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Abstract— Despite recent progress improving the efficiency
and quality of motion planning, planning collision-free and
dynamically-feasible trajectories in partially-mapped environ-
ments remains challenging, since constantly replanning as
unseen obstacles are revealed during navigation both incurs
significant computational expense and can introduce problem-
atic oscillatory behavior. To improve the quality of motion
planning in partial maps, this paper develops a framework
that augments sampling-based motion planning to leverage a
high-level discrete layer and prior solutions to guide motion-tree
expansion during replanning, affording both (i) faster planning
and (ii) improved solution coherence. Our framework shows
significant improvements in runtime and solution distance when
compared with other sampling-based motion planners.

I. INTRODUCTION

Motion planning is a foundational capability in robotics,
with applications including transportation, self-driving, and
search and rescue. This task is made challenging by the
presence of obstacles during deployment, which requires
that the robot plan trajectories that avoid collision and pass
through narrow passages to reach a faraway goal. Moreover,
motion planning must consider vehicle dynamics, so that the
planned trajectories can be executed on a physical robot,
whose physical limitations impose constraints on motion.

The challenges of dynamically-feasible motion planning
compound when the map is not known in advance. So
as to avoid the computational and practical challenges of
envisioning what lies in unseen space, most algorithms
for navigation and motion planning under uncertainty treat
unseen space as unoccupied [1]–[3]. As the robot moves, it
reveals obstacles via onboard sensors, adds them to its partial
map of the environment, and replans upon discovering that
its previously-planned trajectories may be infeasible. Thus,
the robot must continually replan as unseen space is revealed
and so a practical motion planning system must be able to
plan and replan quickly in the face of new information.

To address these challenges, this work leverages sampling-
based motion planning, in which collision-free, dynamically-
feasible trajectories are extended to efficiently explore the
state space until the goal is reached [4], [5]. While signif-
icant progress has been made in improving the speed and
efficiency of sampling-based motion planning [6]–[12], most
of that progress has focused on fully-known environments,
resulting in a slow replanning process and potentially poor
closed-loop behavior. In particular, owing to the randomness
inherent in sampling-based planning, trajectories can non-
trivially vary from small changes to the map or input,
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Fig. 1. A trajectory in a partially-mapped environment planned by our
framework. Our snake-like robot plans dynamically-feasible trajectories
(magenta) that respect observed obstacles (black), moves in the observed
free space (green), and enters unseen space (tan) until reaching the goal. Our
framework allows the robot to quickly replan as obstacles are revealed dur-
ing navigation. Videos of solutions obtained by our framework on this and
other scenes used in the experiments can be found at tinyurl.com/47ct55s6

resulting in problematic oscillatory behavior as the robot
iteratively navigates, reveals structure, and replans.

This work develops a new sampling-based framework
particularly well-suited for motion planning with dynamics
in unknown environments. Our approach builds upon recent
work using discrete to guide sample-based motion planning
for fast, dynamically-feasible motion planning [8], [9], aug-
mented so as to improve planning speed, solution quality, and
robustness in partially-mapped environments. Specifically,
our planning framework leverages discrete search over an
adaptive grid subdivision and prior solutions to guide the
motion-tree exploration when invoked to plan from a new
state, allowing for both (i) reduced replanning time and (ii)
greater solution coherence to significantly reduce oscillatory
behavior. In addition, our approach (iii) increases clearance
from obstacles to improve robustness, and thereby improves
the success rate in reaching the goal despite having only a
partial map of the environment. We demonstrate that our
planning framework exhibits significant improvements in
runtime and solution distance when compared with two other
sampling-based motion planners: RRT [6] and GUST [8].

II. RELATED WORK

a) Motion Planning with Dynamics: Motion planning
has traditionally focused on fully-known environments. To
account for the robot dynamics, sampling-based motion plan-
ning has often been used due to its computational efficiency.
The idea is to selectively explore the vast motion space by
constructing a motion tree whose branches correspond to
collision-free and dynamically-feasible trajectories [4], [5].
RRT [6], [13] and its variants [10], [14]–[16] rely on the
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nearest-neighbor heuristic to guide the motion-tree expan-
sion. More recent approaches leverage machine learning to
improve the exploration [12], [17]–[19]. KPIECE [7] uses
interior and exterior cells, while GUST relies on discrete
search over a decomposition, obtained via a triangulation,
grid, or roadmap, to guide the motion-tree expansion [8], [9],
[20]. There are also approaches that provide asymptotically
optimal solutions (under certain assumptions) [21]–[26], but
they are often much slower than their suboptimal counter-
parts, making them unsuitable for replanning.

b) Navigation in a Partial Map: Navigation under
uncertainty is a core robot capability [27], [28]. So as
to mitigate computational challenges, many approaches in
this domain optimistically assume unknown space is free,
replanning when obstacles are revealed. Many path and
motion-planning algorithms are problematically slow in this
domain, as they must replan from scratch whenever the map
changes. Incremental replanning strategies reuse information
between plans to accelerate grid-based replanning [1], [29],
yet most are applicable only for grid-based plans and are not
well-suited for generating dynamically-feasible trajectories
for nonholonomic vehicles. Other strategies [2], [3] seek to
quickly update sparse roadmaps as space is revealed, yet are
similarly not designed with dynamics in mind. Several recent
approaches [30]–[32] seek to reuse planning information for
fast, sampling-based motion planning in dynamic environ-
ments; focused mostly on localized changes to the map, they
are unlikely to be effective for long-horizon navigation in
topologically rich environments, such as ours.

Instead, our work integrates multiple strategies to ensure
that dynamically-feasible planning is fast, performant, and
reliable despite partial observability.

III. PROBLEM FORMULATION

This section defines the robot model and its motions, the
world in which the robot operates, the sensor model, and the
problem of planning collision-free and dynamically-feasible
trajectories to reach the goal in an unknown environment.

a) Robot Model: The robot R = ⟨P,S,U , f⟩ is mod-
eled by its shape P , state space S, control space U , and
dynamics expressed as differential equations f : S×U → Ṡ.
The experiments, as shown in Fig. 2, use a snake-like robot,
modeled as a car pulling N trailers [5]. The snake head
and each link are rectangular with L = 1m length and
W = 0.6m width, connected with a H = 0.01m hitch
distance. The state s = (x, y, v, ψ, θ0, θ1, . . . , θN ) defines
the position (x, y), velocity v (|v| ≤ 2m/s), steering angle
ψ (|ψ| ≤ 1.5rad), head orientation θ0, and orientation θi for
each link. The control u = (ua, uω) defines the acceleration
ua (|ua| ≤ 2m/s2) and the steering rate uω (|uω| ≤ 3rad/s).
The dynamics f are defined as

ẋ = v cos(θ0) cos(ψ), ẏ = v sin(θ0) cos(ψ),

θ̇0 = v sin(ψ)/L, v̇ = ua, ψ̇ = uω,

∀i ∈ {1, . . . , N} :
θ̇i =

v

H
(sin(θi−1)− sin(θ0))

∏i−1
j=1 cos(θj−1 − θj). (1)

Fig. 2. The snake robot model used in the experiments. In experiments,
the number of links in the snake is varied, between 2 and 10, to control the
difficulty of dynamically-feasible motion planning.

b) Dynamically-Feasible Trajectories: When a control
u ∈ U is applied to a state s ∈ S , the robot moves
to a new state snew ∈ S according to its dynamics. A
function SIMULATE(s, u, f, dt) computes snew by numerically
integrating the motion equations f for a time step dt, i.e.,

snew ← SIMULATE(s, u, f, dt). (2)

To obtain a dynamically-feasible trajectory ζ : {0, . . . , ℓ} →
S, a sequence of controls ⟨u0, . . . , uℓ−1⟩ is applied in
succession. In this way, ζ(0)← s and ∀i ∈ {1, . . . , ℓ} :

ζ(i+ 1)← SIMULATE(ζ(i), ui, f, dt). (3)

c) World and Sensor Model: The world W has un-
known obstacles within its boundaries. The robot uses a
planar laser scanner to observe nearby obstacles, limited by
its range r ∈ R>0 and occlusion. Specifically, as shown in
Fig. 1, SENSE(W, x, y, r) computes visible free and occupied
areas ofW from (x, y) within a distance of r. The robot uses
the sensor readings to build a model of the world, as a high-
resolution occupancy grid Wsensed, on which it can plan its
motions. Initially, all cells in Wsensed are unknown. When
the robot moves to (x, y), Wsensed is updated using the free
and occupied cells computed by SENSE(W, x, y, r).

COLLISION(Wsensed, s) checks whether a state s ∈ S is
invalid. A state s is invalid if a value is outside the designated
bounds or if there is collision with known obstacles or
between non-consecutive links, when the robot is placed at
position (x, y) and orientations θ0, . . . , θN defined by s.

d) Overall Problem: Our framework receives as input
the robot model R = ⟨P,S,U , f⟩, a sensor model SENSE,
an initial state sinit ∈ S , and a goal G. The initial state and
the goal are within the world boundaries, which are known
to the framework. The obstacles contained in W , however,
are not known to the framework. The objective is to compute
controls so that the resulting dynamically-feasible trajectories
enable the robot to reach the goal while avoiding collisions.
Our framework seeks to reduce the overall planning time and
the distance traveled by the robot.

IV. METHOD

Our framework has an execution module (EM) and a
planning module (PM). The execution module carries out the
planned trajectory incrementally, while the planning module
is responsible for generating collision-free and dynamically-
feasible trajectories through the partial map. The planning
module is invoked by the execution module as necessary
when new obstacles are detected. Fig. 3 shows snapshots of
our framework in action. Further details are provided below.



Fig. 3. Snapshots of our framework in action. The free areas in Wsensed are shown in green, the occupied areas in black, and the remaining areas
represent unknown space. The robot is shown at its current state (robot in dark blue with its head in red). The planned trajectory from the current state to
the goal is shown in magenta. The subdivision is shown in yellow. Figures are better viewed in color and on screen.

Algorithm 1 Execution Module (EM)
Input: R: robot model; SENSE: sensor model; W: world

model, but only the boundaries are known to the frame-
work, obstacles are discovered through sensing; sinit:
initial state; G: goal region; tmaxem: maximum runtime
for the execution module; maxNrFailsAllowed: maxi-
mum number of consecutive failures for the planning
module before giving up; r: sensor range

Output: executed trajectory ζexe, which is built by invok-
ing the planning module along the way to the goal

1: INITIALIZE(Wsensed) //occupancy grid, initialized to unknown

2: ζexe.INSERT(sinit) //execution trajectory starts from initial state

3: ζmp ← ∅ //planned trajectory is initially empty

4: pos← 0 //index to track remaining states in ζmp

5: replan← true; d← 0 //when to invoke the planning module

6: while ¬REACHED(ζexe(end),G)∧TIME() < tmaxem do
7: scurr ← ζexe(end) //get last state of execution trajectory

8: UPDATEROBOTSTATE(R, scurr) //move robot to state

9: ⟨cellsfree, cellsocc⟩ ← SENSE(W, scurr.x, scurr.y, r)
10: if ∃c ∈ cellsocc: Wsensed(c) = unknown or

pos ≥ |ζmp| then replan← true
11: UPDATE(Wsensed, cellsfree, cellsocc)
12: nrFails← 0 //keep track of consecutive planner failures

13: while replan do
14: ζprev ← ⟨ζmp(pos), . . . , ζmp(end)⟩
15: ζmp←PLANNINGMODULE(Wsensed,R,scurr,G,ζprev)
16: if |ζmp| ≤ 1 then ++nrFails //planner failed

17: else {replan← false; pos← 0; }
18: if nrFails ≥ maxNrFailsAllowed then
19: return ζexe //give up after several consecutive failures

20: ζexe.INSERT(ζmp(pos)); ++pos
21: return ζexe

A. Execution Module

Pseudocode for the execution module (EM) is shown
in Alg. 1. The module starts by marking all the space
in the high-resolution occupancy grid Wsensed as unknown
(Alg. 1:1). It then continues until either the robot successfully
reaches its goal or reaches a predetermined runtime limit.

The execution module keeps track of two trajectories: ζexe
and ζmp. The trajectory ζexe records the robot’s motion from
its initial state to its current location. The planning module
computes the trajectory ζmp, which indicates the sequence of
states that the robot should follow to reach the goal. Initially,
ζexe contains only sinit, and ζmp is empty since the planning

module has not been invoked yet (Alg. 1:2–3).
During each iteration, the robot uses its sensor to detect the

free and occupied space near its current state, constrained by
both the sensor range and potential occlusions (Alg. 1:7–9).
The detected space is used to update Wsensed (Alg. 1:11).

If the sensor detects an area that was previously marked
as unknown but is now identified as occupied, the execution
module invokes the planning module to plan a new collision-
free and dynamically-feasible trajectory from the current
state to the goal. This is because the newly detected obstacle
may collide with the previously planned trajectory. The
planning module is also invoked when the robot reaches the
end of the trajectory ζmp (Alg. 1:10).

To enhance the planning efficiency, the planning mod-
ule is provided with the remaining states in ζmp as input
(Alg. 1:14–15), which it can use to guide the motion-
tree expansion to more efficiently generate a new trajectory
towards the goal. If the planner is unable to generate a
collision-free and dynamically-feasible trajectory that leads
to the goal, it returns the motion-tree trajectory that is closest
to the goal. When the planner completely fails, meaning it
cannot generate a trajectory that extends beyond the current
state, it is invoked again. However, after multiple consecutive
failures, the execution module abandons the planning process
(Alg. 1:18–19), and returns unsuccessfully.

When the planner succeeds, the execution module pro-
gresses to the subsequent state in the planned trajectory
(Alg. 1:20). This process of following the planned trajectory
and re-planning when new obstacles are detected is repeated
until the robot reaches its goal or exceeds the runtime limit.

B. Planning Module

Pseudocode for the planning module (PM) is shown in
Alg. 2. Given the (partial) occupancy grid Wsensed, which
represents the sensed world as free, occupied, and unknown
cells, the planning module seeks to compute a dynamically-
feasible trajectory from the current state scurr to the goal G
that avoids occupied cells. The planning module optimisti-
cally assumes unknown space is obstacle-free and so allows
the robot to move through it. If new obstacles are detected in
unknown space, the execution module prompts the planning
module to generate a new obstacle-avoiding trajectory.

The planning module comprises two layers: (i) the high-
level discrete layer determines general directions towards
the goal; and (ii) the low-level continuous layer expands a
motion tree along the identified directions.



1) High-Level Discrete Layer Based on Grid Subdivision:
The high-level layer operates on a subdivision of the free and
unknown space in Wsensed (Alg. 2:1). This involves placing
a coarse-resolution grid over the boundaries, and subdividing
each cell until its area is either no larger than the cells
in Wsensed, or it does not contain any occupied cells from
Wsensed. Fig. 3 shows some examples.

The subdivision is preferred over operating directly on
Wsensed because it reduces the computational cost of search-
ing for paths to the goal. In fact, the high resolution of
Wsensed, which is required for an accurate representation
of the environment, imposes significant computational costs
on the search. In contrast, the subdivision approach offers
adaptive resolution, allowing the high-level layer to work
with a coarser grid in areas where there are no obstacles,
and a finer grid in areas where obstacles are present. This
reduces the overall computational cost, while still providing
an accurate representation of the environment.

We utilize Dijkstra’s single-source shortest-path algorithm
to calculate the shortest paths from the goal to each region
in the subdivision (Alg. 2:3). To speed up the process, we
employ radix heaps. Moreover, each region r retains its path
to the goal, denoted as r.pathToGoal, which guides the low-
level continuous layer during the motion-tree expansions.

When computing the shortest paths, the cost of traveling
between two adjacent regions, ri and rj , is not exclusively
based on the Euclidean distance between their centers.
Instead, it also accounts for their respective clearances,
clear(ri) and clear(rj), from obstacles. Specifically,

COST(ri, rj) =
||center(ri)− center(rj)||2

(min(clear(ri), clear(rj), cmax))α
. (4)

High values of α (α = 6 in the experiments) emphasize
clearance over distance. Paths with ample clearance are
less prone to collisions when new obstacles are detected.
However, the discovery of a new obstacle may cause the
clearance to decrease, leading to significant changes in the
paths to the goal from certain regions. To prevent such
abrupt modifications, we introduce cmax (set to 4m in the
experiments), which sets the maximum allowable clearance.

The clearances (Alg. 2:2) are efficiently computed based
on brush-fire search [4]. First, all the occupied regions are
inserted into a priority queue with clearance of 0. Next, any
non-occupied region on the boundary is added to the queue
with a clearance equal to its distance from the boundary.
While the queue is not empty, we extract the region r with
the minimum clearance. Each adjacent region radj whose
clearance has not yet been defined is inserted into the queue
with a clearance of clear(r) + ||center(r)− center(radj)||2.

2) Low-Level Continuous Layer Based on Guided Motion-
Tree Expansion: The continuous layer of the planning mod-
ule expands a motion tree, denoted by T , by adding collision-
free and dynamically-feasible trajectories as branches. These
trajectories are generated by applying a controller that guides
the robot from a state in T to a target position.

a) Motion-Tree Representation: Each node η ∈ T has
four fields: ⟨s, u,parent, r⟩, which correspond to its state,

Algorithm 2 Planning Module (PM)
Input: R: robot model; Wsensed: occupancy grid repre-

senting the sensed world (free, occupied, unknown);
scurr: start state; G: goal region; ζprev: sequence
of states representing previous planned trajectory;
tmaxmp: maximum runtime for the planning module

Output: planned collision-free and dynamically-feasible
trajectory that reaches G; if not, return best trajectory

1: ∆← SUBDIVISION(Wsensed)
2: CLEARANCESFROMOCCUPIED(∆)
3: PATHSTOGOAL(∆,G)
4: T ← INITIALIZEMOTIONTREE(scurr, ζprev)
5: ηbest ← T .root
6: while TIME() < tmaxmp do
7: r ← SELECTREGION(∆)
8: groups← ⟨groupi : 0 ≤ i < |r.pathToGoal|⟩
9: group0.nodes← {SELECTNODE(r.nodes)}; i← 0

10: for i < |r.pathToGoal| and several iterations do
11: groupj ← SELECTGROUP(group0, . . . , groupi)
12: ptarget ← SAMPLETARGETPOSITION(groupj)
13: η ← SELECTNODE(groupj)
14: for several iterations do
15: u← CONTROLLER(η.s, ptarget)
16: snew ← SIMULATE(η.s, u, f, dt)
17: if COLLISION(Wsensed, snew) then break
18: ηnew ← NEWNODE(); T .INSERT(ηnew)
19: ηnew.⟨s, u,parent⟩ ← ⟨snew, u, η⟩
20: if REACHED(snew,G) then return ζT (ηnew)
21: rnew← LOCATEREGION(∆, snew)
22: rnew.nodes.INSERT(ηnew); ηnew.r ← rnew
23: if FAR(snew, r.pathToGoal(j)) then break
24: if REACHED(snew, r.pathToGoal(j)) then ++j
25: groupj .nodes.INSERT(ηnew)
26: i← max(i, j)
27: if ηbest.r.pathToGoal.cost >

rnew.pathToGoal.cost then ηbest ← ηnew
28: η ← ηnew
29: return ζT (ηbest)

control, parent, and subdivision region, respectively. The
node’s state, η.s, is obtained by applying the control η.u to
the parent state: i.e., η.s← SIMULATE(η.parent.s, η.u, f, dt).
The construction ensures that η.s does not collide with any
occupied cell in Wsensed. The node η also records the sub-
division region, η.r, that contains its position (η.s.x, η.s.y).

b) Retrieving the Best Trajectory: A solution is found
found when a new node ηnew reaches the goal G. The
solution then corresponds to the sequence of states from the
root of T to ηnew, denoted as ζT (ηnew). If G is not reached,
the framework keeps track of the best trajectory to G. The
node ηbest is initially set as the root of T . When a new
node, ηnew, is added to T , the cost of the path to G from its
region, given by ηnew.r.pathToGoal.cost, is compared with
the cost of ηbest’s path to G. If the cost of the new node is
lower, then ηbest is updated to the new node.



environment type 2 environment type 3 environment type 4

environment type 5 environment type 6

Fig. 4. Example maps of environment types 2–6 used in the experiments. (Environment type 1 is shown in Fig. 1). Each environment type has
multiple levels of difficulty, with at least 30 instances for each level. Figures show instances with the highest difficulty level for environment types 1–5
and the second-highest for environment type 6. Sensor readings are shown in green (free) and black (occupied) within a sensor radius of 50m from the
robot’s initial state. The scene coordinates are in meters. The planned trajectory from the initial state to the goal is shown in magenta.

c) Motion-Tree Initialization by Leveraging the Prior
Solution: Motion-tree initialization starts by setting the cur-
rent state scurr as the root of T . If the prior solution ζprev
is available, the states in ζmp are processed one by one
(Alg. 2:4). For each state, if it is not in collision with the
occupied cells of Wsensed, it is added as a new node to
T , with the previous state in ζprev serving as its parent.
Otherwise, the initialization stops.

d) Guided Motion-Tree Expansion: The motion-tree
expansion leverages the path-to-goal for the subdivision
regions. Specifically, let Γ denote the regions ∆ that have
been reached by T . At each iteration, the region with the
maximum weight is selected for expansion from Γ (Alg. 2:7).
The weight of region r is defined as

r.w = βr.nsel/r.pathToGoal.cost, (5)

where r.nsel denotes the number of previous selections and
0 < β < 1. This weighting scheme prioritizes regions that
have low-cost paths to the goal. However, we do not want to
repeatedly select the same region when expansion attempts
fail due to obstacles or robot dynamics. To prevent this, we
apply a penalty factor, β, after each selection. This ensures
expansions from new regions in the subdivision.

After selecting a region r, the objective is to expand T
along r.pathToGoal. To simplify the process, we create a
group, denoted as groupi, for each index in r.pathToGoal
(Alg. 2:8). Each groupi contains nodes from T seeking
to reach the i-th region in r.pathToGoal. Once a node
reaches region r.pathToGoal(i), groupi+1 becomes avail-
able. This is repeated for several iterations or until the end
of r.pathToGoal is reached.

To start, we randomly choose a node from the ones that
have reached r, and add it to group0 (Alg. 1:9). We also
keep track of the progress made in following r.pathToGoal
using an index i. During each iteration, we select the group
with the highest weight from the set group0, . . . , groupi.
The weight of groupj is defined as

groupj .w = 2jβgroupj .nsel. (6)

The term 2j gives priority to groups closer to the end of
r.pathToGoal, while a penalty factor ensures that the same
group is not selected indefinitely.

Let groupj denote the selected group (Alg. 2:11). Since
the objective is to reach r.pathToGoal(j), a target position
ptarget is sampled inside r.pathToGoal(j) (Alg. 2:12). Next,
the closest node η to ptarget from groupj .nodes is selected
with the objective of expanding it toward ptarget (Alg. 2:13).

To expand η towards ptarget, a PID controller is used to
compute the sequence of controls that steer the robot towards
ptarget, for example, by turning the wheels (Alg.1:15). If
the new state snew is in collision, the expansion towards
the target stops (Alg.1:17). Otherwise, a new node is added
to T (Alg. 1:18-19). If the new node reaches the goal,
the planner terminates successfully. If the new node is far
from r.pathToGoal(j), then the expansion towards the target
stops. However, if the new node reaches r.pathToGoal(j),
the next group groupj+1 is made available for selection, and
the new node is added to this group.

In this manner, the planning module incrementally ex-
pands the motion tree along the paths to the goal that
are associated with the regions in the subdivision. When
progress along a path slows down, the planner searches for



alternative paths from different regions. By doing so, the
planning module is able to efficiently generate collision-
free and dynamically-feasible trajectories to the goal, as
demonstrated by the experimental results.

V. EXPERIMENTS AND RESULTS

Experiments are conducted in simulation using a snake
robot model with nonlinear dynamics. We use over a thou-
sand virtual environments, both structured and unstructured.
To successfully navigate these environments, the robot must
rely on information gathered from its sensor to traverse
unknown spaces, avoid various obstacles, and maneuver
through narrow passages to ultimately reach its goal.

A. Experimental Setup
1) Methods used for Comparisons: We use our execution

module (Alg.1) together with the planning module (Alg.2)
to conduct experiments, denoted as EM[PM]. Additionally,
the performance of the execution is evaluated when com-
bined with other motion planners, namely RRT [6], [13]
and GUST [33], denoted as EM[RRT] and EM[GUST],
respectively. RRT is selected due to its popularity as a
sampling-based motion planner, while GUST is chosen for its
computational efficiency in motion planning with dynamics.
To ensure fair comparisons, our implementations of RRT and
GUST are fine-tuned for the experiments in this paper.

2) Environments: We conduct experiments in six envi-
ronment types (Figs. 1 and 4) with varying difficulty levels.
For each type and difficulty level, we generate at least 30
instances. Environment types 1 to 4 have dimensions of
80m × 80m, while environment types 5 and 6 are much
larger, ranging from 15000m2 to 350000m2. This allows us
to test the framework’s ability to navigate different sized
environments. Wsensed, the occupancy map, has 128 × 128
cells for environment types 1–4 and dimx × dimy for
environment types 5–6, where dimx and dimy are the scene
dimensions (ranging from 100 to 850). The coarse-grid used
to initialize the adaptive subdivision has 48 × 48 cells for
environment types 1–4 and 64× 64 cells for types 5–6.

a) Environment Type 1: The first environment type
(Fig. 1) has wave-like obstacles separated by some distance,
with randomly placed gaps of varying widths. Some gaps
are narrow, making it difficult or impossible for the robot to
navigate through. We use six difficulty levels, with scenes
ranging from five to ten waves. For each instance, the start
and goal are placed at random unoccupied locations near the
bottom and top, respectively.

b) Environment Type 2: The second type (Fig. 4)
includes randomly distributed obstacles. We adjust the level
of difficulty by modifying the density of obstacles, using
six levels ranging from 15% to 20% obstacle coverage. The
start and goal for each instance are again placed at random
unoccupied locations near the bottom and top, respectively.

c) Environment Type 3: For the third type (Fig. 4),
we generate mazes using Kruskal’s algorithm, with the size
varied for six difficulty levels, ranging from 10 × 10 to
15× 15. The start and goal for each instance are generated
using the same procedure as environment types 1 and 2.

d) Environment Type 4: Environment type 4 (Fig. 4)
features concentric rings with randomly placed gaps of vary-
ing widths. Six difficulty levels are created by varying the
separation between the rings, ranging from 7m to 2m. For
each instance, the start and goal are randomly placed outside
the largest ring and inside the smallest ring, respectively.

e) Environment Type 5: Environment type 5 (Fig. 4)
emulates an office building by generating occupancy grid
maps with intersecting hallways and offices/meeting rooms
bordering them, with furniture-like obstructions making it
difficult to see the full room without entering. Three difficulty
levels are created by varying the floor dimensions to 500m×
300m, 600m×400m, and 700m×500m. The start and goal
for each instance are placed at random unoccupied locations.

f) Environment Type 6: The sixth type (Fig.4) uses
occupancy grid maps generated from real-world floor plans
of buildings around the MIT campus [34]. Three difficulty
levels are created based on floor plan size, with 33 instances
for level one (floor plans between 93000m2 and 101906m2),
86 instances for level two (floor plans between 120330m2

and 188914m2), and 59 instances for level three (floor plans
between 207414m2 and 282800m2). For each instance, start
and goal locations are randomly placed in unoccupied areas.

3) Measuring Performance: The execution module is run
with our planning module, RRT, and GUST on each of
the 1078 instances. We evaluate performance based on the
environment type and difficulty level, reporting the total
runtime and distance traveled by the robot. To prevent outlier
effects, we compute the mean runtime and distance traveled
after removing the top and bottom 20% of results.

4) Computing Resources: The experiments ran on HOP-
PER, a computing cluster provided by GMU’s Office of
Research Computing. Each node has 48 cores with Dell Pow-
erEdge R640 Intel(R) Xeon(R) Gold 6240R CPU 2.40GHz.
The experiments were not parallelized or multi-threaded, and
each instance was executed on a single core. The code was
developed in C++ and compiled with g++-9.3.0.

B. Results

1) Runtime and Distance Results: Fig. 5 summarizes the
results for EM[PM], EM[GUST], and EM[RRT] for all six
environment types and difficulty levels. EM[PM] is signif-
icantly faster than EM[GUST] and EM[RRT], and capable
of solving even the most challenging instances. In contrast,
EM[RRT] struggles due to reliance on a nearest-neighbor
heuristic, which often leads the explorations towards obsta-
cles, particularly in obstacle-rich environments with narrow
passages. EM[GUST] performs better than EM[RRT] as
GUST is a more computationally efficient planner.

The distance results exhibit similar patterns to the runtime
results. EM[PM] generates much shorter solutions compared
to EM[GUST] and EM[RRT] since it is guided by the
high-level discrete layer and strives for consistency between
invocations. EM[GUST], despite also being guided by a
high-level layer, displays more oscillatory behavior that
leads to the robot moving back and forth between areas.
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Fig. 6. Results when disabling the hint: i.e., the execution module does not provide the prior solution as input to the motion planners.
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Fig. 7. Results when varying the number of snake links.
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Fig. 8. Results when varying the sensor radius.

EM[RRT] performs the worst as it either gets stuck or takes
unnecessarily long routes to reach the goal.

2) Impact of Leveraging Prior Solutions: Fig. 6 shows
the results obtained when the prior solutions are disabled as
inputs to the planning module. The resulting versions of the
methods are referred to as EM[PM:no hints], EM[GUST:no
hints], EM[RRT:no hints]. In this case, EM[PM:no hints]
still performs significantly faster and produces shorter so-
lutions than the other two methods. However, as expected,
EM[PM:no hints] performs worse than EM[PM] due to the
absence of prior solutions as a hint. This highlights the

importance of incorporating prior solutions as hints, as it
enables the planning module to reuse valid parts of the
trajectory, resulting in a reduction of oscillatory behaviors
and of overall runtime required to generate a new collision-
free and dynamically-feasible trajectory to reach the goal.

3) Results when Varying the Number of Snake Links:
Fig. 7 shows the results when varying the number of snake
links. The results highlight the capabilities of EM[PM] to
solve challenging problem instances. The performance for
the other methods, EM[GUST] and EM[RRT], becomes
considerably worse as the number of the snake links is



increased, while EM[PM] remains efficient.
4) Results when Varying the Sensor Range: Fig. 8 shows

the results when varying the sensor range. When the range
is small, the execution becomes more challenging since the
planning module is invoked more frequently to handle newly
discovered obstacles. Moreover, the planned solutions tend to
be closer to such obstacles. As the range increases, the robot
can collect more information, leading to better plans. The
results show that EM[PM] outperforms the other methods.
By generating high-clearance solutions, EM[PM] requires
fewer replanning calls, improving the overall runtime, and
reducing the distance traveled by the robot.

VI. DISCUSSION

This paper developed a framework for sampling-based
dynamically-feasible motion planning well-suited for navi-
gation in partially-known environments. We have shown that
our approach, which increases clearance to known obstacles
and reuses prior solutions to guide motion-tree exploration
when invoked to plan from a new state, significantly im-
proves both runtime and solution quality across hundreds
of structured and unstructured virtual environments with
varying levels of difficulty and size. In future work, we will
use machine learning to imbue our planner with the ability
to estimate occupancy information or large-scale structure of
unseen space, information that it may use to further improve
the robot’s plans despite uncertainty about the environment.
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