2209.11789v2 [cs.RO] 28 Jun 2023

arxXiv

SAFER: Safe Collision Avoidance using Focused and Efficient Trajectory Search with
Reinforcement Learning

Mario Srouji, Hugues Thomas, Yao-Hung Hubert Tsai, Ali Farhadi, Jian Zhang
Apple Inc., {msrouji,hthomas23,yaohung _tsai,afarhadi,jianz} @apple.com

Abstract— Collision avoidance is key for mobile robots and
agents to operate safely in the real world. In this work we
present SAFER, an efficient and effective collision avoidance
system that is able to improve safety by correcting the con-
trol commands sent by an operator. It combines real-world
reinforcement learning (RL), search-based online trajectory
planning, and automatic emergency intervention, e.g. auto-
matic emergency braking (AEB). The goal of the RL is to
learn an effective corrective control action that is used in a
focused search for collision-free trajectories, and to reduce
the frequency of triggering automatic emergency braking.
This novel setup enables the RL policy to learn safely and
directly on mobile robots in a real-world indoor environment,
minimizing actual crashes even during training. Our real-world
experiments show that, when compared with several baselines,
our approach enjoys a higher average speed, lower crash rate,
less emergency intervention, smaller computation overhead, and
smoother overall control.

I. INTRODUCTION

Mobile robots are slowly but surely taking a place in our
everyday lives and work environments with various appli-
cations: vacuum cleaning, video recording, companionship,
security, tele-presence, etc. Whether they are autonomous
agents or controlled by human operators, collision avoidance
is key for mobile agents to operate safely, and effectively
in the real world. There are numerous approaches to col-
lision avoidance, including search-based planning methods,
trajectory optimization, learning-based methods, and emer-
gency intervention systems. Search-based trajectory planning
methods are successful at finding collision-free trajectories
if given good discretization, enough computation, and ideal
search heuristics, however, due to the size of the search space
in real-world continuous problems, the search could be too
computationally heavy to yield good enough solutions [11],
[26], [38], [37], [5]. Trajectory optimization is able to solve
for locally optimal trajectories for collision avoidance, how-
ever, it requires very good initialization, and sophisticated
constraint modeling to guarantee continuity, and feasibility
[41], [34], [8]. Learning-based methods are promising as they
are data-driven, and run inference on a GPU or Al accelerator
to achieve fast and fixed computation, however, it is difficult
to ensure safety due to distribution shift and uncertainties,
especially during training [12], [19]. Another approach is
automatic emergency intervention system, e.g. automatic
emergency braking (AEB), which sacrifices optimality in
exchange for fast computation and low false negative rate, by
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bringing the agent to a complete stop in an emergency [22],
[18], [33].

The AEB is activated when the agent has encountered an
unsafe state that requires immediate takeover. Our key insight
is that even though this unsafe state could be a false positive
in certain situations, it can be treated as a conservative signal
for imminent collision. Our approach treats this conserva-
tive signal as a learning signal, to encourage reducing its
frequency of activation, and avoid stop-and-go behaviors.
Specifically, we train an RL policy to minimize the number
of AEB activation, and improve collision avoidance metrics.
The policy outputs corrective control commands that are
then refined with the Dynamic Window Approach (DWA)
method [11] using a reduced search space. These corrective
control commands correct an agent’s upstream control (e.g
from human control or other upstream algorithms) when
detecting potential collisions.

Our collision avoidance system SAFER takes input from
lidar and ultrasonic sensor scans, wheel odometry for robot
state, and the upstream control commands. We fuse the
lidar and ultrasonic sensor scans to detect a diverse set
of obstacles, including transparent glass, reflective surfaces,
furniture, humans, etc. We design a reward function for
our RL agent with two terms. The first term encourages
the reduction of AEB activation. The second term improves
collision avoidance metrics through a cost function, such as
average speed, distance to obstacles, and matching human
control intention. Our focused DWA search introduces addi-
tional parameters to define the reduced search space around
the output of the RL policy. This focused search space,
shown in Fig. 1, reduces the latency of our method, which
is crucial for a reactive policy in a dynamic environment.

Our SAFER method learns directly in a real-world indoor
office environment by using a distributed RL training setup,
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Fig. 1. Our method uses a Reinforcement Learning (RL) policy to propose
an initial action. Using this initial action, we reduce the search space to find
the optimal action faster.
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Diagram of our SAFER collision avoidance system, next to illustrations of our robotic platform and our training and test environments. Our

differential drive self-balancing robot is based off of a headless Double3, and has an onboard Linux computer (Nvidia Jetson NX), a 2D 360° lidar scanner
(RPLidar A3), and an ultrasonic sensor array (Maxbotix MB-1040). The RGB-D cameras pictured are not used in this work.

leveraging the Soft Actor Critic (SAC) [14] algorithm. Our
robot collects experience through a human driver attempting
to follow pre-defined routes, as well as intentionally trying to
crash the robot. A centralized training server collects expe-
riences and updates the RL policy. With our novel setup, we
can perform real-world RL training while minimizing actual
crashes throughout the learning process, avoiding physical
damage. We believe this work opens up a new approach
for safer learning in the real world, and thus accelerates the
development of intelligent agents.

II. RELATED WORK

There’s a broad literature on the topic of real-world
collision-avoidance, and in the following we discuss its
related work on several topics.

Safety in Real-world Robots. AEB is commonly applied
in real-world robots, where AEB performs maximum braking
when detecting obstacles or emergency situations. Nonethe-
less, the AEB system could make sub-optimal decisions
such as performing maximum braking too late, which can
result in a head-on collision. Therefore, it’s safer to plan
ahead to avoid getting into a situation where an AEB system
has to take over [11], by formulating collision avoidance
as one of the cost terms in an overall search or trajectory
optimization problem [21], [41]. With enough computational
power, model simplification and heuristics, such approaches
have hope for finding collision-free global optimal solutions.
Yet, the computational resources on a mobile robot are often
limited, and there are other essential tasks that require com-
putation like perception [25]. Our work considers a realistic
setup where we perform efficient collision avoidance using
on-device compute to prevent the robot from getting into
an unsafe position. It relates to safe reinforcement learning,
such as constrained policy optimization (CPO) [1]. While
there is no evidence that shows that CPO works in a real
world system, our approach trains and operates in the real
world. Other works leverage RL with the goal of designing
controllers that are probabilistically-safe using verification
mechanisms [4], [15], and shielding methods [2], [10], [3].
Lastly, there are some works that assume the dynamics of
the real-world are known [39], [30], [43]. Our approach, on
the other hand, does not have this assumption.

Learning from Human Demonstrations. A popular
way to learn to avoid collisions is to learn from human
demonstrations, including imitation learning methods [29],

[31], [7], [35], [13], [27], and by learning to avoid human
disengagement [20]. The first class of methods (imitation
learning) aim to make a robotic agent mimic human behav-
iors. The second class of methods (learning to avoid human
disengagement) aim to make a robotic agent generate actions
that avoid human disengagement, which is similar to our
approach where we learn to reduce the amount of AEB
activation. Although these approaches have demonstrated
their effectiveness in collision avoidance, they require a lot
of human demonstration data, which is expensive to collect.
Our approach on the other hand, learns from AEB activation
signals, which require no human demonstrations.

Sim-to-Real Transfer. Another family of collision avoid-
ance involves initially learning in simulation, and then
performing sim-to-real transfer [36], [28], [17], [40], [42].
Although simulation offers a large amount of training data
when compared to the real-world, the sim-to-real domain
gap may hinder the learning algorithms to generalize. Our
approach learns directly in the real world, and evidence
shows that direct real world learning is preferable to applying
sim-to-real transfer [24].

Learning from Collisions. Our work also relates to learn-
ing collision avoidance by experiencing collisions [22], [12],
[19], in which collision is regarded to be a valuable learning
signal. However these approaches will inevitably cause phys-
ical damage to robotic agents, and the environment in which
they operate in. On the other hand, our approach regards
AEB activation as a valuable learning signal, which is safer
in the real world.

Combining RL and DWA. There are previous works that
relate to combining RL with the dynamic windows approach
(DWA). Some prior works learn to adaptively change the
weight coefficients of the DWA evaluation function using
RL, or extend them to provide better path planning and
obstacle avoidance [16], [9], [6], [32], while others leverage
RL to learn a velocity model for objects to avoid obstacles
[23]. The difference between our work, and these prior
works is that we leverage RL to improve the efficiency and
granularity of the search in DWA.

IIT. PROBLEM FORMULATION

We make certain assumptions in our work in order to
simplify the real world collision avoidance. Our environment
is assumed to be composed of static obstacles, i.e we do not



perform tracking for humans or other dynamic obstacles. We
also assume the robot’s actuation limitations are measured
and known ahead of time, and we fine-tune a kinematic
model for our environment to make trajectory predictions,
which also assume a constant velocity model. In the follow-
ing, we introduce some important notation and parameters
that should be referenced in the rest of the paper:
Robot Kinematics

e Reaction time ¢, = 100ms represents our collision
avoidance module’s latency, and is a measured quantity.

o Robot states x = (z,y,0,v,w) with x/y being 2D
euclidean coordinates, 6 being the robot’s yaw, and v/w
being the robot’s linear velocity/angular velocity.

o Maximum robot linear & angular acceleration (a?,,.,
a;)lax)'

« Maximum robot linear & angular velocity (Vmax, Wmax)-
Minimum velocities are assumed to be the negative of
the maximum.

« Robot kinematics x;41 := f(x;) is defined as

Tit1 = x; + v;cos(6;)tr

Yit1 =  Yi + v;sin(6;)t,
X1 = f(XZ) = 9i+1 = 0; + witr

Vi1 = Ve

Wit1 = We

« Robot trajectory traj(v,w, At) is defined as
traj(v, w, At) = [XOa X1, X2 eny XAt/t,«]v

where ¢, is considered to be the time step and At is
the total time horizon. The initial robot state xg =
(0,0,0,v,w) since we use an ego-centric robot frame.

Sensor and Obstacles

e 2D Lidar scan {lp,l1,--- ,l359} collects signals from
360°, representing distance in meters.

e 2D ultrasonic scans {u_g5,ug,uss} collects signals
from {—45°,0°,45°}, representing distance in meters.
We leverage ultrasonics to detect glass surfaces.

o Obstacles O, C R? are registered using lidar and ul-
trasonic signals {lo,l1, - ,l356, U—_45, Ug, U5 } Within
L.

Collision Avoidance Parameters

e 0 is an indicator variable and is = 1 when maximum
braking is triggered in the following time step; other-
wise = 0.

« Reference control commands (v f,wyer) are from hu-
man control input or other upstream control.

« Corrective control commands (v, w.) are outputted by
our collision avoidance module.

o Plan-ahead time ¢, is a hyper-parameter, representing
the time horizon for trajectory planning, according to
the maximum braking capability of the robot. ¢, = ¢, +

v/ (2a50x)-
Tune-able Hyperparameters

e 3> 1is a constant expanding the plan-ahead time for
collision avoidance prediction to 3t,,.

e Ny, v, control the amount of linear and angular velocity
samples, respectively, used in standard DWA trajectory
search.

e A1, Ay are constants in the RL reward function.

e 7 € (0,1) controls the size of the RL-guided search
window, in comparison to the standard window in DWA.

e § € (0,1) controls the number of trajectories that are
sampled in the RL-guided search window, in compari-
son to the standard number of DWA samples n,,, v,,.

IV. SAFER METHOD

We present our collision avoidance system in Fig. 2 (a),
noting that our method runs in parallel with upstream tasks,
such as navigation planning or human control. Our approach
takes as input the robot state from odometry, the lidar and
ultrasonic scans, and the control command from the upstream
tasks. The output is a corrective control command to the up-
stream reference tasks, which avoids collision and provides
favorable behavior (fast speed, smooth control, etc.). There
are three stages within our collision avoidance: maximum
braking and collision avoidance checks (details in Sec. I'V-
A), RL collision avoidance policy (details in Sec. IV-B), and
focused DWA search (details in Sec. IV-C). In the first stage,
we determine whether the robot requires maximum braking,
or a corrective control command through our RL policy. In
the second stage, we apply our RL policy to output corrective
control commands with the goal of 1) reducing the frequency
of emergency braking interventions and 2) avoiding collision
effectively. In the third stage, we use a DWA search focused
on a small space around the RL policy output to find the best
corrective control command. In the final section Sec. IV-D
we explain how to tune important hyperparameters in our
SAFER method.

A. Maximum Braking and Collision Avoidance

According to the robot’s current state and the surrounding
obstacles, we first check whether emergency intervention or
collision avoidance is necessary, and apply corrective action
to the upstream control commands. If emergency intervention
is required, we apply maximum braking to bring the robot
to a complete stop. If emergency braking is not required,
but collision avoidance is, we apply a corrective control
command using our RL policy. If neither emergency braking
nor collision avoidance is required, our system maintains the
upstream control.

Collision. We define E(x) € R? as the set of points in
2D space by the robot’s shape at state x. A collision occurs
between the robot’s trajectory traj(v,w, At) and the set of
obstacles O, C R? if:

U (E(x) NQy) # 0. (1)

x€traj(v,w,At)

Emergency Braking We adopt maximum braking control
when the robot’s trajectory along the plan-ahead time ¢,
denoted as traj(v,w, t,), collides with obstacles, formulated

as Uxetraj(v,w,tp) E(x) N Os # 0.




Collision Avoidance If maximum braking is not required,
then we expand the plan-ahead time to 3¢, > 1' to see if
the robot collides with obstacles that are further away. It can
be formulated as Uxetraj(v,w,ﬁtp) E(x) N O, # 0. If there is a
collision, then we use our RL policy to output a corrective
control command.

B. RL Collision Avoidance Policy

We consider a distributed RL training setup with the
soft actor critic (SAC) [14] approach. Our robots collect
experiences and send them to a central training server, and
the training server uses these experiences to train and update
the actor’s policy network, as well as the critic and critic
target networks. The training server sends all robots the
updated actor network after a fixed number of training steps.
Fig. 3 presents the overall setup and network specifications.

For each time step, s; represents the input to the pol-
icy and the critic network, consisting of lidar and ul-
trasonic scans, robot’s linear and angular velocity, and
the control commands from the upstream task: s; =
[lo; 11, 5 1350, U—a5, U0, Uds, Vy W, Vref , Wret -

a¢ 1s the output of the Policy Network and also part of
the input to the critic’s Q Network: a; = [throttle, turn] €
[_17 1]

r¢ is our reward function. Since we aim to learn corrective
control commands that can 1) reduce the number of maxi-
mum braking interventions and 2) avoid collision effectively,
we compose 7; to be

re = —A10t 41 — A2 J (Ve, we), @

where A1, Ao are hyper-parameters (in our design, \; =
35, A2 = 10), 0441 indicates whether maximum braking was
performed in the next time step, and J (v, w.) is the cost of
the control command (v, w,). Precisely, we define J (v, w,)
as
J(Ve, we) = €1 (Vmax — Ve) + C2(|ve — Vret| + |we — Wret])

1 3)

dist (@S, traj(ve, we, ﬂtp)) ’

+ c3

where c1, c2, c3 are hyper-parameters (in our settings, ¢; =
0.4,c0 = 0.4,c5 = 0.2). (Umax — v.) encourages the
corrective linear velocity to be fast, (|ve — Uyet| + |We — Wret|)
minimizes the deviation of corrective control commands
from upstream control commands, and dl%t() encourages the

robot to stay away from obstacles. We define dist(QOj, traj)
to be the distance between the robot’s trajectory and the
obstacles:

diSt(©57traj) = ”(‘%ag) - (m57y5)||'

min
V(zs,ys)€Qs,(Z,9)Exctraj

C. Focused DWA Search

The dynamic window approach (DWA) [11] defines a
dynamic window W = [Viower, Vupper] X [Wiower; Wupper]
identifying the set formed by the Cartesian product of values
in the range between lower and upper linear velocity, and
angular velocity values. DWA then performs an exhaustive

'We found 8 = 2 to be a good balance to avoid emergency braking, and
minimize collision avoidance intervention to upstream control.
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Fig. 3. Our distributed RL training setup (top) and RL network.

search for a control command (v.,w.) € W that minimizes a
defined cost. Alternatively, our approach improves upon this
by using the output of an RL policy to guide DWA, allowing
us to perform a smaller targeted search to find the optimal
control.

Standard Dynamic Window. The standard dynamic win-
dow W is defined using the current robot velocity (v,w),
the maximum linear and angular acceleration (a%, ., % ),
and the robot reaction-time ¢,

W = [maz(v — al . try —Umax), MIN(V + G tr, Vmax )] X

[maz(w — a2 tr, —Wmax ), Min(w + a tr, Wmax)]-

Searching in W can be inefficient since the ranges between
the lower and upper velocities can be large, and small search
granularity is needed to find good solutions. In DWA we
typically consider a search consisting of n, linear and n,,
angular velocity control commands inside of the window W,
which yields a search space of n, % n, trajectories. The
granularity of such a search (at maximum) is 2a? . t./n,
for linear velocity, and 2a%,_ t./n, for angular velocity.
RL-guided Search. After we obtain throttle,turn from




the RL policy network, we scale the output as [vs,ws] =
[throttle * Umax, turn % wmax]. We then check to make sure
that the scaled output [vg,w;] is feasible and lies within the
dynamic window W = [Viower; Vupper) X [Wiower, Wupper] S
defined in Eq. 4. If [vs,ws] ¢ W, then we threshold the
scaled output to fit into W:

[maz(min(vs, Vupper ), Viower ), MaZ(min(ws, Wupper ), Wiower )|
(5)
Next we perform a focused search around the RL action
using parameters v € (0,1) and § € (0,1) inspired by the
traditional DWA window discussed in Eq. 4 (v = 0.05 and
0 = 0.1 in our experiments). Our search picks the corrective
control v.,w,. that minimizes J(v.,w,.) in Eq. 3. We create
a search window around [vs,w;] that is + times the size
of the standard window in Eq. 4. Our [viower, Vupper] X
[Wiower s Wupper] becomes:
[max(vs — Y5 axtry —Umax ), MIN(Vs + YA brs Vmax )] X
[maz(ws — ya¥ . try —Wmax), Mmin(ws + ya&, tr, wmax)(]().)
We then sample én, linear velocities and dn, angular
velocities from the smaller window, resulting in a total
of §%n,n, trajectories being searched. This also yields a
search granularity (at maximum) of 2val . t,/dn, for linear
velocity, and 2va¥, t./én, for angular velocity, meaning
the granularity is /6 compared to standard. To summarize,
our targeted search window is 1/7 times smaller, and we
sample 1/62 less trajectories.

D. Tuning Hyperparameters

In order to aid the reader in understanding how to tune the
more important collision avoidance parameters in our work,
(B, "y, N,y 7y, 0], we provide a brief discussion.

e S > 1 controls the planning look-ahead multiplier.
Larger settings cause the RL-guided search to be trig-
gered more often for collision avoidance. Too large
of a setting can negatively affect the human control
experience due to being overly conservative. We set
B =2

e N4,n, determine how many linear and angular veloc-
ities are sampled from the dynamic window, resulting
in n,n, samples. We maximize the values of n,,n,
up to the point where the standard DWA search has a
latency of t,, which is 100ms in our setting, and can
be tuned as required for the robotic platform. One can
increase the value of n, compared to n,, or vice-versa
if the window is larger in either dimension.

e 7,0 € (0,1) control the size of the targeted RL search.
6 should be set such that the search time fgeqrch
resulting from the number of samples §2n,n,, offsets
the inference time of the RL policy t; tscarch < tr—tr.
~ is then set to achieve the desired search granularity
compared to the standard DWA search +/d, ideally
~v/6 <1 (more granular).

V. EXPERIMENTS
In this section, we perform real-world experiments by
controlling a robot in an indoor office environment contain-

TABLE I
DETAILS OF THE COMPARED METHODS.

Methods Search fﬁ)e;rr/liré% latency () :;ZZIEE)
NoSafety no no n/a n/a
AEB no no 8ms n/a
DWA yes no 100ms 2500
RL no yes 15ms n/a
SAFER (ours) yes yes 20ms 25

ing a variety of obstacles including glass, humans, office
furniture, doors, hallways, etc. We perform our tests in a new
part of the environment unseen during the training phase,
with a different office layout and obstacles as shown in
Fig. 2. First, we leverage a sinusoidal driving policy which
removes any human bias in the results. Then we let a human
drive the robot with specific instructions. The human oper-
ator tries to follow pre-determined (marked) routes through
corridors, doorways, around furniture, etc. We also perform
experiments where the human operator intentionally tries to
collide the robot with obstacles in the environment for a fixed
amount of time. Finally, we show qualitative comparisons
between our SAFER method’s collision avoidance compared
to standard DWA search.

Methods of Comparison. We consider five baselines to
demonstrate the effectiveness of our method, all of which
are developed by us as separate parts of the SAFER method.
The first baseline only considers human control, without a
collision avoidance system. Building upon the first baseline,
the second, third, fourth, and fifth baselines add a collision
avoidance component to correct the human control (same hu-
man driver). For the second baseline, the collision avoidance
only considers automatic emergency maximum braking. The
subsequent baselines add a plan-ahead collision avoidance
mechanism in addition to the automatic emergency braking.
The third baseline is the most similar to our approach,
by leveraging emergency maximum braking, and a plan-
ahead collision avoidance policy using standard DWA search
as described in the method section. The fourth baseline
replaces the standard DWA search in the plan-ahead collision
avoidance system with our trained RL policy, but without the
focused RL-guided DWA search. The fifth baseline is our
SAFER approach, which adds the RL-guided focused search
to the output of the RL policy for collision avoidance. We
shorthand the first baseline as NoSafety, the second baseline
as AEB, the third baseline as DWA, the fourth baseline as
RL, and our method as SAFER. Note that the RL policy in
RL and SAFER is identical, and the methods only differ in
that SAFER leverages the focused search around the output
of the RL.

Metrics. We report the following metrics which should be
maximized (1) or minimized ({):

o successes (1): the number of successful trials as detailed
in Sec. V-A.

o collisions (}): the number of actual collisions during a
driving session or across multiple trials.

o averagespeed (1): the mean of the linear speed across
all control decisions in (m/s).



TABLE II
30 TRIALS: SINUSOIDAL POLICY IN TIGHT DOORWAY (STATIC)
AND HUMAN ENCOUNTER (DYNAMIC) SCENARIOS.

Tight Doorway Human Encounter

Methods

succ. (1) colli. () | succ. (1)  colli. ()
AEB 0 3 0 9
DWA 23 2 22 3
RL 19 5 23 6
SAFER (ours) 27 0 28 1

e # maxbraking (}): the number of times maximum
braking was performed during a driving session.

« latency ({): the total resulting collision avoidance plan-
ning cycle time.

e unsmoothness (]): the mean of the linear and lateral
accelerations between control decisions. As an exam-
ple, given two sequential control decisions (vg,wp)
and (v1,w;), and elapsed time of ¢ we calculate
unsmoothness for this step to be ((v; — vg)? + (w; —
wo)?)/t.

 actioncost ({): the cost of the control action according
to Eq. 3.

A. Sinusoidal Driving Policy in Hard Cases

Our first experiment aims at evaluating our method in a
controlled setup, without any bias from a human operator.
We define two challenging scenarios involving static and
dynamic obstacles. In the first scenario (Tight Doorway), the
robot approaches a partially closed doorway, requiring a tight
turn to enter the room, or a larger turn to avoid the entrance
altogether. We consider a success to be the robot entering the
room without colliding with any object.The second scenario
(Human Encounter), involves the robot driving down a
hallway, where a human walks in the opposite direction
in a straight line directly toward the robot. We start the
human at the same marked location each time. Success in
this case requires the robot to turn away from the human,
and continue making progress down the hallway in the same
original direction without collision.

For both scenarios, the robot is controlled by our si-
nusoidal policy, which sets forward throttle to a constant
maximum, while turn varies according to time in seconds ¢;
turn = sin(t). We mark a baseline starting location for each
scenario (position and angle) and set the actual starting angle
@ for each run according to a random uniform distribution

0 + % +U(—1,1). In Table II, we report the number of real
collisions and successes across 30 trials for each baseline
and both scenarios. Our SAFER method has the highest
number of successes, and lowest number of collisions in both
scenarios when compared to the baselines.

B. Human Operator Results

We conducted experiments to validate that our SAFER
method behaves as intended in real-life scenarios. Our next
two setups thus involve the robot being controlled by an
expert human operator (hours of robot driving experience),
where the operator is asked to follow specific instructions
in each setup. Firstly, we ask the operator to drive the
robot continuously for one hour through pre-determined
routes in our indoor office environment. We chose difficult
routes that require navigating around furniture, traversing
doorways/hallways, and other challenging obstacles such as
glass, boxes, etc. while in the presence of humans. Secondly,
the operator is tasked with intentionally crashing the robot
randomly in the evaluation environment. The results are
compiled in Table III.

Following Pre-Determined Routes Our experiments reveal
that implementing a simple mechanism like AEB reduces
actual collisions by 64%. However, this approach also results
in reduced average robot speed and increased unsmoothness,
highlighting the need for a more sophisticated mechanism
that can provide additional safety while also maintaining
effectiveness. The planning-based collision avoidance mech-
anism DWA effectively reduces the number of actual colli-
sions and maximum braking scenarios, while also improving
average robot speed by 42% and reducing unsmoothness by
25%. However, it requires additional computational overhead
due to the planning process. We then extend our analysis to
compare traditional trajectory search, DWA, with a learned
policy, RL. While the latter approach significantly reduces
computational overhead by up to 85% with improved average
robot speed, it also compromises the safety of the system
with a 50% increase in actual collisions. These findings mo-
tivate our proposed approach SAFER, which demonstrates
fewer actual collisions and dangerous scenarios than DWA
and RL, improves average robot speed compared to DWA,
and reduces unsmoothness compared to RL. Moreover, the
increase in computational overhead compared to RL is small,
and SAFER is faster than DWA.

TABLE III
EXPERT HUMAN OPERATOR EXPERIMENTS.

Operator Methods average collisions ({) # max unsmoothness (})  avg. action
instructions speed (1) braking ({) cost ()

NoSafety 0.47 m/s 14 n/a 0.23 0.41
Follow a AEB 0.31 m/s 4 27 0.31 0.32
predefined route (1hr.) DWA 0.44 m/s 2 7 0.19 0.24
RL 0.53 m/s 3 8 0.27 0.29
SAFER (ours) 0.51 m/s 1 3 0.12 0.16
AEB 0.31 m/s 5 19 0.37 0.47
Try to DWA 0.43 m/s 2 7 0.22 0.33
crash (10mins.) RL 0.39 m/s 3 9 0.49 0.35
SAFER (ours) | 0.50 m/s 0 3 0.14 0.21
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Qualitative comparison of our RL-Guided Search in top row, and Standard DWA Search in bottom row. A simple driving policy that applies

maximum forward throttle (constantly) was used to try to drive the robot through tight doorways surrounded by obstacles, and the resulting path, and
speeds are plotted for each obstacle avoidance method. In the first two scenarios, our method produces smoother collision avoidance paths without sudden
reduction in speed (maximum braking) as in the standard search. In the last scenario, our method is able to effectively plan a path through the challenging

doorway while the standard search is not and veers away.

Intentional Collision To further validate our approach
compared to the baselines, we performed a challenging and
unique experiment where we tasked a human operator with
intentionally crashing the robot randomly in the evaluation
environment for ten minutes. We show the results in Table III.
From the table, our approach SAFER is able to achieve
zero actual crashes, and is able to avoid maximum braking
conditions far better than all of the baselines. Additionally,
the average speed is higher, and the unsmoothness is lower.
We also include the average cost of actions taken by each
baseline during their collision avoidance cycles, according to
Eq. 3. Our approach selects the most optimal control actions
to avoid collision in comparison to all of the baselines. We
believe that due to the fast, and more optimal control of our
collision avoidance method, it can perform very well even
under unpredictable driving behavior.

C. Qualitative Discussion

In Fig. 4 we show qualitative results comparing the
collision avoidance paths between our RL-guided search (top
row), and standard DWA search (bottom row). We plot the
speed of the robot along the path according to a color-map,
and show the obstacle scan from the lidar sensor. In each of
these scenarios, we mark a starting location and angle for the
robot, and use a simple driving policy that applies maximum
forward throttle and no turn. We repeat these scenarios ten
times for each method, and select the best-performing trial
for each. In the first two columns, the robot must traverse a
sharp corner to turn through a doorway, and enter a cluttered
room. The standard DWA search performed hard braking

twice in the first column, and once in the second, whereas our
RL-guided focused search performed zero braking. We also
observe that the collision avoidance path in our method is
smoother than that in the standard search. In the last column,
the robot is presented with a narrow doorway where multiple
turns are required to squeeze into the room. As can be seen
from the images, our RL-guided focused search successfully
makes it into the room, requiring only one slowdown in
speed. The standard search is unable to plan an effective path,
and turns away from the narrow passage, never discovering
the room. We attribute this to the smaller search granularity
that our method has compared to standard search.

VI. CONCLUSION

In this work, we leverage the activation of emergency
interventions as a learning signal for a real-world RL-
guided search method that efficiently and effectively avoids
collision. Our approach enables direct and safe real-world
learning without human intervention. In our real-world ex-
periments, we show our method outperforms other collision
avoidance baselines. For future work, we plan to extend
our setting to non-stationary multi-agent environments with
potentially diverse dynamic obstacles.
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