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Abstract— Accurate 3D sensing of suturing thread is a
challenging problem in automated surgical suturing because
of the high state-space complexity, thinness and deformability
of the thread, and possibility of occlusion by the grippers
and tissue. In this work we present a method for tracking
surgical thread in 3D which is robust to occlusions and
complex thread configurations, and apply it to autonomously
perform the surgical suture “tail-shortening” task: pulling
thread through tissue until a desired “tail” length remains
exposed. The method utilizes a learned 2D surgical thread
detection network to segment suturing thread in RGB images.
It then identifies the thread path in 2D and reconstructs
the thread in 3D as a NURBS spline by triangulating the
detections from two stereo cameras. Once a 3D thread model
is initialized, the method tracks the thread across subsequent
frames. Experiments suggest the method achieves a 1.33 pixel
average reprojection error on challenging single-frame 3D
thread reconstructions, and an 0.84 pixel average reprojection
error on two tracking sequences. On the tail-shortening task, it
accomplishes a 90% success rate across 20 trials. Supplemental
materials are available at: https://sites.google.com/
berkeley.edu/autolab-surgical-thread/

I. INTRODUCTION

Many steps in suturing, such as tail-shortening (where a
thread is pulled through a suture to a desired length) and knot
tying, require accurate thread tracking, which is particularly
challenging due to the thin and flexible nature of suturing
thread, as well as its propensity for self-intersections and
partial occlusions.

In this paper, we propose a novel interactive perception
system for tracking suture thread in 3D, which we apply to
track thread in the autonomous tail-shortening task described
in Figure 1, requiring precise tracking to avoid pulling the
thread too far out of the suture.

The learned 2D suturing thread detection model is trained
using the Labels from UltraViolet (LUV) method [1] for self-
supervised data collection, which has previously been shown
to be effective for detecting cables and surgical needles.
We extend it to surgical threads and combine the detection
network with a 3D tracking method for temporal stability.
Modeling the thread in 3D is a non-trivial task due to its
complex shape and unclear endpoints. To address this issue,
we model the thread as a 3D Non-Uniform Rational B-Spline
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Fig. 1. Surgical Suture Tail-shortening with 3D Thread Tracking.
We present a thread tracking method which we use for automating surgical
suture “tail-shortening”, i.e. pulling thread through tissue until a desired
length of thread remains exposed. Initially, the robot grasps the needle close
to the wound. It uses interactive perception to determine which portions of
the reconstructed thread are on the needle side (head) vs slack side (tail).
The system accomplishes tail-shortening by visually servoing the needle
driver until a desired tail length remains.

(NURBS) [2] based on stereo images of the scene. We adapt
the thread model across frames by optimizing spline control
points to minimize the error between the current detections
and the reprojection of the 3D spline into the images.

Using NURBS optimization alone can break down in
complex thread configurations because of false-positive de-
tections or self-intersections. To address this, we develop
an analytic 2D tracing approach based on prior work for
cable untangling [3], which is used as a prior to prevent the
NURBS optimization from collapsing in the presence of dis-
tracting false detections or challenging thread configurations.

Experiments conducted on a physical Intuitive Surgical da
Vinci Research Kit (dVRK) RSA demonstrate that the system
utilizing our thread tracker achieves 18/20 successful trials
on the tail-shortening task (shown in Figure 1).

This paper makes the following contributions:

1) A 3D surgical thread tracking algorithm, described
in Figure 2, that combines a learned thread detection
module trained on data collected in a self-supervised
fashion with a NURBS spline optimization.

2) An interactive perception approach to suture thread
tail-shortening which utilizes the thread tracker with
visibility-maximizing manipulation to estimate the
length of remaining thread tail.

3) Data from experiments evaluating the perception
components individually and applied to suture tail-
shortening, achieving a 90% success rate.
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Fig. 2. Overview of the first 4 modules: 2D Surgical Thread Detection, 2D Tracing, 3D Tracing, and 3D Tracking. Left: For every stereo pair of
images, we predict thread segmentation masks, then run a 2D tracer to compute the sequence of pixels along the thread. Top right: To initialize the 3D
spline of the thread, we match points meeting both stereo image and tracer topology constraints and triangulate their positions in 3D. We initialize the 3D
trace by fitting a 3D spline to these points. Bottom right: To update the 3D spline with new frames, we compute correction vectors in 2D as an average
of vectors which push the projected 3D spline onto the new detection and push each projected 3D point to its corresponding point on the 2D trace. We
then triangulate the correction vectors across both images and apply them to the 3D spline to perform an update.

II. RELATED WORK

A. Surgical Thread Detection

Detecting surgical thread from an RGB image has been
previously explored in a number of different settings. Early
approaches relying on analytic curvilinear detectors [4, 2]
work well when the thread is isolated and clearly visible, but
fail in realistic scenes with shadows and occlusions. Simi-
larly, Joglekar et al. [5] assume that thread detections can
be obtained from color segmentation; however, this may fail
due to light glare, sensor noise, materials covering the thread
(e.g., blood), and varying lighting conditions. Learning-
based approaches generalize better to different backgrounds
and lighting conditions, but require manual collection of
large datasets. Lu et al. [6] train a U-Net [7] using semi-
supervised learning leveraging hand-labeled images for su-
pervision which are time consuming to obtain. We use a
self-supervised data collection method that extracts labels
autonomously using UV light [1], allowing the system to
collect 10 labeled images per minute.

B. Surgical Thread Reconstruction

Lu et al. [6] propose using a 3D graph to represent the
triangulated 3D candidate thread points. The method then
computes a minimum energy path through the graph and
uses it as the 3D model of the thread. Joglekar et al. [5]
propose using a minimum variation spline to represent the
suture. This results in a smooth reconstruction with less tight
curvature and yields a confidence value along the spline
model which is useful to chose a grasp point along the thread.
Both methods mentioned above fully reconstruct the model
on each frame, ignoring prior frames, making them more
susceptible to one-off missing or false detections. Padoy et
al. [4] assume the 3D spline has been initialized in advance,
and focus on tracking the spline across frames. However,
this work assumes that the length of the thread is constant,
which limits its applicability to certain applications like tail
shortening or knot tying. Jackson et al. [2] propose an

approach to jointly trace and reconstruct a 3D spline from
stereo images as well as a tracking method using pixel-
space error minimization. However, their approach assumes
a known initial tracing point, manually defined using a space
mouse. In contrast, we leverage tracing of 2D splines to
address missing or occluded parts of the thread and use an
approach which does not rely on a user-defined seed point.
Furthermore, our method tracks the spline across frames,
increasing its robustness to noisy detections.

C. Interactive Perception
Goldberg et al. [8] investigate how a robot can use active

perception to recognize the shape of an object by moving a
touch sensor to trace its contours. Bajcsy [9] defines active
perception as the search for models and control strategies
for perception which can vary depending on the sensor and
the task goal, such as adjusting camera parameters [10] or
moving a tactile sensor in response to haptic input [8].

Similarly, interactive perception, as explored by Bohg et
al. [11], utilizes robot interactions to enhance perception.
Interactive perception has been used in robotic manipulation
to extract kinematic and dynamic models from physical
interactions with the environment [12] and to improve the
understanding of a scene in the presence of occlusions
and perception uncertainty [11, 13, 14]. Murali et al. [15]
leverage feedback from visual and tactile sensors to estimate
the pose of partially occluded objects in cluttered environ-
ments. Danielczuk et al. [13] propose the mechanical search
problem, where a robot retrieves an occluded target object
from a cluttered bin through a series of targeted parallel jaw
grasps, suction grasps, and pushes. Novkovic et al. [14] use
a robot to move a camera and interact with the environment
in order to find a hidden target cube in a pile of cubes, while
Shivakumar et al. [16] use interactive perception to reduce
perception uncertainty when untangling long cables.

In this work we propose an interactive perception-based
approach to surgical suture tail-shortening. The robot ten-
sions the thread to create a sharp angle between the taut



thread on the extraction side of the suture and the slack
thread on the insertion side. This forces the thread into a
linear configuration to facilitate perception. The robot then
pulls the thread through the suture until the desired length
of slack thread is detected at the tail.

III. PROBLEM STATEMENT

Using stereo RGB images, we want to accurately track
the state of a surgical thread and use these state estimates to
automate the task of surgical tail-shortening.

A. Workspace and Assumptions

We define the workspace using a cartesian (x, y, z) coor-
dinate system. The workspace consists of a bimanual dVRK
robot [17]; a Simulab TSP-10 human organ phantom1); and
a fixed ZEDm RGB stereo camera, which outputs images at
1280x720 pixel resolution. The camera is angled at the robot
and phantom such that the whole reachable workspace of the
robot is captured in the field of view. We work with undyed
(beige) PolysorbTM surgical suture thread from Covidien.
The sutures are of variable length between 10 and 40 cm,
with 2-0 USP Size (0.35-0.399 mm in diameter) and are
attached to a GS-21 needle or similar. The length, diameter
and needle size of the suture are unknown to the algorithm.

We make the following assumptions:
1) The robot-to-camera transform is known.
2) During test time, the thread and phantom configura-

tions lie within the training data distribution. However,
their pose does not necessarily correspond exactly to
any pose seen in training.

IV. METHODS

We decompose the problem of thread modeling and au-
tonomous robot suture tail-shortening into five modules:

1) Learned 2D Surgical Thread Detection: uses a convo-
lutional neural network to segment the surgical thread
in a physical mockup of a surgical environment. This
module takes as input an RGB image of dimension
1280 x 720 and returns a pixel-wise probability mask
of the thread’s location.

2) 2D Surgical Thread Tracing: given the detection prob-
ability masks with potential gaps in the detections and
false positives, identifies the sequence of image points
along the thread.

3) 3D Surgical Thread Tracing: computes a 3D represen-
tation of the suture thread based on the traced thread.
This algorithm takes the traces from 2 rectified stereo
images as input and returns a 3D NURBS spline.

4) 3D Surgical Thread Tracking: adapts the 3D spline
model to the current view of the scene. This module
takes the traces from the current pair of rectified stereo
images as well as the previous 3D spline as input and
outputs an updated 3D spline.

5) Surgical Suture Tail-Shortening: This module performs
the surgical tail-shortening task using an interactive

1https://simulab.com/collections/suturing-skills-
training/products/tissue-suture-pad

White light UV light Label

Fig. 3. 2D Surgical Thread Detection Data Collection. The left image
shows the dVRK gripper holding a suture thread under white light. The
middle image depicts the same scene under UV light. The thread painted
with UV fluorescent color lights up and can be segmented via color
thresholding. The right image displays the extracted label used for training.

perception approach which leverages the 3D spline
model computed by the previous modules.

An overview of how these modules are combined is shown
in Figure 2.

A. Module 1: Learned 2D Surgical Thread Detection

We train a neural network to segment surgical thread from
scenes using the self-supervised training approach proposed
in Thananjeyan et al. [1]. To collect labels automatically,
we paint the surgical thread with a UV-florescent paint.
This paint is invisible under visible light but shines when
illuminated with UV light. For each scene, the robot arms are
moved to a new random position in the workspace, changing
the thread configuration and RGB stereo images are recorded
under both visible and UV light.

The label masks are extracted from the UV images us-
ing color segmentation. Train, validation, and test sets are
split from disjoint subsets of scenes to ensure no cross-
contamination of the sets from the same state. Using this self-
supervised data collection technique, we are able to acquire
10 labeled images per minute (visible light stereo images
with corresponding labels extracted under UV light). The
image size of 1280 x 720 pixels is chosen to maximize
the tradeoff between resolution (which aids in segmenting
the thin thread) and inference speed (2.5 FPS on our test
computer using an NVIDIA 2080 GPU).

We train a U-Net [18] to detect surgical thread from a
single RGB image. We train our model on 1320 images of
size 1280 x 720 for 400 epochs. We specifically choose not
to upweight false negatives, as would be expected from the
ratio of background pixels to thread pixels, as this yields
predictions that are biased towards precision over recall. This
is desirable because the 2D tracer is able to bridge missing
thread detections but can get confused by false positives.

B. Module 2: 2D Surgical Thread Tracing

We adapt the analytic cable tracing method from Shiv-
akumar et al. [3] to trace the path segments from the 2D
thread detection masks. However, instead of generating all
possible global paths, this work leverages heuristic scoring
rules similar to those proposed by Viswanath et al. [19]
and Keipour et al. [20] to generate a single global trace.
In contrast to the learning-based method proposed in [19],
which detects and traces cables simultaneously, we propose
an analytical method. The method proposed in [20] is similar
in the sense that it uses scoring functions that prioritize traces
which cover more of the cable and have lesser changes in



angle. However, they model the thread as a chain of cylinders
whereas we fit a 2D spline onto the traced detections
to bridge gaps. The analytic thread tracer locally traces
contiguous segments and greedily stitches them together, as
described in Algorithm 1.

Algorithm 1 2D Surgical Thread Tracing Algorithm
Require: D ← pixelwise thread detection

mask← D > threshd
mask← mask−(conn components with area < thresha)
path segs← []
while sum(mask) > threshs do

start point← argmax(D)
paths← sgtm2tracer(mask, start point).
best path← argmaxp∈paths score(path)
On mask, set points along best path to 0.
Append best path to path segs.

end while
while length of path segs > 1 do

find i, j within path segs with lowest matching cost
new seg← merge of path segs[i] and path segs[j]
add new seg to path segs

end while
return path segs[0]

C. Module 3: 3D Surgical Thread Tracing

As in prior work [2], we model the suturing thread as a
3D NURBS parametric curve. Instead of jointly tracing and
reconstructing the thread, we use a dedicated 2D tracer to
compute the sequence of thread pixels in both images before
reconstructing the 3D thread model. The spline parameter
t ∈ [0, 1] describes the normalized distance along the spline.

To start the 3D tracing method, a 2D NURBS spline
defined by 32 control points is fitted to the traces in both
images using a least squares approximation. The number
of control points is chosen to allow a sufficient amount of
flexibility to the spline so that it can approximate tight curves
common in suturing thread.

Next, we triangulate these 2D splines into 3D to estimate
the thread state. We therefore propose the following stereo
matching approach: The left trace spline point pLi is located
at spline parameter tLi along the spline and has pixel coor-
dinates [uL

i , v
L
i ] for width and height respectively, starting

from the top left corner. For each point along the left spline
pLi , a corresponding point on the right spline pRj(i) is found
which minimizes the difference between spline parameters
tLi and tRj(i) and satisfies rectified stereo image properties.
Specifically, the right image point should have the same
vertical coordinate than the left image point except for a
tolerance of up to α = 5 pixels (condition a). pRj(i) must
be further left within the image than pLi (condition b). The
right spline candidates must be further along the spline than
the last matched right spline point (condition c). tLi and tRj(i)
must be within a distance β = 0.05 (condition d). For a

given value of i, we seek to solve

j(i) = argmin
j
|tRj − tLi |

such that a) |vLi − vRj | ≤ α, b) uR
j ≤ uL

i , c) tRj > tRj(i−1)∀i,
d) |tRj − tLi | ≤ β.

The matched points are then triangulated using the camera
intrinsics to obtain their 3D position. A 3D NURBS spline
model is then fitted to the triangulated points using least-
squares optimization. The values for α, β and a rejection
threshold for bad reconstructions were set empirically as
a trade-off between reconstruction quality and number of
discarded frames.

D. Module 4: 3D Surgical Thread Tracking

Inspired by Jackson et al. [2], we compute 200 correction
vectors to update the coordinates of the 3D spline control
points between frames. The number of correction vectors was
set as a trade-off between tracking accuracy and computation
speed. The thread tracking computation time is under 2.5
FPS which is the frame rate of the 2D learned surgical thread
detection module as described in Section IV-A. Instead of an
energy minimization approach to compute correction vectors,
we compute correction vectors using the 2D splines fitted
on the current stereo traces. The 2D correction vectors are
obtained as a sum of two vectors, cmask and ctrace. cmask is
a vector in image space pointing towards the closest point
on the prediction mask. ctrace matches the point of the 2D
spline fitted on the 2D trace at parameter t with the point at
parameter t of the projected 3D spline. The 2D correction
vectors from both stereo images are triangulated to find
3D correction vectors. Both 3D correction vector terms are
averaged to obtain the final set of correction vectors.

Using only the distance correction cmask, the 3D spline
tends to collapse as the segmentation mask of the thread does
not constrain the 3D spline along the length of the thread.
This is mitigated by the second correction vector, ctrace, which
assigns a fully constrained pixel location to each point along
the projected 3D spline.

Given the correction vectors, an updated set of control
points is computed using the least square control point update
described by Jackson et al. [2].

E. Module 5: Surgical Suture Tail-Shortening

Initially, the thread passes through the phantom at one
suture, with the needle held by one dVRK gripper. Excess
thread of between 12-16 cm exists on the needle insertion
side of the suture and needs to be pulled through while an
unknown amount of thread has already been pulled through
the suture. First, the robot uses interactive perception to
estimate the needle extraction point by pulling the needle
side of the thread taut. This is achieved by moving the needle
upwards in positive z direction. The algorithm detects the
needle end of the spline to be the one that has the highest z-
coordinate. The system detects the taut segment of string by
computing the tangent along the 3D spline and identifying
a constant tangent direction segment. The angle between the
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Fig. 4. Example 2D Thread Detections and 3D Traces. 2 example
executions of the 3D thread tracing method. Left shows the left camera’s
input RGB image, Middle shows the 2D thread detection prediction from
the neural network, and Right shows the resulting reconstructed 3D spline
reprojected into the camera image. The color indicates the path from red to
orange.

TABLE I
2D SURGICAL THREAD DETECTION RESULTS

Tier 1 Tier 2 Tier 3 Tier 4 Overall
Recall (%)

Color thresholding 32 32 14 40 30
Learned segment. (ours) 85 79 80 86 83

Precision (%)
Color thresholding 24 27 5 10 17

Learned segment. (ours) 93 93 87 90 91
IoU (%)

Color thresholding 16 17 4 9 12
Learned segment. (ours) 80 75 72 79 77

TABLE II
3D SURGICAL THREAD TRACING RESULTS

Tier 1 Tier 2 Tier 3 Tier 4 Overall
Mean Reproj. Err. (pix) 0.58 1.14 2.50 1.10 1.33
Max Reproj. Err. (pix) 13.34 20.61 62.16 43.17 62.16

taut segment tangent and the following thread tangent is
computed. Pulling the thread upwards leads to a sharp angle
in the thread which is identified as the needle extraction
point. The 3D thread spline is split into a slack-side and
a needle-side at the extraction point and the length of the
slack-side thread is computed.

The robot conducts the actual tail-shortening by perform-
ing a horizontal motion away from the computed wound
location (i.e. the extraction point). We continuously run the
3D thread tracking module during this motion, terminating
when the thread tail is less than 3cm.

V. EXPERIMENTS

A. Modules 1-3: 2D Thread Detection and 2D & 3D Tracing

1) Setup: We test the first 3 modules by using the
workspace described in Sec III-A The experiments begin
with the needle in the right end-effector and the tip of the
thread going through the phantom. We collect test examples
from 4 difficulty tiers:
Tier 1: No self-intersection in thread, reversed phantom.
Tier 2: ≥ 1 self-intersection in thread, reversed phantom.
Tier 3: No self-intersection in thread, phantom facing up.

Tier 4: ≥ 1 self-intersection in thread, phantom facing up.
We collect and label stereo images for 5 scenes per tier for
a total of 10 images per tier.

2) Metrics: In this experiment, we evaluate the IoU,
precision, and recall metrics of the segmentation mask with
respect to human-labeled ground truth segmentation masks.
To evaluate the 3D model of the thread, we report the
reprojection error between the human-labeled ground truth
thread segmentations and the projection of the 3D model of
the thread into both stereo images.

3) Results and Failure Modes: Results for 2D thread
detection and 3D thread tracing are presented in Table I
and Table II respectively. Example detection masks and
reconstructions are shown in Figure 4. Comparison with the
color thresholding baseline clearly shows that the learned
method is able to detect thread in low contrast scenes and
in the presence of light reflections on the phantom. Note
that while detections can miss segments of highly difficult
thread (recall of 83%), the precision of predictions is 90%.
Our detection model shows slightly better recall and IoU
performance in the more difficult Tier 4 with respect to Tier
2. This difference is due to a scene in Tier 2 in which the
thread has a particularly low contrast with the background
and is thus not detected. The discrepancy lies in the error
bars of this experiment. Lu et al. [6] report an average IoU of
85% with a recall of 93%. While these are impressive results,
all their scenes have suturing threads lying on the ground
plane without any tools that can cast shadows or reflective
configurations that make segmentation more challenging.

The 3D surgical thread traces have an overall mean error
of 1.33 pixels, showing that the reconstruction approximates
the spline well in general. The 3D tracing fails on parts of
the thread in 3 scenes, resulting in the high maximum repro-
jection error. These errors are mainly due to reflective bright
edges on the phantom which lead to erroneous detections
and 3D traces. Joglekar et al. [5], report reprojection errors
between mean 0.4 and 1.1 pixels on 10 real scenes with
printed surgical backgrounds. These results seem comparable
to ours even though performance remains highly dependant
on the particular scenes, making results hard to compare
objectively.

B. Module 4: 3D Surgical Thread Tracking

1) Setup: Using the workspace setup described in Section
III-A, we thread the needle through the phantom and place
it in the right gripper of the dVRK. We evaluate the thread
tracking system on two trajectories: the “no loop” trajectory,
a line in the image plane, and the “one loop”, an elliptical
track above the phantom. The first trajectory avoids any
occlusion or self-intersection of the thread, while the second
incurs a challenging, self-crossing configuration.

2) Metrics: We report the same metrics as in the single-
frame 3D tracing (Section V-A.2) experiments. We manually
label ground-truth segmentation masks in stereo images
taken every 1 cm along the trajectory and evaluate the
3D thread model against them. This leads to 10 evaluation
frames for the “No loop” trajectory and 9 for the “One loop.”



TABLE III
3D SURGICAL THREAD TRACKING RESULTS

Mean Reproj. Err. Max Reproj. Err.
No loop

No tracking 0.30 pix 9.22 pix
With tracking 0.39 pix 5.39 pix

One loop
No tracking 5.37 pix 94.92 pix

With tracking 1.28 pix 16.26 pix

No tracking refers to computing a new 3D trace for every frame.
With tracking refers to using Module 4 and leads to a significantly better
mean reprojection error in the more difficult “One loop” case.

3) Results and Failure Modes: The results in Table III
suggest that the method is able to track the thread reli-
ably in both configurations. The “One loop” trajectory sees
higher reprojection errors, as it presents a more challenging
thread configuration for the tracer. The full tracking pipeline
achieves a mean reprojection error of 0.39 pixels on the
intersection-free trajectory and a 1.28 pixels on the loop-
forming trajectory. Padoy et al. [4], report a mean repro-
jection error of 1.21 pixels. However, they use only short
threads in configurations which present no self-intersections.

C. Module 5: Surgical Suture Tail-Shortening

1) Setup: We additionally test automated suture tail short-
ening using the workspace setup described in Section III-A,
with the needle threaded fully through the reversed phantom
and held by the right end-effector. The tail of the thread is
then placed arbitrarily in the workspace such that the entire
suture thread is within the view of both the right and left
stereo cameras.

2) Metrics: We define a successful tail-shortening maneu-
ver as a termination in which the final tail length lies within
1 cm of the desired value of 3 cm. We report the success
rate of our pipeline on the tail-shortening task, as well as the
mean absolute error between the achieved and desired length
and the average time to completion for this task.

3) Results and Failure Modes: The proposed method
achieves 18 successes out of 20 trials with a mean absolute
tail error of 0.53cm. The mean time to completion is 106.8
seconds. The method achieves a success rate of 90%, indi-
cating that our pipeline provides high-confidence 3D traces
using interactive perception. The main failure case occurs
during the 3D tracing of the spline due to false detections
on the human organ phantom.

VI. LIMITATIONS & FUTURE WORK

The primary limitation is the uncertainty about the ability
of the learned 2D surgical thread detection to generalize to
new thread or phantoms, which will be addressed in future
work. Also, the learned thread segmentation method remains
vulnerable to false positive detections of light reflections
from the edges of the human organ phantom. This could
be mitigated in future work by adapting the lighting setup
of the workspace.
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VII. APPENDIX

A. Workspace

Figure 5, shows an image of the workspace used for the
experiments. It contains two dVRK robot arms, a ZEDm
stereo camera, a red tissue phantom placed on a red back-
ground and a surgical suture composed of a needle and white
thread.

ZEDm stereo 
camera

da Vinci Robot

Phantom

Suture
thread

Fig. 5. Workspace. The da Vinci Research Kit with two PSMs (Patient
Side Manipulators) holds a thread above the phantom tissue placed on a red
background. The suture thread is thin, making it difficult to perceive. The
ZEDm stereo camera pair faces the workspace on the opposite side to the
robot at a steep downwards angle.

B. Module 4 Experiment Extension: 3D Surgical Thread
Tracking

We show an ablation study for the experiment described
in Module 3 V-B. It shows the value of both components of
the 3D surgical thread tracking correction vector.

1) Setup: The setup is the same as in the main experiment
described in Section V-B. We evaluate the performance on
the same trajectories we call ‘No Loop’ and ‘One Loop’.
Both trajectories are represented in Figure 6.

2) Metrics: We use the same metrics as in the main
experiment, i.e. mean and maximum reprojection error in
pixels. Also, we add the ground truth coverage metric which
measure how much of the ground truth segmentation mask is
covered by the reprojected 3D surgical thread model spline.

3) Results and Failure Modes: We present three ablations
of the 3D surgical thread tracking pipeline and compare them
to the full pipeline performance. Results can be seen in Table
IV. No tracking refers to performing a new 3D reconstruction
every frame. It can be seen that especially in the more
difficult ‘One Loop’ trajectory, not using the knowledge from
prior frames leads to higher reprojection errors. The Mask
track ablation refers to tracking with only the correction
vector cmask. While it leads to lower reprojection errors,
looking at the median ground truth coverage shows that
the spline actually shortens along the detection mask as the
spline points are not fixed along this degree of freedom. This
is clearly visible when looking at Figure 7. The Trace track
ablation refers to tracking with only the correction vector
ctrace. This correction vector addresses the spline collapse
which arises when only using cmask as it fully constrains

the 3D position of the spline evaluation points. However,
it can be seen that using only this term leads to higher
reprojection errors as the two traces on the left and right
image can be of different length due to perspective effects,
thus leading to a mismatch of correction vectors between
both images. This imprecision in turn is addressed by the first
correction vector. Using the Full tracking method leads to the
best mean reprojection error while achieving a high ground
truth coverage value which shows that it is reconstructing
the whole thread.

TABLE IV
3D SURGICAL THREAD TRACKING RESULTS

Mean Reproj. Err. Max Reproj. Err. GT Coverage
No loop

No tracking 0.30 pix 9.22 pix 93.22 %
Mask track. 0.20 pix 4.12 pix 88.56 %
Trace track. 0.77 pix 7.00 pix 96.37 %
Full tracking 0.39 pix 5.39 pix 96.10 %

One loop
No tracking 5.37 pix 94.92 pix 95.90 %
Mask track. 0.15 pix 5.0 pix 82.79 %
Trace track. 1.91 pix 17.03 pix 94.53 %
Full tracking 1.28 pix 16.26 pix 95.26 %

GT Coverage is the ground truth coverage metric which measures how much
of the ground truth mask overlaps with the current reprojected thread model
in pixel space. No tracking refers to performing a new 3D reconstruction
for every frame. The Mask track. ablation refers to tracking with only the
correction vector cmask. The Trace track. ablation refers to tracking with
only the correction vector ctrace. Using the Full tracking method leads to
the best mean reprojection error while reconstructing the whole thread.
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Fig. 6. Tracking Experiment Trajectories: these panels illustrate the two
trajectories used for computing tracking performance. The rainbow colored
line shows the projected 3D spline while the colors depicts the sequence of
the spline.Top shows the first ”No loop” trajectory where the thread has no
self-intersections (moving from left to right). Bottom shows the second ”One
loop” trajectory where a self-intersecting thread configuration is created.

a) no tracking c) trace onlyb) mask only d) full tracking

Fig. 7. Tracking Ablation Study: This figure shows a scene from the One
loop trajectory with the 3D spline reprojected into the left camera image
computed with four tracking ablations for which experimental results are in
Table IV. Image a shows the spline obtained through reconstruction only,
image b shows the spline obtained when only the mask error cmask is used
for tracking. Image c shows the spline obtained when only the trace error
ctrace is used for tracking and image d shows the result obtained with the
full tracking method. It can be seen in image b that the spline collapses
along the detection mask when the trace correction vector is not used as
well.


	Introduction
	Related Work
	Surgical Thread Detection
	Surgical Thread Reconstruction
	Interactive Perception

	Problem Statement
	Workspace and Assumptions

	Methods
	Module 1: Learned 2D Surgical Thread Detection
	Module 2: 2D Surgical Thread Tracing
	Module 3: 3D Surgical Thread Tracing
	Module 4: 3D Surgical Thread Tracking
	Module 5: Surgical Suture Tail-Shortening

	Experiments
	Modules 1-3: 2D Thread Detection and 2D & 3D Tracing
	Setup
	Metrics
	Results and Failure Modes

	Module 4: 3D Surgical Thread Tracking
	Setup
	Metrics
	Results and Failure Modes

	Module 5: Surgical Suture Tail-Shortening
	Setup
	Metrics
	Results and Failure Modes


	Limitations & future work
	Appendix
	Workspace
	Module 4 Experiment Extension: 3D Surgical Thread Tracking
	Setup
	Metrics
	Results and Failure Modes



