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Abstract— The transition to agile manufacturing, Industry
4.0, and high-mix-low-volume tasks require robot programming
solutions that are flexible. However, most deployed robot
solutions are still statically programmed and use stiff position
control, which limit their usefulness.

In this paper, we show how a single robot skill that utilizes
knowledge representation, task planning, and automatic selec-
tion of skill implementations based on the input parameters
can be executed in different contexts. We demonstrate how
the skill-based control platform enables this with contact-
rich wiping tasks on different robot systems. To achieve that
in this case study, our approach needs to address different
kinematics, gripper types, vendors, and fundamentally different
control interfaces. We conducted the experiments with a mobile
platform that has a Universal Robots UR5e 6 degree-of-freedom
robot arm with position control and a 7 degree-of-freedom
KUKA iiwa with torque control.

I. INTRODUCTION

The need for flexible and skill-based robot control systems
in industrial robot applications is becoming increasingly
important. With the rise of automation and the growing
complexity of tasks, robots must be able to adapt to changing
environments and perform a variety of tasks without lengthy
configuration times. This requires a control system that can
respond quickly and accurately to changes in the environ-
ment and the task at hand. However, most of the deployed
systems are statically programmed and perform repetitive
tasks. This introduces the need for a flexible and skill-based
robot control system in industrial robot applications that
provides flexibility and supports agile manufacturing.

First platforms for skill-based systems such as ClaraTy [1]
or LAAS [2], paved the way. In the area of knowledge
integration frameworks, the system built around the Rosetta
ontology [3], [4] and Knowrob [5], [6] created a solid
foundation. The latter addresses the service domain, while
the former is placed in the context of industrial robotics.
To transfer skills from one robot to another is nontrivial
if robots of different types and vendors are involved. For
instance, [7] demonstrated skill transfer for contact-free
motions within a single family of robots that share the
same vendor-supplied high-level interface ABB RAPID. In
that paper, the simulated experiments were conducted with
high-gain position control. This is, of course, still a standard
practice within many tasks that have little variation and high
certainty. However, the increasing number of contact-rich
tasks that manipulators should be able to solve [8] indicates
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Fig. 1. With the proposed abstractions and knowledge representation,
several different robot systems can execute the same skills while still using
their respective hardware such as grippers and controllers.

a clear need for flexible and compliant systems. Achieving
compliant behaviors heavily depends on the hardware and
vendor, and there are no standard interfaces available for this
purpose. In this paper, we explore the question of how skills
can be transferred between collaborative robots, such as the
Universal Robot robots and the KUKA iiwa or the Franka
Emika Robot (Panda). To do this, we develop a suitable
representation of the available robot hardware, a knowledge
infrastructure to maintain this hardware knowledge, and a
suitable compliant controller that works across different types
of robot arms. To validate and verify our claims, we test our
architecture on a whiteboard wiping task, as shown in Fig.
1, using a UR5e and a KUKA iiwa. The whiteboard wiping
task is an example of a typical contact-rich task that requires
a compliant controller. For this, the UR5e has a force-torque
sensor on the wrist, while robots such as the iiwa and the
Panda have torque sensors in their joints.

In summary, our paper makes the following contributions:

1) We present a complete architecture that represents,
plans, and executes skills such that they can be trans-
fered between robots.

2) We demonstrate these ideas based on a whiteboard
wiping task using a UR5e and a KUKA iiwa robot.

3) All essential building blocks, including the impedance
controller implementations are available as open-
source software.

4) The code is written in a robot-agnostic way, making
the results and insights scalable to diverse collaborative
robotic hardware and tasks.
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II. RELATED WORK

A. Robot Skill Systems

We can classify skill-based architectures based on their tar-
get domain. Projects like CAST [9] and KnowRob [5], [6] are
for service robotics and general platforms are ClaraTy [1],
LAAS [2] and SmartMDSD [10]. However, platforms that
address the specific needs of industrial robotics are the
most relevant for this work. CoStar [11] has shown to
integrate multiple robot systems and provides a graphical
user interface (GUI) for the design and the monitoring of
skills. However, it lacks explicit knowledge representation
and the possibility to perform task planning. The use of
ontologies to describe skills in robotic applications has been
explored in various areas, including medical and surgical
robotics [12], [13], perception ontologies [14] for robots, and
more [15]. Among these, [3], [4], [7] present a knowledge-
based approach for programming synchronized motions be-
tween robotic systems and human-robot interactions that is
particularly relevant for our work.

In [7], the authors demonstrate the effectiveness of their
approach through experiments that involve transformations
of dual arm programs and the transfer of skills between
robot systems with different kinematics. Their approach
uses finite state machines to implement skill behavior and
generates ABB RAPID code that is specific to ABB robot
controllers. Our work differs in that we use behavior trees
for skill behavior implementation and our implementation is
not limited to a particular robot controller. In addition, [7]
was validated only in simulation, and the tasks were not
contact-rich.

B. Robot Motions

In the literature, Movement Primitives (MPs) have been a
reliable tool for generating robot motions. Dynamic Move-
ment Primitives (DMPs) [16], [17] and Probabilistic Move-
ment Primitives (ProMPs) [18] have been successfully used
to generate arm motions. Both DMPs and a motion rep-
resentation based on behavior trees and motion generators
(BTMG) that will be introduced in Section IV-A use attractor
landscapes to reach a target location. DMPs are non-linear
dynamical systems that allow trajectory control, and, like
our BTMGs, they have a non-linear forcing term that en-
ables the modification of the original trajectory. However,
in contrast to DMPs, the parameters of BTMGs can be
specified explicitly, giving us a better understanding of the
robot motion and allowing for a better intregration with
knowledge representation.

Wiping Applications: In [19], [20], [21] the authors
discuss research on robotic manipulation of wiping tasks
using artificial intelligence reasoning methods. [19] proposes
a classification of compliant manipulation tasks based on
symbolic effects, subcategorizes wiping tasks, and demon-
strates how to concretize actions based on the example
of shards sweeping with a broom. [20] investigates the
reasoning and action execution problems involved in the ex-
ecution of wiping tasks and proposes a high-level abstraction
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Fig. 2. An outline of the SkiROS2 architecture. The world model stores
the knowledge about the relations, environment and the skills. The skill
manager loads and executes the skills. Dashed lines show control flows and
solid lines show information flows. Shaded blocks indicate possible multiple
instances.

representation of wiping tasks to develop generalized action
execution mechanisms. [21] combines reasoning methods
and compliant robotic manipulation to solve wiping tasks
by introducing a qualitative particle distribution model, an
approach to generate whole-body wiping motions based on
effect-oriented policies, an approach to assess wiping motion
quality, and the semantic interpretation of contact situations.
Rather than achieving the best wiping skill, the focus of
our paper is on presenting a complete architecture that
represents, plans, and executes skills, and then using wiping
as a challenging example to demonstrate these ideas.

III. TRANSFERABLE ROBOT SKILLS

In this section we introduce the prerequisites that enable
to transfer skills between different robot systems. In ad-
dition to the skill platform SkiROS2 and its skill model,
the necessary aspects of knowledge presentation and task
planning are introduced. The control implementations and
motion generation are introduced in Section IV.

A. SkiROS2

We utilize the skill-based robot control platform
SkiROS2 [22] to implement transferable robot skills. It is
used in several research projects for motion generation [23],
robot coordination [8] and task-level planning with reinforce-
ment learning (RL) [24], [25], [26], [27]. The architecture
is shown in Fig. 2 and the main components are the skill



manager and the world model. The world model (WM)
contains the knowledge about the world and represents
it in a Resource Description Framework (RDF) database.
Ontologies such as the Suggested Upper Merged Ontology
(SUMO) describe the available concepts such as objects or
skills and their relations to each other. In addition to that, a
scene contains the concrete instances of the concepts that are
defined in the ontologies. Such instances can be the present
robot systems, workstations or objects that are currently
known.

The skill manager is responsible for loading a set of
specified skills from the skill libraries. Each skill that is
successfully loaded gets a semantic description in the WM.
This includes the parameters and pre-, hold- and post-
conditions. In addition to that, the skill manager provides
services to start, pause and stop skills and to manage their
execution.

The task manager accepts the planning goals in
Planning Domain Definition Language (PDDL) [28], [22].
Such goals can come from a user or an external entity
such as a manufacturing execution system (MES). An
example of such a goal is to place an object at a specific
location: (skiros:contain skiros:Location-1
skiros:Product-1). The task manager automatically
creates a PDDL planning domain from the knowledge in
the WM. The currently available skills are added with their
preconditions and effects, and the relevant instances in the
scene are automatically added to a planning problem. Then
a PDDL planner is called to find a sequence of skills that is
guaranteed to be optimal [29]. Finally, the plan is converted
back into a behavior tree (BT), automatically expanded with
the relevant skill implementations and grounded with the
instances in the WM [22].

B. Skill Model

We define a skill as a parametric procedure that changes
the world from some initial state to some new state [30]. It
is shown in Fig. 3. A skill consists of two main components:
a skill description and the skill implementation. A skill
description contains the skill parameters and the necessary
pre-, hold- and post-conditions. These define what prerequi-
sites need to exist to execute a skill and state the expected
effects of running it. In the task manager, these conditions
can be used for automatic task planning. Furthermore, the
parameters state the input and output of a skill. There are
three different types of parameters: 1) required, 2) optional
and 3) inferred. An example of a required parameter of a
"pick" skill is to specify the robot arm, while an optional
parameter could be to slow down the execution for testing.
The inferred parameters are reasoned about when starting the
skill. An example is a "gripper" parameter for a pick skill
that already has the arm as a required parameter. With a
precondition we can define a relation between both of them
and we can use the knowledge in the WM to specify the
inferred parameter automatically [22].

In addition to the skill description that describes the
semantic actions of a skill, the skill implementation is a
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Fig. 3. The conceptual model of a skill in SkiROS2. Pre-, and hold-
conditions ensure that the skill is only executed in the correct world state.
Post-conditions check if the desired changes have been achieved.

concrete version for the execution. Each skill implementation
implements exactly one description with its parameters and
pre-, hold- and post-conditions. There are two complexities
of skills: Primitive skills that are semantically atomic and
compound skills. Primitive skills provide a Python interface
for the initialization, start, execution and stop of a skill.
In contrast to that, compound skills allow to connect an
arbitrary number of primitive skills and compound skills
in a BT [31], [22]. A skill implementation is also allowed
to change the skill description, such as adding addition
conditions or modifying existing conditions. This is im-
portant to support multiple, specific skill implementations.
Examples of this are gripper actuation skills. A basic skill
description can have a parameter "gripper" of the WM
type Element("rparts:GripperEffector") and a
Boolean parameter "opening state". The implementation of
such a skill depends on the actual gripper model and a
specific implementation can set the parameter to a spe-
cific subtype of rparts:GripperEffector, such as
scalable:RobotiqGripper.

C. Knowledge Representation and Task Planning

An important aspect is the separation of skills and tasks.
Skills are written in a parametric way to be used in various
applications and different tasks. This separation is achieved
by explicitly storing knowledge in the WM. Since the
conditions and task-specific knowledge is not implicitly
represented in the skills, this allows for a modular and
extensible design that easily allows to add scenarios or robot
systems at a later point. The WM stores this knowledge in
a semantic RDF database that utilizes the Web Ontology
Language (OWL). SkiROS2 introduces its own ontology,
which contains the necessary concepts and relations for skill
modeling and reasoning. It is based on the Core Ontology
for Robotics and Automation (CORA) that is in the IEEE
Standard Ontologies for Robotics and Automation (IEEE Std
1872™-2015).

An example for a part of the semantic description of
a robot arm is in Listing 1. The listing contains the rel-
evant knowledge for the trajectory generation and motion
execution. This includes, but is not limited to properties



Listing 1. An excerp from the semantic description of one of the robots
used in the case study. It includes the necessary knowledge to parameterize
motion skills and perform spatial reasoning.

scalable:Ur5−2 a scalable:Ur5, owl:NamedIndividual ;
rdfs:label "scalable:ur5"^^xsd:string ;
skiros:BaseFrameId "cora:Robot−1"^^xsd:string ;
skiros:CartesianGoalAction "/cartesian_trajectory_generator/goal_action"^^xsd:

string ;
skiros:OverlayMotionService "/cartesian_trajectory_generator/overlay_motion"

^^xsd:string ;
skiros:CartesianStiffnessTopic "/cartesian_param_filter/stiffness_goal"^^xsd:

string ;
skiros:CartesianWrenchTopic "/cartesian_param_filter/force_goal"^^xsd:string ;
skiros:CompliantController "cartesian_compliance_controller"^^xsd:string ;
skiros:JointConfigurationController "scaled_pos_traj_controller"^^xsd:string ;
skiros:DiscreteReasoner "AauSpatialReasoner"^^xsd:string ;
skiros:FrameId "scalable:Ur5−2"^^xsd:string ;
skiros:LinkedToFrameId "ur5e_base_link"^^xsd:string ;
skiros:MotionExe "/scaled_pos_traj_controller/follow_joint_trajectory"^^xsd:

string ;
skiros:MoveItGroup "manipulator"^^xsd:string ;
skiros:MoveItReferenceFrame "ur5e_base_link"^^xsd:string ;
skiros:MoveItTCPLink "ur5e_tcp_link"^^xsd:string ;
skiros:hasA scalable:WsgGripper−3 .

such as Robot Operating System (ROS) interfaces of a robot
and the relevant aspects of a motion planning configuration.
In addition there are elements needed for reasoning about
relations such as the attached gripper.

Tasks are executed by the skill manager and there are
two ways to start them: 1) Select and parameterize a skill
manually. For example in the GUI or from an application
programming interface (API) or 2) by providing a planning
goal to the task manager and executing the skill sequence.
Tasks are concrete skill (sequence) instances with a specific
goal. Within a task, the skills can utilize a blackboard to
exchange information with their parameters.

IV. CONTROL AND MOTION GENERATION

A. Behavior Trees and Motion Generators

Behavior Trees (BT) are mathematical models used for
plan representation and execution. They have been shown
to perform reliably in games [32], artificial intelligence and
robotics [33]. A BT is an acyclic graph defined with nodes
and edges defined in a typical parent-child relationship. The
nodes are of two types: 1) control flow and 2) execution.
The control flow nodes are responsible for directing the flow
of the tree and are traditionally classified on the basis of
their operation as: 1) sequence, 2) selector, 3) parallel and
4) decorator [31], [34]. In essence, a BT works by means
of sending a tick signal from the Root node. The signal
then moves through the nodes controlled by the control flow
nodes. The return statements from the execution nodes are
running, success or failure. In order to combine BTs with
task-level planning, [22] proposes extended BTs.

A motion generator (MG) [23] generates an arm motion
using impedance controllers to control the end effector
(EE) in Cartesian space. A MG follows a simple attractor
landscape that uses a virtual spring to attract the EE to the
desired location, whereas virtual dampers allow safe motion
by slowing down the overall motion. In addition, it also

allows for a deviation by superimposing a motion on top
of the original trajectory. For example, in [25] we used a
Cartesian linear trajectory superimposed by an Archimedes
spiral to solve the peg-in-hole task.

A Behavior Tree and Movement Generator (BTMG) com-
bines the strengths of both BT and MG to model robotic
skills. A BTMG is a parameterized representation that allows
us to specify not only the structure of BT but also the
properties of the MG. In essence, the BTMG representation
not only covers the aspects of plan representation and execu-
tion, but also determines the arm motions for the execution
strategies [35].

B. Trajectory Generation

The concept of the MG has been introduced in [23],
which consists of both a trajectory generation method and a
corresponding controller to execute the generated trajectory
on the manipulator. In the following section, we provide a
description of the trajectory generation process adopted for
this project.

In many industrial settings, operations are performed in
a Cartesian task space rather than in the joint space of the
robot. Therefore, we argue that motion references are best
generated and provided in the Cartesian end-effector space.
In this work, we adopt Cartesian linear paths1 to generate
the corresponding trajectories. This is achieved by selecting
appropriate acceleration profiles and setting the maximum
Cartesian translational and rotational velocities. Furthermore,
we offer the option to synchronize motions that have both
translational and rotational components. Specifically, the
trajectory generator takes the new goal pose as input and
outputs end-effector pose references, which are then sent to
the corresponding controller.

Aside from specifying a new goal pose, it is also possible
to overlay additional motions on top of the reference pose.
This capability has been utilized in various studies such
as [36], [24], [25], where an Archimedes spiral is used to
find a hole in an insertion procedure. In this work, we apply
a sine motion to improve the wiping performance of the
robot.

C. Compliant Control

Manipulation tasks that have uncertainties need compliant
control solutions to provide the necessary flexibility. Such
uncertainties can come from either the task itself or inac-
curate knowledge about the placement of objects. Another
source could be the placement of the robot, which becomes
relevant when working with a mobile robot. The robot
systems used in the case study provide different interfaces for
control commands and therefore also have different solutions
for compliant control.

Cartesian Impedance Control: Robot systems such as the
KUKA iiwa or the Franka Emika Robot offer an interface
to send commanded torques for each of the joints. This can
be used to perform Cartesian impedance control [37] which
allows compliant control of the end effector in task space.

1https://github.com/matthias-mayr/cartesian_trajectory_generator



Torque-controlled robots are typically gravity compen-
sated. The rigid-body dynamics of such a system in the joint
space is described as q ∈ Rn :

M(q)q̈ + C(q, q̇)q̇ = τc + τ ext (1)

where M(q) ∈ Rn×n is the generalized inertia matrix,
C(q, q̇) ∈ Rn×n captures the effects of Coriolis and cen-
tripetal forces, τc ∈ Rn represents the input torques, and
τ ext ∈ Rn represents the external torques, with n being the
number of joints of the robot.

Moreover, the torque signal commanded by this controller
to the robot, τc in Equation (1), is composed of the super-
position of three joint-torque signals:

τc = τ cac + τnsc + τ extc (2)

where
τ cac is the torque commanded to achieve a Cartesian

impedance behavior with respect to a Cartesian pose ref-
erence in the m-dimensional task space, ξD ∈ Rm, in the
frame of the end effector of the robot:

τ cac = JT(q) [−Kca∆ξ −DcaJ(q)q̇] (3)

with J(q) ∈ Rm×n being the Jacobian relative to the end-
effector (task) frame of the robot, and Kca ∈ Rm×m and
Dca ∈ Rm×m being the virtual Cartesian stiffness and
damping matrices, respectively.

τnsc is the torque commanded to achieve a joint impedance
behavior with respect to a desired configuration and projected
in the null-space of the robot’s Jacobian, to not affect the
Cartesian motion of the robot’s end effector.

τ extc is the torque commanded to achieve the desired
external force command in the frame of the end effector
of the robot, F ext

c :

τ extc = JT(q)F ext
c (4)

In this work we utilize τ extc and τ cac in combination with
changing stiffnesses by passing configurations through skill
primitives.

Cartesian Compliance Control: In contrast to the KUKA
iiwa, the Universal Robots UR5e like many other industrial
manipulators does not support direct torque control. This
means that a compliant control solution is needed that
can work with joint position or joint velocity commands.
Recently, such a method was introduced through forward
dynamics compliance control [38]. It combines admittance,
impedance and force control into one control strategy. The
control loop is closed only through a force-torque sensor,
which makes it system independent. Internally it utilizes
a forward dynamics simulation of a virtual model of the
robot system to map Cartesian inputs to joint commands.
For further details, we refer the interested reader to [38]
and [39]. Like the impedance controller that was introduced
in the previous section, this controller solution also allows for
the runtime modification of applied external forces, reference
poses and stiffness changes. We utilize these capabilities
when modeling behaviors with BTs.

Fig. 4. The iiwa wiping task on a table. The different hardware needs a
different controller setup and gripper skills.

V. CASE STUDY: WIPING TASK

We demonstrate the usage of skills in different tasks and
on different robot system with the example of a wiping task.

A. Challenges

The task at hand and the robot systems selected for
this study present a range of intriguing challenges. Firstly,
the task instances involve surfaces with different properties,
namely a smooth whiteboard and a rough industrial table.
The whiteboard is mounted to a wall, whereas the table
surface is parallel to the floor. Moreover, we assume that
the precise distance between the robot and the surface may
not be known in advance. The robot systems are equipped
with different grippers, each of which has its own communi-
cation interface. Finally, the robots have distinct kinematics,
vendor-supplied programming solutions, and control inter-
faces. In this context, we demonstrate how a skill that utilizes
knowledge representation, planning and the automatic skill
implementation selection can be executed in different context
on different robot systems.

B. Implementation

The implementation of such a skill incorporates several
key aspects that are discussed in [23]. Specifically, we utilize
a motion generator (MG) that comprises of both trajectory
generation (Sec.IV-B) and a controller (Sec.IV-C).

As inputs for the skill, only the robot arm and a sur-
face to clean need to be selected among the available
instances in the WM. All other necessary data, such as
robot-specific properties (e.g., the controller to use) and the
surface properties (e.g. the dimensions, force to apply) are
automatically fetched from the WM as part of the knowl-
edge integration. Apart from the parameters, this skill also
contains the necessary pre- and postconditions for planning.
The integrated plannerin SkiROS can receive a goal such
as (skiros:clean scalable:Workstation-1186
scalable:Cell-12). For instance, one precondition of
the skill is that the tool must already be held in the gripper.
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This is leveraged in task-level planning, where the robot
is required to pick up the tool first. In case of a mobile
system, this may entail driving to a different location. The
postcondition of the task is that the surface is cleaned.

To begin the wiping process, the end effector is moved
to the corner of the surface to be cleaned. Once there, it
disables the stiffness of the compliant controller along the
normal of the surface and applies a predetermined force. In
our experiments, 8N are specified for surfaces that are easier
to clean, such as the whiteboard, and 18N for the table. The
robot then applies an overlay motion, in this case a circular
motion, while performing the wiping action. From there the
skill executes laps by moving the robot’s end-effector to the
right, then down, and finally left until the entire surface is
covered. Finally, upon completion of the task, the robot stops
the force application, increases the stiffness along the surface
normal, and moves the end-effector away from the surface.

C. Experiments and Discussion

We conducted the experiments using two different robot
systems. The first system is a mobile platform that has a
UR5e 6 degree-of-freedom robot arm with a Schunk two
finger gripper. The second system is a 7 degree-of-freedom
KUKA iiwa with a Robotiq 3-finger gripper. We selected two
different surfaces for the cleaning task, each with different
orientations and surface properties.

The resulting reference path and the actual path for the
UR5e are shown in Fig. 5a). The implementation spends
more time in the left and right extremes since the sub-
trajectory ends there and it switches to new lane. This can
be adressed by blending between trajectories. During the
execution we also noticed subtle vibrations, especially when
the arm was stretched out.

In our second experiment we used the KUKA iiwa robot
system to wipe the surface of a table. As in the previous
experiment, the important attributes were represented in the
WM, and the skill could be started by simply selecting
the surface and the robot arm. The reference path and the
actual path for the robot end effector during the task is

shown in Figure 5b). The controller is very stable and
there are no vibrations. We observed that the eraser was
occasionally lifted slightly during the wiping process. This
could potentially be addressed by increasing the rotational
stiffness or applying more pressure to the surface.

In both tasks, the respective robot systems were able to
completely clean the surface with the proposed implementa-
tion. In principle, the surface can also be cleaned using only
the Cartesian linear motion. However, as intuitively expected,
the addition of an additional overlay motion improves the
cleaning performance in practice.

VI. CONCLUSIONS AND FUTURE WORK

The transition towards Industry 4.0 brings challenges
such as small batch sizes, constantly changing tasks and
environments. Together with the transition towards human-
robot colaboration and handling contact-rich tasks, it creates
the need for platforms that can address these challenges.

In this paper we presented a complete architecture that
allows to transfer skills between different robot systems.
We explain the necessary prerequisites and knowledge repre-
sentation. We demonstrated this by successfully performing
contact-rich wiping tasks with a KUKA iiwa and a Universal
Robots UR5e. All essential building blocks including the
skill-based system and the controllers are available as open-
source software and the results are expected to scale to other
hardware and tasks as well.

While the wiping performance was sufficient in our tasks,
it can potentially be increased by learning a good combina-
tion of path velocities and applied force. A visual inspection
with a camera is a next inuitive step. We are also looking
into an evaluation with other platforms such as the Franka
Emika Robot (Panda).
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