].
Due to the non-parametric nature of this method, this
model is able to fit diverse data types. With enough data,
the posterior distribution will overcome the model priors.

IV. OBJECT-CENTRIC REPRESENTATIONS FOR ONLINE
LEARNING

We model the attributes of the interaction dynamics be-
tween the robot and the objects in the environment using
GPs by leveraging data collected online, purely through in-
teractions. We need interaction in unstructured environments
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Fig. 2. Single object-centric GP: This figure demonstrates the benefit of using our object-centric GPs vs. a Full State GP baseline. In this experiment, we
are probing a single object. We utilize the learned GP at different stages of interaction to predict the mean and variance of the tipping angle as a function
of the robot state in the world frame and the current position of the object. We show this in two setups, one where the interaction largely causes the object
to tip: "Tipping object” and one where the interaction largely causes the object to translate "Pushing object”. Our object-centric representation allows our
model to retain its predictive abilities despite changes in the object state, which cause the baseline GP quickly loses its ability to predict.

because the physical properties of these objects are not well-
defined or may change with time. For example, consider
an environment with 5 opaque bottles on a tabletop. The
robot would like to reach a goal without knocking over
these bottles. The properties of the bottles such as the center
of mass and friction coefficients are challenging to model
from visual sensors alone and are better understood by
interactions. In our experiments, we model the tipping angle
of each object because it encapsulates different physical
parameters of the objects.

Consider a simple illustrative running example shown in
Fig. |Z| with one object, Og, and the robot. The robot has an
end effector which is primarily responsible for interactions
with the object. For this paper, we consider fairly homo-
geneous environments that do not have a large variation
in their terrain for the bounds of the environment. The
object state is denoted by Op : po, € R g0, € SO(3).
Here po, and go, denotes the position and orientation of
Oy respectively. The robot end effector state is denoted by
A :pa € R3 qa € SO(3). Here ps and g4 denote the
position and orientation of the robot. All orientations are
represented using quaternions in this paper. These states are
with respect to a world coordinate frame.

The interaction attribute that we model is denoted by y.
This interaction attribute is a function of the object state
in the world frame, the robot state in the world frame
and the robot action in the world frame. For the purposes
of this paper, we consider a quasi-static environment so
that the interactions can be modeled using only the states
without loss of generality. We can readily extend this to
consider additional action parameters in our inputs and by
transforming them with the same or similar object-centric
representation. The true value of y can be computed using

f(Op, A, 0) where 6 denotes an unknown number of inde-
pendent parameters that specify the real system. In practice,
we only get noisy observations of the interaction attribute
yt paired with noiseless observations of the object and robot
state: Of, A, y* at any timepoint.

A naive implementation of the GP uses the object state
and the robot state {Of, A}, or some subset of each of the
states, as an input and outputs y in attempt to model the true
function f. GP regression is highly reliant on its similarity
metric or kernel function and the observed data points in
order to model behavior at a new unseen datapoint. As seen
in Eq. 5] [f] it uses the similarity metric to compare the new
input to the support set of inputs contained in its training
dataset. In tasks involving interacting with and manipulating
objects, the object states will change as a result of the robot
motion. Changes in the object state will cause all future
inputs to the GP to appear to be further from the support
set of training points that may not contain the object state
in question. As a result, when the object state is altered by
the robot, the GP Regression model’s predictive capabilities
will falter, resulting in prediction values close to the GP’s
prior with a very high variance indicating a low measure of
confidence. We can see this behavior in Fig. 2] As the robot
interacts with the object and alters its state, the predictive
variance on previously seen robot states increases drastically,
and the predictive mean falls back to the GP prior.

Despite the change in the object state in the world frame,
the model should still be able to rely on its support set
of datapoints from past interactions and allow reasoning
about new interactions in this updated object state. This is
because these manipulation/interaction-based tasks are fairly
object-centric in nature, as discussed in section The
interaction between the robot and the object is a function of



the state/action of the robot in the relative frame of the object.
Thus despite the object state changing, the model should
be able to continue to reason about certain robot-object
interactions. We leverage this understanding by learning the
interaction attribute using an object-centric GP. The object-
centric GP uses the state of the robot in the object frame
Atoo, or some subset of the state, as an input and outputs a
prediction on the interaction attribute y.

To compute Atoo we start by using O to create a trans-
formation matrix 7.9° to convert coordinates in world frame
to coordinates in the frame of the object 0y. To get 790 we
start with the pose Op. We first compute the rotation matrix
RE)VO using the quaternion specifying the orientation of pose
Oo : qo, = 90, 91,92, q3)-

1—2¢? —2q3

W 29091 — 29392
Ro, = |290q1 +2q3q2

1—2¢2 —2q3
24192 + 29390

2q192 — 29390

1—2¢2 —2¢%

29092 + 29391
3
24092 — 2193

This rotation matrix is used with the position of Oy : po, to
compute the desired transformation matrix 7,50 at time ¢.

0 1
T =15

w
15, = {RQO pOU] ,0=10,0,0] )
(10)

This transformation matrix is utilized to transform coor-
dinates, such as the state of the robot, into the object frame.
Ap, par, € R3, qay, € SO(3). RY. is the rotation matrix
correspondoing to the orientation g4+, computed similar to [§]

RY,  pas RW
Aby P00 | =00 | Moo AT G _10.0,0) (11
6 0 1 ‘| w 0 1 ) [ s Uy ] ( )
RY, is the rotation matrix describing the orientation of

O,
Ato0 Oin the frame of Og, which can be converted back to
a quaternion q Al These transformed representations are
used with the object-centric GP. The transformation can be
augmented or simplified by leveraging geometric symmetries
of the object or other task-specific simplifications.

This object-centric representation consolidates the object
and robot state and switches the input space of the GP to be
more task-relevant, allowing better online modeling. Since
the interaction attribute should only be a function of the
robot state relative to the object state this representation
provides a better space to compare new datapoints to the
support set of datapoints collected online. Thus even if the
object state has moved in the world frame, the model can
leverage previous datapoints and reason about new robot
states. By consolidating the two state spaces, we also reduce
the dimensionality of the input space of the GP. We can see
this behavior in Fig. 2] As the robot interacts with the object
and alters its state we still maintain a high confidence over
previous states that have been sampled.

In the case of multiple objects {0,1,...n — 1} we can
model the pairwise interactions between the robot and each
object using a separate object-centric GP for each object.
This can be done when the robot accounts for a majority of
what is measured in the interaction attribute. Each of these

GPs can be updated intelligently, based on the proximity of
the robot, to improve efficiency. The outputs of these GPs can
be combined coherently, based on the task. This combined
output can be used by a high-level planner to make intelligent
decisions on how to move through the environment and
interact with objects. One example of how multiple object-
centric GPs can be composed is illustrated in section

V. EXPERIMENTS AND RESULTS

To showcase our method, we consider a problem with
multiple objects on a tabletop with different attributes such as
mass and center of mass. The interaction dynamics of the ob-
jects are unknown and estimated through online interaction.
We consider a task involving non-prehensile manipulation
where the robot must push the objects to reach a specified
goal region. The robot wants to get to the goal without
tipping the objects beyond a certain angle and knocking
them over. We use GPs to directly learn the interaction by
mapping the object-centric robot state to the tipping angle of
the object, for each object. For these experiments the robot
is constrained to motion in the z,y plane at a fixed height,
thus we only visualize the GP over robot states in the z,y
plane. We initialize our GPs with samples in the empty space
around the robot for all experiments.

In Fig. [2| we demonstrate what our model learns when
interacting with a single object. To do this, we run our robot
in open-loop to probe a single object. We add the samples
gathered during this open loop maneuver to update our GP
model online. Each sample datapoint consists of the robot
end effector state in the object-centric frame and the observed
tip angle of the object. To visualize the GP at a point in
time we plot the mean and standard deviation (std) of the
predicted tipping angle for robot end effector positions in
the world coordinate frame for the current object state. We
compare this to the “Full State GP” baseline. For this GP a
sample datapoint’s input contains the robot and object state
in the world frame, with the corresponding object’s tip angle
as the output.

In Fig. 2] we show the results of probing two different
types of objects: A “tipping object” whose interaction pa-
rameters cause it to mainly tip on contact, and a “pushing
object” whose parameters allow it to be pushed by the
robot. As the object state changes, the full state GP fails
to properly leverage support points from its training dataset
to make valuable predictions about the tipping angle beyond
the immediate position of the robot. This occurs when the
object state changes slightly due to tipping and is much
more exaggerated when the object is pushed. In contrast, our
object-centric representation enables the model to continue
to make meaningful predictions by leveraging its support set
in spite of changes in the object state.

Multiple object open loop experiment: We repeat
the same experiment to show this methodology scaling to
multiple objects, as shown in Fig. [3] The Full State GP
takes the state of the robot and objects in the world frame
as its input and maps it to the maximum tip angle in the
environment. With the object-centric, approach we split the
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Fig. 3. Multiple object-centric GPs: This figure demonstrates the benefit of using a composition of object-centric GPs to model robot-object interactions

in environments with multiple objects. The robot runs an open loop path and interacts with multiple objects. We show frames of the robot as well as the
mean and standard deviation of the tipping angle predicted by the online learned GP models as a function of the robot state in the world frame and the
object states at that time point. Even in complex environments with multiple objects, our object-centric representation allows us to maintain a good model
of the robot object interactions, while the full state GP fails once the objects have been interacted with.

problem up to consider pairwise interactions between the
robot and each object separately. We learn each interaction
online with a separate object-centric GP. These GPs can then
be used to predict pairwise interactions, and their outputs can
be combined for the task at hand.

This scenario focuses on predicting the worst-case tip-
ping angle in the environment in terms of the probabilis-
tic upper bound of our understanding. We first predict
the mean and variance of the tipping angle with each of
our GPs: {(po0,00), (#1,01), -+, (tn—1,0n-1)}. The upper
bound u(p,0) = p + PBo is then computed for each
output: {ug,...u,—1}. The mean and variance prediction
corresponding to the highest upper bound: (u;,0;),i =
arg max; u;, is then used. From Fig. E| we can see that the
object-centric representations enable useful predictions, in
stark contrast to the full state, even after multiple objects
have begun to move from their original states.

Object-centric model integration with planner: Our
online learned models can be integrated with planners, as
shown in Fig. ] The environment contains 5 objects with
unknown centers of mass, mass, and completely unknown
interaction dynamics. The robot is attempting to get to a
goal region at the other side of the table without knocking
over the objects. The robot state space is bounded so that
it can not trivially go around the objects. If the robot
attempts to naively push through the objects, some objects
will tip excessively and fall over. To showcase our models,
the planner lacks any prior on how the objects will move
in response to interactions. Additionally, to showcase the
learning capabilities of our GPs, they are initialized with
a naive prior mean function, p,(x) = 0, that indicates
that the robot can move without affecting the objects. The

planner uses the online learned models to ensure that the
robot will not cause the bottles to fall over. The predicted
mean and variance of the tipping angles are used, by the
planner, to determine where the robot should sample to learn
more about the environment, while balancing exploration
and exploitation to get to the goal. Using our algorithm the
robot is able to successfully learn about the environment
through multiple sampling maneuvers. The robot is able to
leverage small gaps created between the objects as they are
manipulated to squeeze between the objects in a manner that
doesn’t tip them over beyond a set threshold, to get to the
goal region. The sampling maneuvers can be seen between
timesteps [0.04c,0.90] in Fig. ] before the robot exploits
the gap between the bottles between timesteps [0.9¢v, 0.94¢

VI. CONCLUSION

We enable better online learning for robot-object inter-
action tasks in unknown environments through our use of
task-relevant object-centric representations. We showcase the
potential of our method by integrating it with a planner to
navigate through complex obstacle-filled environments.

This work’s restriction to learning online limited our
choice of predictive models for learning. Though GPs pro-
vide an efficient, non-parametric way to learn online they
have limitations. These limitations include cubic computa-
tional complexity with increased samples, difficulty predict-
ing in high dimensional spaces and difficulty in choosing
hyperparameters. The drawbacks posed by these limitations
can often be mitigated. Sparse GPs, local GPs or techniques
such as thresholding the number of used predictive samples
can help reduce predictive computational complexity. Creat-
ing an efficient kernel to leverage geometric similarities in
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Online learning with object-centric GPs for Planning: The robot is trying to get to a goal on the other side of several objects with unknown

interaction dynamics without knocking any of them over. The robot uses a composition of object-centric GPs to learn about its effect on the objects through
online interaction. The robot’s planner queries the GP models and uses their predictions and confidence bounds to balance exploring the environment and
exploiting what it has learned to get to the goal, the other side of the table. We show the plan at different frames between timesteps [0, «]. We also show
the mean and variance predictions of the worst-case tipping angle generated with our method at the final timestep. This prediction is done over the robot

states in the world frame with respect to the object states at the final timestep.

the scene or focus on more relevant features can help extend
this method to more complex high dimensional spaces.
While certain hyperparameters can be set by maximizing the
likelihood of the observed data, setting these parameters can
also serve as a way to enforce principled priors on extending
the learned model to uncertain, unsampled regions of the
state space.

This work provides an initial step in interactive online
learning to improve interaction-based tasks in unknown envi-
ronments. Such a object-centric representation can be used to
incorporate richer state information that can ultimately lead
to more intelligent interactions with deformable objects, for
tasks such as tissue manipulation for surgical automation.
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