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Abstract— The one of the significant challenges faced by au-
tonomous robotic ultrasound systems is acquiring high-quality
images across different patients. The proper orientation of the
robotized probe plays a crucial role in governing the quality
of ultrasound images. To address this challenge, we propose a
sample-efficient method to automatically adjust the orientation
of the ultrasound probe normal to the point of contact on the
scanning surface, thereby improving the acoustic coupling of the
probe and resulting image quality. Our method utilizes Bayesian
Optimization (BO) based search on the scanning surface to
efficiently search for the normalized probe orientation. We
formulate a novel objective function for BO that leverages
the contact force measurements and underlying mechanics to
identify the normal. We further incorporate a regularization
scheme in BO to handle the noisy objective function. The
performance of the proposed strategy has been assessed through
experiments on urinary bladder phantoms. These phantoms
included planar, tilted, and rough surfaces, and were examined
using both linear and convex probes with varying search space
limits. Further, simulation-based studies have been carried out
using 3D human mesh models. The results demonstrate that the
mean (±SD) absolute angular error averaged over all phantoms
and 3D models is 2.4 ± 0.7◦ and 2.1 ± 1.3◦, respectively.

I. INTRODUCTION

Ultrasound imaging, also known as sonography, is a
widely used medical imaging technique that can provide
valuable information about the structure and function of
organs and tissues. It is used in a wide range of diagnostic
and therapeutic procedures [1]. Ultrasound imaging has
several advantages over other imaging techniques such as
X-rays or CT scans. For example, it does not use ionizing
radiation, making it safer for patients and clinicians. It is also
non-invasive and relatively inexpensive compared to other
imaging techniques. While ultrasound imaging is a valuable
tool in modern medicine, there are also some drawbacks
to this technique. The quality of the ultrasound images
obtained is highly dependent on the skill and experience of
the operator [2]. This dependence on the operator’s skill and
expertise can lead to variability in image quality, which can
affect the accuracy of the diagnosis. Additionally, access to
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Fig. 1: The two rotations carried out to acquire urinary
bladder ultrasound images. (a) describe the ideal probe orien-
tation normal to the point of contact on phantom; (b) and (c)
describe the non-ideal probe orientation during out-plane an
in-plane rotation of probe. The ultrasound images acquired in
these cases result in artifacts like edge or structure shadowing
due to inappropriate acoustic coupling.

expert sonographers is limited in rural areas, leading to long
wait times for patients needing ultrasound imaging. Patients
who need these services may have to travel to urban areas,
which can result in increased travel costs and time [3], [4].

To address the limited availability of sonographers in rural
areas, several telerobotic or fully autonomous Robotic Ultra-
sound System (RUS) have been introduced in recent years
[5]–[9]. The objective of RUS is to acquire the image with
best quality, so that it is easy to diagnose and won’t require
a trained/skilled radiologist. By using RUS, it is possible to
maneuver ultrasound probe with a consistent, predetermined
and precise contact force, position and orientation. These are
critical parameters that greatly impact the quality of acquired
ultrasound imaging [10].

In particular, maintaining an appropriate probe orientation
is crucial for ensuring the optimal acoustic coupling between
the probe and physiologically different human bodies. Fig.
1 demonstrates the impact of ideal and non-ideal probe
orientation on ultrasound image quality. When the angle
between the ultrasound beam and phantom surface normal is
zero, more echoes are reflected back and received, resulting
in good image quality. However, when the angle is non-
zero, resulting ultrasound images present artifacts. Several
studies have analyzed the effect of probe orientation on
image quality [11], [12], indicating that higher quality results
can be achieved when the center-line of the probe is aligned
with the normal direction of the scanning surface. In ortho-
pedic applications, this phenomenon is even more significant
because the intensity reflection coefficient for most soft
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tissue-to-bone interfaces is approximately 25%, compared to
less than 0.01% for most soft tissue-to-soft tissue interfaces
[12]. Therefore, it seems reasonable to orient the ultrasound
probe along the normal direction of the scanning surface for
several ultrasound procedures [13]–[15]. However, acquiring
the normalization of robotized probes remains a challenging
task and continues to be of interest to researchers.

A. Related Work on Robotized Probe Normalization

Several earlier studies have used 3D patient point cloud
data to achieve probe normalization in robotic ultrasound
systems [14]–[20]. Huang et al. [14] approximated the nor-
mal direction of the triangle formed by three neighboring
points around the intended scanning path using a depth
camera image prior to ultrasound scanning. However, the
surface acquired before the probe makes contact with the
tissue may not adjust to deformations caused by contact.
Further, the method’s precision is restricted by hand-eye
calibration and potential obstructions between the camera
and the scanned tissue. Chatelain et al. [16] proposed a visual
servoing method for in-plane orientation adjustment of the
probe for 3D ultrasound imaging. However, the method fails
to optimize the out-plane orientation, which is controlled
using the teleportation of a robotic arm. Jiang et al. [21]
presented a method for optimizing the in-plane orientation
of robotic ultrasound probe based on confidence map-based
[22], [23] assessment of ultrasound image quality. For out-
plane orientation, they further used the force measurements
to align central axis of probe with the normal to anatomical
surface. However the method requires exploring the full fan
motion of the probe at each contact point, which would
compromise the scanning speed. Another work by Jiang et
al. [18] proposes a mechanical model, which used only force
sensor data to estimate the surface normal direction. This
method has been tested on phantom and in-vivo tissues.
However, the results show that the model fails to accurately
identify the normal when rotation limits are close to goal
orientation or asymmetrical, which violates the underlying
assumptions of their mechanical model. The recent work by
Jiang et al. [19] extended their work to probe normalization
in the presence of patient movements. They developed a mo-
tion monitoring module to recompute the motion trajectory in
case of patient movement. For probe orientation correction,
they used the confidence-maps of ultrasound images to
differentiate between the well-connected part and the non-
contacting part.

There have also been studies that developed hardware
systems to achieve probe normalization in robotic ultrasound
systems. Ma et al. [20] proposed a robotic ultrasound imag-
ing system that uses laser distance sensors on the end-effector
of robotic arm to achieve normal positioning of the probe.
However, the end-effector may fail to identify the normal on
highly complex surfaces due to larger outer-case for laser
sensor mounting. Moreover, the laser sensor performance
might get affected due to different lighting conditions [24].
Tsumura et al. [25], [26] introduced a gantry-style robot
with a passive 2-DOF end-effector that ensures the correct

positioning of the ultrasound probe in real-time for both
obstetric and lung examinations. This end-effector permits
swift angle adjustments, as there are no delays in mechanical
rotational motion. Nonetheless, the passive mechanism of
this device necessitates a broad tissue contact area, limiting
its flexibility.

B. Contributions

Despite several previous attempts to solve the challenges
in robotized probe normalization, the previous methods
have the following two major drawbacks: (i) they rely
on computational-intensive algorithms to extract the skin
surface from the depth camera, and (ii) they require time-
consuming exploration phase with a large number of steps
for identifying the normal direction. In this work, we propose
an autonomous RUS by addressing the important challenge
of identifying the normal direction with respect to the patient
body. We propose a sample-efficient machine-learning-based
optimization algorithm, Bayesian Optimization (BO), to
search for normal direction by just using the force sensor data
without requiring the 3D patient information and thoroughly
exploring the rotations. Earlier, BO has been employed in
various safety-critical robotic medical procedures, including
but not limited to autonomous robotic palpation [27], semi-
autonomous surgical robot [28], tuning of hip exoskeletons’
controller [29], and Autonomous-RUS [30]. Goel et al. [30]
used BO to search for high image quality region, where
only 2D probe position is considered with compliant control.
However, orientation adjustment of probe is not considered,
which is essential to conduct the clinical ultrasound proce-
dure for patients with different physiological conditions. The
key contribution of our work are as follows:

1) We propose a sample-efficient Bayesian Optimization
(BO)-based formalism that will identify the necessary
orientation adjustment required for the robotized ultra-
sound probe to align the probe in a normal direction
to the scanning surface.

2) We propose a objective function for BO that leverages
the force sensor data and underlying mechanics to
guide the normal identification process. Further, it
handles the noise in objective function measurements
by incorporating a regularization term.

3) We validated the proposed method on urinary bladder
phantom with planar, tilted and rough scanning sur-
faces for normalizing both linear and convex probe.
Further, we evaluated its robustness by applying it for
3D mesh human models, which simulate the actual
physiology of humans.

II. METHODOLOGY

Figure 2 provides an overview of the proposed method-
ology, which aims to identify the normal direction with
respect to the contact surface during robotic ultrasound pro-
cedures. To achieve this, the proposed methodology employs
Bayesian Optimization (BO), which uses only force sensor
measurements from a wrist-mounted force sensor. An objec-
tive function for BO has been formulated using underlying
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Fig. 2: Overview of the BO framework for identifying the normal of the robotized ultrasound probe to scanning region.

contact mechanics to guide the identification process. BO
computes the probabilistic estimate of the unknown objective
function in the scanning region of the human body and uses
an acquisition function to select the next best pose to evaluate
based on the current belief about the function. Algorithm 1
provides a detailed flowchart of the proposed methodology.

A. Bayesian Optimization formulation

If A represents the region of scanning on human body,
then the objective function of BO can be formulated as:

max
p∈A
F(f(p)) (1)

where f(p) = [fx, fy, fz] represents the probe forces at
pose p along the three axis x, y and z. F represents the
unknown objective function to be maximized during the
BO search. Note that the probe pose represents a vector
consisting of probe position (x) and orientation (o) as
p = (x,o). The estimator used in BO is Gaussian Process
(GP) model, which defines an unknown function F by the
mean function µ(·) and covariance or kernel function κ(·, ·).
If a set of unknown function value estimates is given by
F̄ = [F(f(p1), · · · ,F(f(pn)] at set of probe poses, given
by p̄ = [p1, · · · ,pn], then the GP regression can predict the
unknown function value estimate at new probe pose p† and
is given by

P(F(f(p†)|p†, p̄, F̄) = N (kK−1F̄ ,κ(p†,p†)−kK−1kT )
(2)

where,
k =

[
κ(p∗,p1) · · · κ(p∗,pn)

]
K =

κ(p1,p1) · · · κ(p1,pn)
...

. . .
...

κ(pn,p1) · · · κ(pn,pn)


In the above formulation, the kernel matrix κ has been
formulated using the sum of radial basis function and white
kernel function as:

κ(pi,pj) = σr exp

(−||pi − pj ||2

2l2

)
+ σwIn (3)

where σr, σw and l is the overall variance, noise variance
and length-scale, respectively, representing the BO hyper-
parameters θ. To optimize the performance of a GP model
with the kernel in eq. (3), the hyper-parameters represented
by θ need to be estimated. This is done by maximizing
the log marginal likelihood using a Limited memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) solver, which is

an algorithm used for numerical optimization.

θ∗ = argmax
θ

log
∏
N (F(f(pi))|µθ(pi),K) (4)

Algorithm 1: Bayesian Optimization for Robotized
Probe Normalization

Input: Scanning Region A, max. iterations Nmax;
Initialize p̄ = {}, F̄ = {};
for i = 1, ..., Nmax do

pi ← argmaxp∈AEI(p);
if termination criteria reached then

stop;
else

Probe at pi, compute objective function Fi;
Set p̄← p̄ ∪ {pi}, F̄ ← F̄ ∪ {Fi};
θ ← argmax log

∏
N (F(f(pi))|µθ(pi),K);

Re-estimate GP;
return Top probe pose with normal direction to A;

B. Objective function of BO

When a constant force fd is exerted along the probe axis,
it generates a reaction force fz along the normal of the scan-
ning region to balance the applied force fd. Consequently,
the reaction forces in two mutually perpendicular directions
are generated in response to the change in the relative
orientation of probe and unknown normal. The concept
of reaction force is well-defined in theoretical mechanics,
which suggests that if an external force (fd) is exerted in
the direction perpendicular to normal of contact surface,
then the corresponding reaction forces in the remaining two
orthogonal directions must be zero. Based on this principle,
we formulated the objective function of BO (F) to maximize
the reaction force fz and minimize the reaction forces along
the other two axis. The mathematical form of F is given as:

F =
fz

fxfy + λ||f ||2 + ϵ
(5)

where ϵ is a constant term added in the denominator to avoid
the division by zero. λ||f ||2 represents the regularization
term, which penalizes the noise in the force sensor by adding
a positive value to the denominator of the objective function.
The objective function with regularization term can help to
stabilize the objective function values and reduce its noisy
nature. The regularization term penalizes the reactive force
vector, which will prevent the function from becoming too
sensitive to small fluctuations in the input, usually because of
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Fig. 3: Ultrasound probe generates reactive forces [fx, fy, fz]
when a desired force fd is applied along its axis at a specific
orientation to the scanning surface

noisy sensor data. This term would be particularly important
in applications where the sensor data in objective function
is susceptible to noise or other sources of variability. The
λ in regularization term is termed as penalty and is usually
a positive constant value. The ||f ||2 denotes the L2-norm
(also known as euclidean norm) of the reactive force vector
f , which is given by:

||f ||2 =
√
f2
x + f2

y + f2
z (6)

The choice of λ value is critical in determining the strength
of the regularization term. A small value of λ would result
in a weak regularization and high noise in objective function
measurements, while a large value of λ will result in low
noise, but a large number of samples will be required for
converging to small errors. In the current approach, we have
chosen λ using the iterative selection method, which involves
solving the optimization problem for a range of values of λ
and selecting the value as per performance requirement.

C. Acquisition function of BO

To determine the next pose of a probe to sample from
during BO search, an acquisition function is used. Given
the stochastic nature of the unknown function estimates, we
used Expected Improvement (EI) acquisition function for
optimizing the next probe pose. The EI function expresses
the expected gain in performance if the next probe pose
is selected based on the highest predicted value. The im-
provement is evaluated based on the difference between the
highest predicted value and the current best value obtained
so far. This allows the acquisition function to balance the
exploration of new regions with the exploitation of the
current best results.

The EI function takes into account the posterior mean
µF̄ (p) and variance σ2

F̄ (p) of the GP model to evaluate the
potential improvement of exploring with a given pose. The
EI function can be written as a combination of the cumulative
distribution function (CDF) and probability density function
(PDF) of the Gaussian distribution. Specifically, it is given
by the formula:

EI(p) =

{
(µF̄ (p)−F+ − ξ)Φ(Z) + σ2

F̄ (p)ϕ(Z) if σ2
F̄ (p) > 0

0 if σ2
F̄ (p) = 0

(7)

where Φ and ϕ are the CDF and PDF of the standard
normal distribution, respectively. Z is a standard normal
variable that is calculated based on the posterior mean and
variance of the GP model. F+ is the best function value
found so far, and ξ is a parameter that controls the trade-off
between exploration and exploitation.

III. RESULTS

A. Implementation details

We validated the proposed framework in both real and
simulated environment. The real environment consists of a
Sawyer 7-DOF robotic arm (Rethink Robotics, Germany)
with an ultrasound probe attached to its end-effector using
a customized gripper, as shown in Fig. 4. This arm has a
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Fig. 4: Experimental setup of RUS with urinary bladder
phantom having three different scanning surfaces.

wrist-mounted 6-axis force sensor, which is used for real-
time contact force measurement during the scanning. The
two ultrasound probes are used, one is Linear L12-5N40-M3
and the other is a Convex MC10-5R10S-3 probe, which is
connected to a Telemed ultrasound machine (Telemed Med-
ical Systems, Italy). The scanning is conducted on urinary
bladder phantom (YourDesignMedical, USA). The phantom
surface is flat, however it has been modified to represent
tilted and rough surface to evaluate the robustness of the
framework for different human physiological conditions. The
rough surface has been made by using a Ballistics gel (Clear
Ballistics, USA) layer.

H0

H2

H1

Fig. 5: Simulation environment of robotic ultrasound system
with 3D human mesh models denoted as H0, H1 and H2.

For simulation experiments, we built a physics-based
simulation framework using the open-source Pybullet physics



TABLE I: Absolute angular error between ground truth and predicted values of normal for out-plane and in-plane rotation,
respectively, of linear probe for different search limits [min, max]. Each value represents the Mean±S.D. for 5 runs of BO

Phantom
surface

Out-plane rotation (deg.) In-plane rotation (deg.) Avg.
[−5, 5] [−10, 5] [−5, 10] [−10,−10] [−15, 5] [−5, 15] [−15, 15] [−5, 5] [−10, 5] [−5, 10] [−10,−10] [−15, 5] [−5, 15] [−15, 15]

Planar 1.25 1.57 2.77 3.21 3.36 2.93 3.37 1.11 1.65 2.32 1.93 2.13 2.29 3.15 2.36
±0.4 ±0.8 ±1.1 ±0.3 ±1.3 ±0.8 ±1.1 ±0.4 ±0.2 ±0.5 ±1.2 ±0.8 ±1.2 ±0.5 ±0.4

Tilted 1.45 1.72 2.19 2.20 2.75 3.5 3.80 1.23 1.82 2.21 2.76 3.23 3.90 4.61 2.67
±0.2 ±0.3 ±0.7 ±0.4 ±0.6 ±0.9 ±1.7 ±0.4 ±1.1 ±0.7 ±0.3 ±0.9 ±0.7 ±0.1 ±0.6

Rough 1.37 2.21 2.38 2.56 2.22 2.71 3.32 1.61 1.72 1.13 2.11 2.05 2.72 3.12 2.23
±0.3 ±1.1 ±1.4 ±0.5 ±1.8 ±0.9 ±1.7 ±0.4 ±1.5 ±0.9 ±1.3 ±0.9 ±1.2 ±0.7 ±1.0

Avg. 1.35 1.83 2.44 2.65 2.77 3.04 3.49 1.31 1.73 1.88 2.26 2.47 2.97 3.63 2.44
±0.3 ±0.7 ±1.1 ±0.4 ±1.2 ±0.86 ±1.5 ±0.4 ±1.2 ±0.7 ±0.93 ±0.9 ±0.9 ±0.7 ±0.7

engine [31], as shown in Fig. 5. Further, we imported 3D
mesh models of the human body using SMPL-X [32], which
represent the actual physiology of real humans. These models
were developed for capturing human posture using RGB and
depth images [32]. Our simulation platform will help us to do
thousands of experiments safely, which would be difficult to
conduct with real-world robotic system and human subjects.
For both simulation and real experiments, we used the value
of ϵ = 1.0, ξ = 0.45 and λ = 0.3 for BO. The robot is
under hybrid-position control [5], where z-axis of robot is
under force control.

B. Validation metrics

To verify the accuracy of the obtained normal direction
vector in the simulated environment, we utilized a mesh of
the body being scanned. We compared the predicted normal
to the true normal of the scanning region obtained from the
mesh geometry. The mesh of the body returns the triangles
(faces) and the coordinates of the connecting points that con-
nect the triangles. We used a ray-mesh intersection method to
determine the intersection between the probe point and mesh.
This method utilizes a Bounding Volume Hierarchy (BVH)
tree to quickly eliminate parts of the mesh that the ray does
not intersect with. After identifying potential intersecting
triangles, the method performs more precise intersection
tests using Gilbert–Johnson–Keerthi (GJK) algorithm. This
is implemented using Trimesh [33] python library. For ex-
periments with real robots, point cloud data has been utilized
to estimate the normal vector. This was accomplished using
the PCL Python library and subsequently corrected based
on known geometry. The true normal vector for planar and
rough phantoms lies along the vertical z-axis in the robot
base frame. Similarly, the normal vector for tilted phantoms
was estimated using a geometric method, as the tilt angle
was known beforehand.

C. Validation on urinary-bladder phantom

To evaluate the algorithm’s robustness for clinical ultra-
sound applications, we conducted a set of BO experiments on
phantoms with flat, tilted, and rough surfaces. We performed
these experiments for seven different limits ([min., max.])
of the search space. Each BO run was initiated with a
probe positioned at the center of the phantom and random
initial orientation. The resulting angular differences between
the estimated normal and the actual normal are presented
in Table I. Each value represents the mean and standard

deviation across five BO runs. In total, we conducted 210
BO runs for results presented in Table I.

From Table I, it can be observed that the average angular
error across all runs is 2.44± 0.7◦, which is lower than the
error reported for human sonographers in [18] as 3.21±1.7◦.
Additionally, in 165 out of 210 runs (i.e., 78.6% of the runs),
the error was found to be less than 3.0◦. It is noteworthy that
the error values remained consistent across different search
space limits for both in-plane and out-plane rotations. When
grouped by rotation direction, the max. average error for out-
plane and in-plane rotation is found to be close to each other
(difference less than 0.5◦). These results indicate that the
rotation direction does not have a significant impact on the
normal identification. However, the maximum error of in-
plane rotation (4.71◦) is less than that of out-plane rotation
(5.5◦). The variation in the optimization performances for in-
plane and out-plane rotations can be attributed to the linear
probe’s structure, for which the length is significantly greater
than the width. Thus, it can be concluded that the in-plane
optimization results are more accurate in comparison to out-
plane optimization. There are a few sub-optimal cases (error
> 3◦) that occurred in fewer than 22.4% of the runs. This
typically occurs when the search space limit is high, which
can be attributed to the decrease in the performance of BO
for larger search spaces. The effect of this error in the normal
identification can be illustrated through Fig. 1. As the rotation
angle moves away from normal (> 3◦) orientation, the image
shows artifacts like edge or structure shadowing.

We conducted additional experiments using a convex
probe for scanning. For curved probe, the significant dif-
ference in the ultrasound image is only observed after 15◦.
Therefore, we tested it for larger search space limits, which
are presented in Table II. We performed 30 BO runs, and the
results showed an average angular difference of 2.31± 0.7◦

across all runs. In 23 out of 30 runs (i.e., 76.7% of runs),
the error was less than 3.0◦. Notably, the convex probe’s
error was even lower than that of the linear probe, which is

TABLE II: Absolute angular error for out-plane and in-
plane rotation of convex probe. Each value represents the
Mean±S.D. for five runs of BO

Phantom
surface

Out-plane rotation (deg.) In-plane rotation (deg.) Avg.
[−15,−15] [−20, 20] [−15,−15] [−20, 20]

Planar 2.11± 0.8 2.45± 0.3 2.01± 0.6 1.85± 1.1 2.11± 0.7
Tilted 1.99± 1.0 2.23± 0.5 2.12± 0.9 2.43± 0.5 2.19± 0.7
Rough 2.33± 1.1 2.89± 0.8 2.45± 0.3 2.80± 0.9 2.62± 0.8

Avg. 2.14± 1.0 2.52± 0.5 2.19± 0.6 2.36± 0.9 2.31 ± 0.7



attributed to the former’s smaller tip, resulting in smoother
force variations.

D. Validation on 3D mesh human models

In order to provide comprehensive validation, the proposed
framework was also evaluated on three 3D human mesh
models in simulation. The absolute angular differences for
the out-plane and in-plane rotations are presented in Fig.
6. The search space limit for both out-plane and in-plane
experiments was set to [−15, 15], and 10 runs of BO were
conducted for each human model. It was observed that the
average error for H0 and H1 was less than 3.0◦, indicating
the robustness of the method for complex human physiology.
The average error for H3 was relatively high, which can
be attributed to the high irregularity of the body surface.
Across all 60 BO runs (in-plane and out-plane), more than
75% of the runs reported an error less than 3.0◦. It is
important to note that simulation study has been limited
to small contact point on the mesh bodies due to their
rigid surfaces. Despite this limitation, it is noteworthy that
simulation studies offer a reliable means of verifying the
proposed approach for determining the normal direction of
the probe while interacting with different 3D human models.
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Fig. 6: Absolute angular error between ground truth normal
and estimated normal for 3D mesh models of human

E. Analysis of BO objective function

The proposed framework incorporates a regularisation
term in the objective function of BO (eq. 5). Hence, we
conducted an analysis to examine the effect of this term
by varying the penalty parameter, λ. The outcomes of this
analysis are presented in Table III, which are generated using
linear probe for scanning different phantom surfaces within
the search space of [−15, 15]. It is apparent from the results
that the absence of a regularization term (i.e., λ = 0.0)
results in high error rates (> 3.7◦). However, the addition of
the regularization term results in a decrease in error rates.
Although further decrease in error rates can be achieved
with larger values of λ, more samples will be required to
converge to the low error rates. This is because BO will need
to sample more points to attain the global maxima among the
highly correlated function maps. Although determining the
appropriate value of λ requires extensive experimentation,
it significantly affects the performance of the proposed
framework and plays a key role in enhancing the accuracy
of normal identification.

TABLE III: Performance of BO for different regularization
in the objective function

Phantom λ Out-plane rotation In-plane rotation Sampled points

Planar

0.0 3.71± 0.7 4.85± 0.5 50
0.3 3.37± 1.1 3.15± 0.5 100
0.5 1.95± 0.3 2.06± 0.7 170
10 1.21± 0.2 1.54± 0.3 250

Tilted

0.0 5.14± 1.1 4.76± 0.9 57
0.3 3.81± 1.7 4.61± 0.1 95
0.5 2.34± 0.4 2.17± 0.7 182
10 1.43± 0.2 1.21± 0.3 271

Rough

0.0 4.13± 0.5 3.67± 0.6 63
0.3 3.32± 1.7 3.12± 0.7 121
0.5 2.05± 0.2 1.93± 0.6 168
10 1.12± 0.3 1.32± 0.2 263

IV. CONCLUSION

In this paper, we propose a novel Bayesian Optimization
(BO) based method for determining the normal direction
of the probe to the scanning region during robotic ultra-
sound procedures, considering both in-plane and out-plane
rotations of the robotized probe. Our approach introduces a
novel objective function for BO that leverages force sensor
measurements and the underlying mechanics of contact to
guide the identification process. Notably, this method offers
significant advantages as it does not rely on a 3D point
cloud of the patient’s body and extensive exploration for
finding normal. To evaluate its performance, we conducted
experiments using urinary bladder phantoms and 3D mesh
models of humans, employing both linear and convex probes.

However, it is important to note that this study represents
a preliminary step towards achieving an efficient estimation
of the probe’s normal orientation, and further investigation
is required. One major limitation of the study is the absence
of ultrasound imaging feedback for normal identification.
Our future work will explore the joint optimization of force
and ultrasound image quality [34] using multi-objective
Bayesian optimization. Another limitation of the work is
the adjustment of probe orientation at a single point. In
the future, we will explore the normalization of the probe
during continuous scanning. Furthermore, we aim to extend
our framework to optimize varying probe orientations and
desired forces, thereby increasing its clinical applicability
for scanning complex physiology and different anatomical
structures under skin, bones, or muscles. To achieve this,
we will explore the integration of our method with the RUS
framework presented in our previous works [35]–[37], incor-
porating the geometrical information of the anatomy being
scanned. To further enhance the sample efficiency of the
optimization process, we will explore leveraging the domain
expertise in BO. For instance, a potential solution involves
using a prior in BO as suggested in [37], [38], which can
be modeled using expert’s demonstrations. Finally, in order
to validate the proposed framework for clinical procedures,
it will be necessary to conduct assessments on humans. In
future, we intend to conduct experiments on human subjects
using our robotic ultrasound system, proposed in our earlier
works [5], [39]. These experiments will provide insights
into the clinical applicability of our method, establishing its
effectiveness in real-world medical settings.
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