2303.11026v1 [cs.RO] 20 Mar 2023

arxXiv
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Abstract—In modern industrial collaborative robotic appli-
cations, it is desirable to create robot programs automatically,
intuitively, and time-efficiently. Moreover, robots need to be
controlled by reactive policies to face the unpredictability of
the environment they operate in. In this paper we propose
a framework that combines a method that learns Behavior
Trees (BTs) from demonstration with a method that evolves
them with Genetic Programming (GP) for collaborative robotic
applications. The main contribution of this paper is to show that
by combining the two learning methods we obtain a method that
allows non-expert users to semi-automatically, time-efficiently,
and interactively generate BTs. We validate the framework with
a series of manipulation experiments. The BT is fully learnt in
simulation and then transferred to a real collaborative robot.

Index Terms— Behavior Trees, Genetic Programming, Learn-
ing from Demonstration, Collaborative Robotics

I. INTRODUCTION

Modern industrial robots can solve complex tasks in
controlled environments with high precision and reliability.
However, trends in automation are pointing towards smaller
production series with the robots program needing more
frequent updates. At the same time, robots are increasingly
operating in workspaces shared with humans, causing a more
unpredictable environment. It is therefore desirable that new
robot policies or programs can be created quickly without
needing high programming skills and that the resulting
programs are reactive to changes in the environment. One
way to alleviate the demand for programming skills is to have
the user provide input in the form of demonstrations rather
than code. The contributions of this paper is a framework
that combines a method that evolves Behavior Trees (BTs)
with Genetic Programming (GP) with a method that learns
BTs from demonstration. By combining the two methods it
is possible to learn BTs in an unsupervised fashion while
exploiting human experience in task solving.

The method allows non-expert users to semi-automatically,
time-efficiently, and interactively generate BTs for manipu-
lation tasks. The interaction is facilitated by a user interface
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Gripper open? Open gripper!

Fig. 1: Subtree responsible for picking the item <O> and placing it at pose
<P> in the reference frame <F>.

that allows users to start and stop the learning process at will
as well as inputting demonstrations.

As a result, the shortcomings of the two individual com-
ponents are resolved by their combination.

The code repository for this paper is available onlin

II. BACKGROUND AND RELATED WORK
A. Behavior Trees

BTs are a task switching policy representation originating
in the gaming industry and later transferred to robotics [1].

A BT is represented as a directed tree where a tick signal
originates from the root and propagates down the tree with
a depth-first pre-order traversal. Nodes execute only when
they receive the tick signal and return one of the status
signals Success, Failure, and Running. Internal nodes are
called control flow nodes (polygons in Figure [I). The most
common types being Sequence: runs children in a sequence,
returning once all succeed or one fails, and Fallback (or
Selector): runs children in a sequence, returning when one
succeeds or all fail. Leaves are called execution nodes or
behaviors (ovals in Figure |I) and are of type Action(!) or
Condition(?). The former encode robot skills while the latter
encode status checks and sensory readings, thus immediately
returning Success or Failure.

BTs have explicit support for task hierarchy, action se-
quencing, and reactivity [2]. They are modular by design
because every element shares the same infrastructure: every

https://github.com/matiov/BT-learning-framework
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node receives the tick as input and outputs the return statuses.
Moreover, modularity allows every building block to be
independently tested and reused. The Running return state
grants the reactivity property because a running action can
be preempted by higher priority ones.

BTs improve on other task plans representations, such as
Finite State Machine, especially in terms of modularity and
reactivity [3]-[5].

B. Evolving BTs with Genetic Programming

Genetic Programming (GP) is an unsupervised optimiza-
tion algorithm that can evolve programs represented as
trees [7] using the operators crossover and mutation. Individ-
uals are evaluated by performing a task in the environment
they operate in through a fitness function and selection
methods that decide which individuals survive and produce
offspring. GP is particularly fit to learn BTs because their
modularity facilitates reproduction operations, they are a
tree representation, and they can be serialized to reduce the
computational effort of the evolutionary process.

The GP algorithm illustrated in Figure 2}bottom is based
on our prior works [8], [9] and inspired by [10]. The main
evolutionary steps are:

1) Reproduction: When generating the offspring, the
mutation operation can add, delete, or change nodes
with a user selected probability to choose a control
or execution node. With crossover a random subtree
is selected from each of two parent individuals and
inserted in the other individual at a random point.
The modularity of BTs is the key feature of this step
because subtrees can be moved without compromising
the logical functioning of the tree.

2) Evaluation: Each individual is run in the simulation
environment and a fitness function is evaluated to
assess the individual’s score. The design of the fitness
function has to trade-off generalizability with speci-
ficity. A fitness function that is too task specific can
improve the convergence rate but it is not re-usable,

thus increasing the engineering effort. Similarly to [9],
we consider the Euclidean distance between objects
current and goal positions, the size of the tree, the
number of ticks required to run the individual, and if
the BT terminates with a Success or Failure state.

3) Selection: To determine the individuals that survive to
the next generation we perform tournament selection,
where individuals are compared in randomly assigned
pairs. Out of each pair, only the best scoring individual
survives. This method grants high recombination of
genes but it always keeps the best scoring individual
and discards the worst one.

This approach is explainable in the sense that each step
of the algorithm is controllable and predictable. Moreover,
it is easy to implement. The main shortcoming is the high
number of learning episodes required to converge. Therefore,
it benefits from a fast simulator since every individual must
be tested and evaluated. In [9], we mitigated this problem by
bootstrapping the GP with planned BTs solving subtasks.

Our approach uses similar constraints as in [11]. We avoid
to use the same type of control node on two consecutive
levels of the tree, conditions on the rightmost position of a
sub-tree, child-less control nodes, or having identical nodes
next to each other, as all these are unnecessary variations
of the BT. Unlike [12], we do not constrain mutation to
nodes of the same type, to increase diversity. We also let the
GP algorithm find the conditions to use instead of explicitly
specifying them. Some conditions that actions must always
check are included within the action behaviors.

C. Learning BTs from Demonstration

Learning from Demonstration (LfD) methods allow robots
to learn programs from human demonstrations [13]. This
method is especially useful when users do not have enough
programming skills, or writing robot programs to solve a
task takes too long. Demonstrations can be given in the
form of kinesthetic teaching, where the user physically
moves the robot, teleoperation, where a robot is controlled
through an external device—particularly useful when the
robot operates in unreachable environments—and passive
observation, where the robot or the human are endowed
with tracking systems and the demonstrator’s body motion
is recorded. These methods are often intuitive and little to
no training is required for the user.

Our method to learn BTs from demonstration proposed
in [14] and schematically outlined in Figure E}top, builds on
the following steps:

1) The user inputs the demonstrations through the user
interface as a sequence of actions that brings items in
the environment from a starting to a goal configuration.
For every performed action in the demonstration, we
record the pose of the end-effector in the reference
frame of all the relevant objects for the task as well as
the type of the action performed.

2) Similar actions across different demonstrations of the
same task are clustered together to infer their frame of
reference. The clustering algorithm requires at least 3



demonstrations to infer the reference frame, otherwise
the base frame of the robot is used as default value.

3) It is assumed that the user solves the task by the end
of the demonstration. Therefore, the configuration of
the items when the last action is performed is used as
goal condition. Other task constraints on the order of
the actions are inferred as well.

4) A planner similar to the one defined in [15] is used to
automatically generate the BT with backchain design,
provided that the actions are defined together with their
pre- and post-conditions. With backchaining, starting
from the goal, pre-conditions are iteratively expanded
with actions that achieve them—those actions that have
that particular condition as their post-conditions. Then,
those actions’ unmet pre-conditions are expanded in
the same way.

In [16] we extend this method to allow the robot to ask the
user follow-up clarification questions if there are ambiguities
in the task to solve. For instance, when there are equivalent
items available for the robot to pick.

The main shortcoming of this method is that it does
not generalize well when the task to demonstrate requires
many actions. Performing several demonstrations might be
tedious and source of errors, especially when combined
with perception algorithms whose performance is affected
by lighting conditions and object occlusion.

D. Related Work

Evolutionary approaches to learn BTs were first applied
to computer games [11], [12], [17]-[21] but later years have
also seen it applied to robotic applications [8], [9], [22]-[25].

Authors in [18], [19] successfully use Grammatical Evo-
Iution (GE). With GE, the design of the grammar requires
domain knowledge and the engineering effort grows with
the complexity of the task. Further, the disconnect between
genotype and phenotype can make analysis and implement-
ing heuristics difficult and hinders locality [26], [27]. In [11],
[20], [21], structural and dynamic constraints were imple-
mented in the GP, speeding up the learning by preventing the
generation of undesirable trees. Similar constraints are also
used in our implementation. In [12], GP was combined with
a local search but this is harder to re-implement in a non-
deterministic robotic scenario. Most notably, [9] presented
a method to combine the results from a planner with a GP
algorithm. An adaptation of that method is what we use in
the proposed approach of this paper to seed the GP with the
information gathered in the demonstrations.

There has been some previous work on combining LfD
and BTs [14], [16], [28]-[31]. The method proposed in [28],
[29], and [32] learns a Decision Tree (DT) to map from
state space to action space. The DT is then converted into
a BT using the fact that BTs generalize DTs [4]. In [30],
the method directly encodes the demonstrated sequence of
actions as a BT and in [31] BTs are generated by natural
language instructions.

In [28], LfD was used to assist in creating behaviors
for Non-Player Characters (NPCs) in computer games. A

DT was trained as a policy choosing the NPCs next action
depending on the game state. The DT was flattened into a
set of rules, then simplified and translated into a BT. The
BT required a final tuning of its parameters, thus limiting
its usage. This was extended by [29] and improved in [32]
who generalized it to use any logic minimizer on the DT.
The solution is implemented on a mobile manipulator to
perform a house-cleaning task. In this work, the whole action
space and state space were encoded in the final tree which
would then contain elements that are not used at run-time
and unnecessarily complicate the structure. Further, the frame
of reference was fixed in the actions which limits their
reusability. The method does not make use of any previous
knowledge of the behaviors and it can only execute behaviors
that were demonstrated.

In [30] the BT was synthesized directly. An agent was
trained to play the video game StarCraft from expert demon-
strations. Each demonstration resulted in a sequence of
actions placed under a sequence node in the BT, then all
sequence nodes for each demonstration were placed under
a fallback node. Finally, the BT was simplified by finding
similarities between different demonstrations. This approach
results in large and hard to read BTs (> 50.000 nodes) and
limits the reactivity as in-game actions and conditions are all
put under the same Sequence node.

Finally, in [31] authors proposed a method for generating
BTs from natural language instructions. The method parses
the instruction and searches a database for trees solving the
requested task. If none are found, a new tree is learned
by matching the parsed expression to hand-coded primitive
methods as simple BTs. Although the method allows to
define a wide variety of tasks, the learned trees are hard to
read and it is not clear how the method would handle tasks
where the relative position of objects in the scene matters.

Other LfD methods learn task plans without using BTs,
but instead using a Finite State Machine [33] or a Hidden
Markov Model [34]. In [35] plans were created by chaining
skills that have an effect that allows the next skill to be
executed successfully. Chains from multiple demonstrations
were combined into a skill tree with multiple chains that
achieve the same goal. The main advantage of using BTs
over these methods is the inherent reactivity and increased
readability of BTs.

The method in this paper mainly builds upon [14] which
in turn was built on the work of [36] and [15]. The method
presented in [36] uses demonstrations to gather information
on order of actions. With multiple demonstrations it can also
learn to generalize instead of just repeating the demonstra-
tions. However, the built plan is fixed and not reactive to
external disturbances.

The later work of [15] presented a planner to iteratively
build a BT. In each iteration the current tree is executed
and failing pre-conditions are replaced with subtrees that
execute actions with appropriate post-conditions, a method
called backchaining. The BT is built at run-time and the
result is therefore not deterministic and depends on the
state of the environment. After that, [14] expanded on the



backchaining idea while also incorporating LfD and learnt
also reference frames and context of each behavior using
a clustering approach, thereby making more types of tasks
solvable. However, it still relies on having a planner that is
able to solve the task at hand.

III. PROPOSED METHOD

Simulation framework for learning Behavior Trees
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Fig. 3: Graphical User Interface to control the GP algorithm, the LfD
framework, and to run and display the learnt BT.

The method of this paper combines BTs learnt from user
demonstrations with ones evolved by GP in an interactive
way. On a higher level, our method alternates demonstration
steps with evolutionary ones. The idea is that user demon-
strations can be exploited to bootstrap the GP algorithm, to
edit the output from the GP, or to provide new information
to the GP if the evolutionary process is stuck in local optima.
For this reasons, we let users to interact with the learning
framework through the user interface in Figure [3] where
they can input demonstrations, start-stop-resume the GP,
and visualize or run the learnt BT. We therefore have a
framework that automatically generates BTs while exploiting
user experience in task solving.

Keyboard controls:
- Left/Right Arrows control X dimension.

- Up/Down Arrows control Y dimension.

- PageUp/PageDown Keys control Z dimension.

- +/- change the movement step: current = 6.1

- Back Space to confirm placing position and release object.
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Fig. 4: Demonstration view of the simulator. The user can control the gripper
with the keyboard and place the items at the desired position.

The demonstrations are provided in simulation, by select-
ing the type of action to perform:

o Pick: a drop-down menu is generated allowing the user
to select the item to pick. This action will make the
gripper to grasp the selected object;

o Place: the user takes control of the gripper that can
be teleoperated through the keyboard and moved to the
desired position, as shown in Figure[d Then, the gripper
releases the grasped object.

A BT generated this way to pick and place an item is
shown in Figure [T}

For the gene pool of the GP algorithm, we combine pick
and place of the same object in a single subtree that we
consider as a behavior/gene (Figure [I). This is due to the
fact that for every movable item (e.g. the boxes) we sample
5 target positions in the reference frame of every other item
(corresponding to left, right, above, below, and on top), plus
9 target positions inside the kit box. The reason behind this
design choice is to constrain the search space, and we can
assume that such a list of hand-coded/learnt subtrees for
standardized actions are provided beforehand. Nonetheless,
the gene pool counts 61 behaviors (56 for pick and place
objects plus 5 related to the gripper).

For the design of the fitness function, we follow the
guidelines of [9]. Since the tasks consist of moving objects,
we base the fitness function on the Euclidean distance
between objects current and target positions. A factor A
penalizes larger trees over smaller ones thus preventing the
learnt solution from bloating. Then, 7 is removed from any
tree that ends by timeout to prevent the GP from exploiting
the fact that we interrupt the simulation of an individual after
a certain amount of time. Finally, ¢ is removed from trees
that end in Failure state. Similarly to [9], the fitness function
can be thus modelled as

.7:2—Zmax(O,Ho—gH)—)\L—TT—qﬁF (1)
o

where O is the set of objects with current positions o and
goals g, with ||o — g|| the distance error in mm. L is the
number of nodes. T is 1 if the tree ended by timeout and
0 otherwise and F' is 1 if the tree ended in Failure state
and O otherwise. The values used for the experiments of
Section [[V] are reported in Table [Il Note that the goal of the
paper is to show the benefits of the combined GP and LfD
approaches. By combining the two approaches, less effort
is required in finding an optimal choice for the parameters
through hyperparameter search.

The simulation environment builds on AGX Dynamics
from Algoryxﬂ In prior work [8] we designed a probabilistic
state machine as simulator to make the simulation faster
and the problem tractable. With AGX Dynamics instead,
we can simplify the simulation environment at will. For
the experiments, we idealize the robot by simulating only a
gripper that can teleport directly above the target. In this way,
we simulate only the physical properties that are relevant
for the task, such as contacts between objects and gravity,
disregarding the rest. We achieve a simulation rate that is 100

Zhttps://www.algoryx.se/agx—-dynamics/
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times faster than real-time when the graphics are disabled.
Having the possibility to decide the levels of fidelity, allows
users to test if the learnt solution also works in a model of
the environment closer to reality. In this paper, we skip this
step by transferring the solution directly to the real robot.

From what concerns the implementation, the GUI controls
the simulation through processes. Therefore, it is possible to
run several instances of the simulation in parallel.

To conclude, by combining the two methods we address
the shortcomings mentioned in the previous section.

1) We obtain an interactive framework rather than a
monolithic one that applies the different methods in
series, as we did in [9].

2) We are able to stop the GP algorithm at will, if for
instance the fitness score doesn’t improve, and input
more useful data in the form of demonstrations.

3) We are able to demonstrate small subtasks and then let
GP algorithm solve the full problem, thus improving
the generalizability of the LfD method.

4) We are able to modify the target for the GP algorithm
by inputting new demonstrations.

5) By teaching in simulation, we do not need to have
access to the physical robot or to rely on the perfect
functioning of a perception algorithm.

IV. EXPERIMENTS AND RESULTS

TABLE I: GP parameters

Parameter description Value
Population size 16
Parents selected for mutation 12
Number of mutation offspring per parent 2
Maximum number of mutations per individual 3
Mutation probabilities for add, delete, change 10%, 50% and 40%
Parents selected for crossover 4
Number of crossover offspring per parent 2
Selection method (reproduction and survival) Tournament selection
Number of elites 2
Length penalty for each node (\) 10
Penalty for ending by timeout (7) 30
Penalty for ending in Failure state (¢) 50

In this section we support the claims made in Section
and we consider a range of simulated manipulation tasks as
example for a proof of concept.

The manipulation tasks are examples of kitting tasks,
where the robot has to place several items in a kit box. Kit-
ting tasks are commonly performed by mobile manipulators
where the robot navigates to collect items from shelves to
place in a kit box. Here we focus on the manipulation part,
and leave the navigation part for future work.

We perform three different experiments to highlight the
strengths of our method. The workflow of the experiments
is the following:

1) the user let the GP algorithm run until it converges to
output a BT that solves a user-defined task;

2) the user adds another target or modifies the current one
by inputting a demonstration;

3) the user runs the GP algorithm again but using also the
BT learnt from demonstration as baseline, similarly to
what what was done in earlier work [9].

For Experiments 1 and 2 the GP is stopped after 50
generations and run for another 50 after inputting the demon-
stration. With the simulator described in the previous section
and the parameters for the GP algorithm of Table |I, run-
ning 50 generations takes approximately 15 minutes. These
parameters have been chosen based on our previous works
on GP [8], [9]. Finally, to validate our method we transfer
the solution learnt in simulation to a real robot. For the
experiments we use an ABB YuMi robot.

(a) Experiments 1, 3, and 4.

(b) Experiment 2.
Fig. 5: Target configurations for the experiments.

a) Experiment 1: The goal of this experiment is to
show that by inputting a demonstration, the user is able
to modify the target of the task that the GP algorithm has
previously solved. Neither the solution found by the GP nor
the demonstration alone are sufficient to solve the modified
task but only their combination. The GP has output a BT
solving a different target while the demonstration shows only
a limited part of the full task.

The target of the manipulation task is to stack two boxes
in the kitting box. The robot has to place the YellowBox
in the center of the KittingBox and the GreenBox on top
of the YellowBox. The user then adds as a new target that
the BlueBox is placed on top of the GreenBox, as shown in
Figure [5a] The GP runs for 50 generations to solve the first
part of the task. After the target is changed it runs for 50
generations more.

Results: The learnt BT for this task features a Sequence
node as a root and three children subtrees like the one in
Figure[T] with the appropriate values for the parameters <0>,
<P>, and <F>. In Figure [6a] we show the learning curve for
the Experiment 1. After 50 generations (~ 1300 learning
episodes) the fitness score drops because we introduce a
new target and the previously learnt BT is no more a good
solution. In blue, the GP is boosted by a BT learnt from
demonstration that performs the final step to bring the items
from the old final configuration to the new one. In this case,
the BT learnt from demonstration moves the BlueBox on top
of the GreenBox. In red, we let the GP solve the task with
updated target, without inputting any new information. The
GP converges to a lower fitness score than before changing
the target because it learns a larger tree. This experiment
supports the findings of [9] because it shows that the GP
algorithm converges faster when boosted by a solution that
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Fig. 6: Learning curves for experiments 1 to 3 averaged on 10 runs.

solves parts of the task. Therefore, the GP algorithm benefits
from solutions learnt from demonstration. Moreover, we
show that the LfD method benefits from the evolutionary
process because it relieves the user from demonstrating the
whole task, but only the final part.

b) Experiment 2: In this experiment we show that a
user can exploit demonstrations to achieve target configura-
tions for the items that are not allowed by the set of behaviors
available to the GP algorithm. In this case, we want to place
two boxes side-by-side and place the third one on top of
them in the middle, as shown in Figure @

Results: The behavior for placing the third box in the
specific target configuration of Figure [5b]is not defined in the
initial set of the GP behaviors. Therefore, the GP algorithm
can only solve the task sub-optimally. The two sub-optimal
solutions are stacking the GreenBox on top of either the
yellow one or the blue one. If the user inputs demonstrations
to solve the task correctly, then the learnt BT is inserted as
baseline for the evolution and thus accessible to the GP for
crossover and mutation. In this way, the GP can improve
on the previous solution, as shown in Figure Since the
difference between the correct solution and the sub-optimal
ones is roughly 0.05 c¢m (half the size of the boxes) on the
pose of the GreenBox, the improvement of the fitness score
that we observe in Figure [6b] is not substantial.

c) Experiment 3: The goal of this experiment is to
show that a user can decide to stop the execution of the
GP algorithm when it gets stuck in local optima to then
help it converging by inputting information in the form
of a demonstration. The goal of this task is the one in
Experiment 1 (Figure [5a) but instead of starting from initial
random positions, the boxes are stacked in one of the tables
with the wrong goal configuration. Therefore, the robot has to
unstack them first and then stack them in the correct order in
the KittingBox. If given enough time, the GP will eventually
solve the task because in every generation there is a non-zero
probability that it finds the solution. However, especially in
an industrial scenario the generation of robot programs is
time constrained.

We let the GP run for twice as many generations and
twice as large population as for the previous experiments
(100 generations and 32 individuals in the population, respec-
tively). We also modify the mutation probabilities to delete

and change to 30% and 60% respectively to allow the GP to
explore more widely the search space.

Results: The GP converges to a local optima where it
places the boxes in the KiftingBox but not in the correct target
configuration. Therefore, we stop the evolutionary process
after 100 generations.

At this point, we perform a demonstration to show the
robot how to unstack the boxes. In this case, we perform
only one demonstration because it doesn’t matter where the
boxes are placed while unstacking. Therefore, it is enough if
the robot learns to place them in its reference frame, which is
the default option for the clustering step in the LfD method.
We also modify the fitness function, by adding a reward for
unstacking the boxes successfully. This is done by capturing
the goal of the subtask the demonstration is solving and
assigning a score for this intermediate configuration of the
items. In this paper we do this manually, but it could easily
be automated. In this way we reward the GP for using the
demonstrated BT correctly. Moreover, we allow the user to
decide where to insert the demonstrated BT during crossover.
Since unstacking the boxes is the first step in the solving
process, the demonstrated BT is inserted as first children of
the root. Finally, we run the GP for another 200 generations
with the demonstrated BT as baseline, but we do not use
the information from the prior runs. This is motivated by the
fact that we do not want the GP to rely on solutions that
previously converged on local optima.

With the demonstrated BT, the GP is able to successfully
solve the task (Figure [6c). A compacted version of the BT
solving the task, where we collapsed a subtree responsible
for picking and placing a box in a single behavior, is reported
in Figure

d) Experiment 4: In this experiment we transfer the
solution of Experiment 1 on a real robot. The robot is an
ABB YuMi with an Azure Kinect camera. For the perception
we use Aruco markers detection. Every box has a different
marker in any of the faces, so that we are able to generate a
reference frame for each box in its centroid. Another marker
is attached to the KittingBox. In this case, we place it in a
corner to avoid occlusion but we generate a reference frame
at its center using offsets along the X and Y axis.

Results: The BT learnt in simulation can be used without
modification on a real scenario to successfully solve the same
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Fig. 8: In Experiment 4 we transfer the solution of Experiment 1 on the real robot.

task (Figure [8). By using a BT to control the robot, we make
it reactive to changes in the environment. If an operator helps
the robot in building the stack or undoes parts of it, the robot
reacts by either completing the remaining steps of the tasks
or redoing it, as demonstrated in more detail in [14].

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed to combine a method that
evolves Behavior Trees (BTs) using Genetic Programming
(GP) that we proposed in [8], with a method that learns BTs
from demonstration that we proposed in [14]. We showed
that the combined framework allows users with low to no
programming skills to automatically, intuitively, and time-
efficiently generate BTs for robotic applications. The method
learns BTs in an unsupervised fashion but can exploit human
experience in task solving in the form of demonstrations.
We illustrated the strengths of this method in a series of
simulated manipulation tasks. We transferred one of the
learnt solutions to a real robot, showing that we can learn

in simulation without losing generality. In this paper we
targeted collaborative robotic applications but the framework
can be extended to other robotic tasks, for instance industrial
robotic ones, since the demonstrations and the learning
process are performed in simulation.

As future work, we plan on applying the learning frame-
work to mobile manipulation tasks. Moreover, we will ex-
ploit the design freedom of the simulator to define a higher
level of fidelity. In this way, we propose to model faults
to force the framework to learn more robust solutions. As
an example, we can simulate a simple model of a mobile
platform and constrain the gripper to a fixed workspace. As
a consequence, if an item to pick is not reachable, the robot
will have to approach it first.

This framework is meant to allow non-expert programmers
to generate BTs intuitively and time-efficiently. Therefore,
once we have further developed the framework to tackle a
wide range of mobile manipulation tasks, we aim to test its
usability with an user study. We expect that the outcome



of this study will give some insights on the design of the
graphical user interface and guide its development.
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