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Bi-Level Optimization Augmented with Conditional Variational
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Abstract— Autonomous driving has a natural bi-level struc-
ture. The goal of the upper behavioural layer is to provide
appropriate lane change, speeding up, and braking decisions
to optimize a given driving task. However, this layer can
only indirectly influence the driving efficiency through the
lower-level trajectory planner, which takes in the behavioural
inputs to produce motion commands. Existing sampling-based
approaches do not fully exploit the strong coupling between
the behavioural and planning layer. On the other hand, end-
to-end Reinforcement Learning (RL) can learn a behavioural
layer while incorporating feedback from the lower-level planner.
However, purely data-driven approaches often fail in safety
metrics in unseen environments. This paper presents a novel
alternative; a parameterized bi-level optimization that jointly
computes the optimal behavioural decisions and the resulting
downstream trajectory. Our approach runs in real-time using
a custom GPU-accelerated batch optimizer, and a Conditional
Variational Autoencoder learnt warm-start strategy. Extensive
simulations show that our approach outperforms state-of-the-
art model predictive control and RL approaches in terms of
collision rate while being competitive in driving efficiency.

I. INTRODUCTION

Motion planning for autonomous driving can be divided
into two hierarchical components. At the top level, the
behavioural layer computes decisions such as lane change,
speeding up and braking based on the traffic scenario and
the driving task. The behavioural inputs can be conveniently
parameterized as set-points for longitudinal velocity, lateral
offsets from the centre line, goal positions, etc. The advan-
tage of such representation is that it naturally integrates with
the lower-level optimal trajectory planner [1], [2], [3], [4] [5],
[6]. The behavioural layer can be critical for driving in dense
traffic as it can guide the lower-level planner into favourable
state-space regions, much in the same way a collision-free
global plan can make the task of the local planner easier.

Existing Gaps: The aim of the behavioural layer is to
come up with correct lane change, acceleration and braking
decisions to optimize a given driving task. However, it
can only indirectly affect the driving efficiency through
the lower-level trajectory planner. Clearly, there is strong
inter-dependency between the two layers. However, existing
trajectory sampling approaches [4] [5] do not fully exploit
this inter-dependency (see Fig. [[(a) and Section [[V). For
example, these works have no mechanism for modifying the
behavioural inputs based on how the associated lower-level
trajectory performs on the given driving task. Reinforcement
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Fig. 1. Fig.(a): The solid blocks represent the components of the pipeline
presented in works like [4] [5], while the blocks with dotted boundaries
represent our contribution. Existing works draw behavioural inputs p; from
a distribution and solve a simple QP trajectory planner for all those mputs.
However, there is no mechanism to modify the behavioural input sampling
based on the performance of the lower-level planner on the driving task. We
address this issue by adding a gradient estimation block and a projection
operator to aid constraint satisfaction. Fig.(b) Our bi-level optimizer ensures
safe driving in dense and potentially rash traffic.

learning (RL) techniques address this drawback by learning
the behavioural layer. The rewards from the environment act
as a feedback to modify the behavioural inputs while taking
into account the effect of the lower-level planner [1], [2], [3],
[4]. Though effective, especially in sparse traffic scenarios,
the purely data-driven approaches typically struggle with
safety metrics in unseen environments.

In this paper, we present a novel approach that estimates
the direction in which the behavioural inputs need to be
perturbed in order to improve the optimality of the lower-
level trajectory with respect to the driving task (Fig[I] (a)).
Our core contributions are:

« We propose a bi-level optimization where the upper-
level variables represent the behavioural inputs while
that at the lower level represent the associated motion
plans.

e We combine Quadratic Programming (QP) with
gradient-free optimization for solving the bi-level prob-
lem. Our approach avoids the common pitfalls of the
Gradient descent-based approaches for bi-level opti-
mization (see Section [[V).

e We train a Conditional Variational Autoencoder with
a differentiable optimization layer-based network archi-
tecture for warm-starting our bi-level optimizer.

e Our approach outperforms state-of-the-art Model Pre-
dictive Control (MPC) and RL-based approaches in
safety metrics in dense traffic.
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Fig. 2. Fig.(a),(b): A common parametrization for behavioural inputs is in the form of set-points for lateral offset (Fig. (a) (top)) [1], [2]. It can be

used to induce lane-change manoeuvres in the ego vehicle. As shown in Fig. (a)(bottom), for long horizon planning, we can split the trajectory segments
into multiple parts and assign a lateral offset set-point to each of them. Fig.(c) shows different trajectories generated by sampling lateral offsets y4 ,,, and
forward velocity vy, ., set-points from a Gaussian distribution and using them in (3a)-(3d). Fig.(d) showcases our custom batch optimizer that can solve
the lower-level trajectory planning for all the sampled behavioural inputs in parallel. The figure represents the distribution of trajectories obtained in a

cluttered environment, with a blue rectangle representing static parked vehicles.

II. MATHEMATICAL PRELIMINARIES

Symbols and Notation: Normal font lower-case letters will
represent scalars, and bold font variants will represent vec-
tors. The upper-case bold font letters will represent matrices.
The superscript 7" will denote the transpose of a matrix or a
vector.

A. Trajectory Parametrization

Using the differential flatness of the bi-cycle car model,
we aim to directly plan in the positional space (z(t),y(t))
of the ego-vehicle. Thus, we parametrize the position-level
trajectory of the ego-vehicle in terms of polynomials in the
following form:

[az(tl), . ,x(tm)] = We., [y(tl), e ,y(tm)}

where, W is a matrix formed with time-dependent polyno-
mial basis functions and ¢, ¢, are the coefficients of the
polynomial. We can also express the derivatives in terms of
W, W.

=We, (D)

B. Behavioral Input Parametrization

We consider the following list of behavioural inputs in our
formulation.

« The planning horizon is split into m parts and we assign
a desired lateral offset set-point (yq4,,,) to each of these
segments (see Fig[2).Similarly, we assign longitudinal
velocity set-points (vq,,) to each of the m segments
o Lastly, works like [7], [8] also include goal positions
along longitudinal (zy) and lateral directions (yy) as
behavioural inputs.
We stack all the behavioural inputs into one parameter vector:

P=[Yd1,Yd2 > 0d,1,V22, - Vd,m, Tf,Ys] - @)

Note that not all elements of p need to be used simulta-
neously in the lower-level trajectory planner. For example,
[1], [2] use a single set-point for lateral offset and desired
velocity as behavioural inputs. Our simulation results shown
in Section [V]used four set-points for lateral offset and desired
velocities to construct p. Nevertheless, @) represents all
the behavioural parameterization that can be accommodated
within our bi-level optimizer discussed in the next section.

C. Lower-Level Trajectory Planning

The lower-level trajectory optimization is formulated in the
Frenet-frame: longitudinal (z(¢)) and lateral (y(¢)) motions
of the ego-vehicle occur along and orthogonal to the refer-
ence centre line, respectively.

mchs ) + cr(@(t), y(t) + co(z(t), y(£)  (3a)
(x(to), y(to), &(to), ¥(to), #(t0), i (to)) = bo.  (3b)
(x(ty),y(ty),v(ts)) = (x5,y5,0). (o)

g;((t),y()) < 0,¥j,t  (3d)

es(z(t),y() = (E(1)* +4(t)®  (“a)

a(z(t),y(t) = i§(t) — kp(y(t) — yo) — kuy(t))®  (4b)
co(x(t),y(t)) = (E(t) — kp(2(t) —va)  (40)

The first term (cs(.)) in the cost function (3a) ensures
smoothness in the planned trajectory by penalizing high
accelerations. The last two terms (c,(.),¢,(.)) model the
tracking of lateral offset (ygq,,,) and forward velocity (vq,m,)
set-points respectively and is inspired from works like [1].
For the former, we define a Proportional Derivative (PD) like
tracking with gain (k,, k). For the velocity part, we only use
a proportional term. The vector y,, v4 is formed by repeating
each yq,m,vq,m appropriate times and then vertically stack-
ing them. Equality constraints (3b) ensures that the planned
trajectory satisfies the initial boundary conditions. Thus,
vector by is simply a stacking of initial position, velocity, and
acceleration. The final boundary conditions are represented
through constraints (3c). Inequalities (3d) enforces collision
avoidance, velocity, acceleration, centripetal acceleration,
curvature bounds, and lane boundary constraints. We present
the exact algebraic form of these constraints in Appendix [[V}

I1I.
A. Proposed Bi-Level Optimization

MAIN RESULTS

We formulate combined behavior and trajectory planning
through the following bi-level optimization problem.

minc. (€ (), (s0)
¢ cargmin ;€70¢ + 4" (D)€, (5b)
Aci€ =b(p),  g(§) <0 (50)



where (Bb){5¢] is the matrix representation of (3a)-(3d) ob-
tained using (I). The behavioural inputs p are defined in

(2). Thus a part of it which comprises lateral offsets and
forward velocity set-points enters the cost while the goal
positions enter the affine equality constraints. The variable
of the lower-level problem is £ = (¢, ¢y).

As shown, we have an upper-level cost ¢, (.) that models
the driving task. It depends on the optimal solution &*
computed from the lower-level trajectory optimization. The
lower-level optimization explicitly depends on the parameter
p while the upper-level has an implicit dependency through
£*(p). The goal of the lower-level optimizer is to compute an
optimal solution for a given p. The upper level, in turn, aims
to modify the parameter itself to drive down the upper-level
cost associated with the optimal solution.

B. Batch Optimization and Sampling-based Gradient for Bi-
level Optimization

Our main idea is to apply a gradient-free optimization
technique on the upper-level cost. Algll] summarizes the
main steps of our proposed bi-level optimizer, wherein the
left superscript [ is used to track variables across iterations.
For example, lup represents the mean of the sampling
distribution at iteration [. On line 4, we draw 7 samples
of p; from a Gaussian distribution with mean lup and
covariance '3, On line 6, we solve the lower-level trajectory
optimization for each sampled parameter. Here, we adopt a
two-step approach, a sample output of which is shown in
Fig[2(c). In the first step, we solve the trajectory optimization
without the inequality constraints, and then, in the second
step, we project the obtained solution to the constrained
set. On line 9, we compute the constraint residuals result-
ing from the optimal solutions. In line 10, we select the
top n samples with the least constraint residual to create
ConstraintEliteSet. Line 11 constructs an augmented cost
obtained by evaluating the upper-level cost c,(£;) on the
samples from the C'onstraintEliteSet and adding the cor-
responding constraint residuals to it. On line 13, we select
the top ¢ samples with the least augmented cost to construct
the EliteSet. On line 14, we update the mean and variance
of the sampling distribution of p based on the samples of
the EliteSet.

1) Updating the Sampling Distribution: There are several
ways to update the mean and variance on line 14 of Algo-
rithm |1} The simplest among these is to just fit a Gaussian
distribution to the samples of 5;7 belonging to the EliteSet.
However, this approach ignores the exact cost associated with
the samples. Thus, in this work, we use the following update
rule from sampling-based optimization proposed in [9].

Jj=q
41, I Zj:l 5iP;
m, = (1—mn) Np+77?&7
=157
(6a)
I=4 g (. — IF1 1 T
l+12p _ (1 _ n)lzp + n 7j=1 J(pj j:I:pS)(p] ’J'p)
j=1°7J

(6b)

s = exp T (eul€]) + 15(€)
(6¢)
where 7 is the learning-rate and ~y is some scaling constant.
As discussed in [9], the update rules (6a) and (6b) are
obtained by exponentiating the cost and then performing a
sample estimate of its gradient with respect to the sampled
argument (in this case p).

Algorithm 1: Bi-Level Optimization

1 N = Maximum number of iterations

2 Initiate mean lup,l Sp,atl=0
3forl=1,l < N,l++ do

4 Draw 7 Samples (p;, Py, P;; - P5) from

N (ll“l’;ﬂl 3p)
5 Initialize CostList = []
6 Solve the lower-level trajectory optimization Vp;:
7 e Step 1: Solve the QP without inequalities

£ = argn%in %{?Qﬁj + qT(Pj)Ej
Aequ = b(p]-)

8 e Step 2: Project to Constrained Set

* .1 =
£j = argﬂglljn§||€j - S]H%
Acg€; = b(pj)a g(ﬁj) <0

9 Define constraint residuals:

ri(€5) = X max(0, g(€])).

10 ConstraintEliteSet <— Select top n samples of
p;,&; with lowest constraint residuals.

1 cost < cu(&5) +1;(&]), over
ConstraintEliteSet

12 append cost to CostList

13 FEliteSet < Select top g samples of (p;, 5;) with
lowest cost from Cost List.

4 | ("p,,"t%,) « Update distribution based on
EliteSet

15 end
return Parameter p; and §; corresponding to lowest
cu(&}) +1;(&]) in the EliteSet

J

[
=

C. Computational Tractability of Algl]]

The main computational bottleneck of Alg. [T|stems from the
requirement of solving a large number (n ~ 1000) of non-
convex optimizations on line 6-8. However, each of these
optimizations is decoupled from the other; thus, we can
solve them in parallel (a.k.a., the batch setting) to ensure
computational tractability. To this end, we first consider the
QP presented on line 7. Solving it for the j** sample of P,
reduces to following linear equations:

Q AT][&] _ [alpy) @
A 0| |u, b(Pj) ’
where, p; is the dual variable associated with the equality
constraints. The left-hand side of (7) is constant and inde-

pendent of the p;. Thus, the solution for the entire batch can
be constructed in one shot in the following manner:
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The inverse on the right-hand side of needs to be
computed only once, irrespective of the batch size. Thus the
batch solution of QP reduces to just a large matrix-vector
product that can be trivially accelerated over GPUs.

For handling the projection operation on line 8 of Alg. [T}
we build on our recent work [10]. This work showed that the
core numerical algebra associated with projecting sampled
trajectories on the collision avoidance constraints and motion
bounds has the same batch QP structure as and (8).
We extend [10] to include curvature, centripetal acceleration
bounds and lane boundary constraints while retaining its
efficient batch projection update rule. We present a detailed
derivation in Appendix

D. Learning Good Initialization Distribution

constant

In this section, we derive a Behaviour Cloning (BC) frame-
work to learn a neural-network policy that maps observations
o to optimal parameters p. Typically in BC, we assume that
we have access to a data set (0,&,) that demonstrates the
expert (optimal) trajectory &, for each observation vector o.
We cannot directly have access to a demonstration of the
optimal behavioural parameter p employed by the expert.
Rather, we have their indirect observation through &,. Thus,
our problem setting is more complicated than the typical BC
setup.

We address the mentioned challenges by using a network
architecture that is a combination of conventional feed-
forward, and differentiable optimization layers [11]. An
overview of the main concept is presented in Fig[3| (a). The
learnable weights are only present in the feed-forward layer.
It takes in takes in observations o to output the behavioural
parameter p, which is then fed to an optimizer resulting in
an optimal trajectory £*. The BC loss is computed over £*.
The backpropagation required for updating the weights of
the feed-forward layer needs to trace the gradient of the loss
function through the optimization layer.

Need for CVAE: We want our learned policy to induce a
distribution over p so that for each observation o, we can
then draw samples from it to initialize our bi-level optimizer
presented in Alg. [] (line 4). With this motivation, we use a
deep generative model called CVAE [12], illustrated in Fig[3]
as our learning pipeline. It consists of an encoder and decoder
architecture constructed from a multi-layer perceptron (MLP)
with weights ¢ and 0 respectively. Additionally, the decoder
network has an optimization layer that takes the output (p)
of its MLP to produce an estimate of an optimal trajectory
£
Let z be a latent variable such that the py(z) represents a
isotropic normal distribution(N(0,I)). The decoder network
maps this distribution to pg(£”|z,0). The encoder network
on the other hand maps (0,&,) to a distribution g4(z|o,£&")
over z. In the offline phase, both the networks are trained
end-to-end with loss function (9). The first term is the
reconstruction loss responsible for bringing the output of
the decoder network as close as possible to the expert
trajectory. The second term in (9 acts as a regularizer that
aims to make the learned latent distribution g,(z|o,&,) as
close as possible to the prior normal distribution. The 3
hyperparameter acts as a trade-off between the two cost
terms. The detailed architecture of our CVAE, alongside the
training hyperparameters, is presented in Appendix.

Levar = 7‘79”(17)1 > lIET (0, ¢) — £ + B Dxvlgs(z] 0, €,) | po(2)]
9)

In the inferencing (online) phase, we draw samples of z
from an isotropic normal distribution and then pass them
through the decoder MLP to get samples of optimal be-
havioural parameter p. Finally, the parameter samples are
passed through the optimizer to generate distribution for the
optimal trajectory £*.

1) Choice of Differentiable Optimizer: Ideally, we should
embed the entire lower-level trajectory optimizer (5b)-(5c)
into the CVAE decoder architecture. However, backprop-
agating through such non-convex optimization is fraught
with technical difficulties. In fact, the greatest success of
learning with optimization layers has come while embedding
convex optimizers into neural networks [11]. Thus, we adopt
a simplification as shown in Fig[3[b). We construct our
optimiztion layer with convex cost (3b) and affine equality
constraints in (3¢, both of which depend explicitly on p.
We ignore the inequality constraints, where the parameters
do not appear. The intuition behind our choice is that the
expert trajectory will be collision-free and kinematically
feasible and thus would automatically satisfy the inequality
constraints. Thus, we need to figure out the right set of p
that can mimic the expert behaviour as closely as possible.

2) Example of a CVAE Output: FigH] contrasts initial-
ization of Alg. [I] from a naive Gaussian distribution and
our learned CVAE. For Figlfa), we sampled p from a
Gaussian distribution and solved the QP presented in line
7 of Algorithm [T} resulting in a distribution of trajectories.
We repeated the same process for the samples drawn from
CVAE in Fig[4[b). It can be clearly seen that the distribution
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Fig. 4. Fig.(a) shows the trajectory distribution resulting from sampling behavioural inputs p from a Gaussian distribution. Fig.(b) shows the corresponding
distribution when sampling p from a learned CVAE. As can be seen, CVAE results in a more structured and smoother trajectory distribution concentrated
around the expert demonstration, shown in black. The trajectory samples also conform to lane boundaries shown in dotted black lines. The blue rectangle
represents the neighbouring vehicles moving along straight-line (blue) trajectories. The green rectangle represents the ego-vehicle.

resulting from p drawn from CVAE is smoother, conforms
to lane boundaries, and is concentrated around the expert
demonstration trajectory.

IV. CONNECTIONS TO EXISTING WORKS

Trajectory Sampling Approaches: Existing works like [5],
[7] can be viewed as a special case of our Alg. [T] obtained
by performing only one iteration of the bi-level optimizer.
These cited works sample the parameter p (lateral offsets,
forward velocity, etc.), albeit not from a Gaussian distribution
but a pre-discretized grid. This is followed by the execution
of lines 6-8 and ranking of the upper-level cost (line 13)
associated with the generated trajectories. However, [5],
[71 do not have any mechanism to adapt the sampling
distribution (or grid) to reduce the upper-level cost. Authors
in [8] address this drawback to some extent as they adapt the
sampling strategy based on optimal trajectories obtained in
the past planning cycles. Such an adaptation strategy would
be akin to performing one iteration of Alg.[I]and then warm-
starting the sampling distribution of p at the next planning
cycle with the updated mean and variance obtained from line
14.

The lower-level planners of [5], [7], [8] ignore inequality
constraints and essentially solve the QP presented on line 7
of Alg.[I} The constraint residuals (e.g. obstacle clearance)
are augmented into the cost function, similar to line 11. Our
current work includes an additional projection operator at
line 8 of Algorithm [I] to aid in constraint satisfaction.

RL Based Approaches: Works like [1], [2], [3], [4] can
be viewed as training a function approximator to learn the
solution space of the bi-level optimizer presented in [I] In
Section [[II-D] we have made a similar attempt using a
supervised setting. The RL approaches of [1], [2], [3], [4]
would achieve this in a self-supervised setting based on just
feedback of reward (upper-level cost) from the environment.

Bi-level Optimization: The bi-level approaches are exten-
sively used in motion planning. For example, see [13], [14].
Our work is closely related to the latter. In [14], an offline
bi-level optimization is used to generate optimal higher-level
behaviours (parameter p) for drones and subsequently, a
neural network is trained to learn this solution space. At
run-time, the neural network’s output is the true solution. In
sharp contrast, we take the output from the CVAE trained in

Section [[II-D] as just a guess for the optimal parameter and
adapt it in real-time in Alg[T]

Comparison with Gradient Descent: Bi-level optimiza-
tions are commonly solved through Gradient Descent [13]. It
requires computing the Jacobian of the optimal solution &*
with respect to parameter p through implicit differentiation
[11]. The main drawback of this approach is that implicit
differentiation has technical difficulties in case there are
multiple local minima and/or when the lower-level problem
is infeasible. In contrast, our Alg. [T] does not require the
lower-level optimization to be feasible and allows for its
early termination. In either case, the constraint residuals can
measure the quality of the optimal trajectory, which is why
we augment it into the upper-level cost on line 11.

V. EXPERIMENTS
A. Implementation Details

We implemented Alg. [I] including the lower-level optimizer
in Python using JAX [15] library as our GPU-accelerated
linear algebra back-end. The matrix W in (I) is constructed
from a 10*" order polynomial. Our simulation pipeline was
built on top of the Highway Environment (highway-env)
simulator [16]. The neighbouring vehicles used IDM [17]
for longitudinal and MOBIL [18] for lateral control.

1) Hyper-parameter Selection: The sampling size m in
Alg. [T] was 1000. The ConstraintEliteSet (line 10, Alg.
and FEliteSet (line 13, Alg. had 150 and 50 sam-
ples respectively. For our bi-level optimizer, the behavioural
input p was modelled as four set-points for lateral off-
sets and desired longitudinal velocities. That is, p =
[yd’h e Yd 4 VA Ud,4]- We divided the planning hori-
zon into four segments and associated one pair of lateral
offset and desired velocity to each of these. We recall that
the Alg. [T] computes the optimal p along with the associated
trajectory. + value in (6c) was 0.9.

2) CVAE Training: The details of the encoder and de-
coder network architecture of our CVAE are presented in
the accompanying video and Appendix [l During training,
the input to the CVAE is the expert trajectory and a 55-
dimensional observation vector (0) containing the state of the
ego-vehicle, the ten closest obstacles and the road boundary.
For the ego-vehicle, the state consists of a heading, lateral
and longitudinal speeds. The state consists of longitudinal
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Fig. 5. Two-lane and four-lane driving scenarios with varying traffic density
for benchmarking our approach with MPC and RL baselines.

and lateral positions and the corresponding velocities for
the ten closest obstacles. We express all the position-level
information with respect to the centre of the ego vehicle.
During inferencing, the decoder network only needs o and
samples of z drawn from an isotropic Gaussian.

We used the cross-entropy method, run offline with a batch
size of 1000, to collect the demonstration of optimal trajecto-
ries for training our CVAE. We note that our demonstrations
could possibly be sub-optimal. However, even with such a
simple data set, our CVAE is able to learn useful initialization
for our bi-level optimizer presented in Algl[l]

3) MPC Baselines: We also used Algll] in a receding
horizon manner to create an MPC variant of our bi-level
optimizer. We will henceforth refer to it as MPC-Bi-Level. It
takes the same observation vector o as the CVAE and outputs
polynomial coefficients of the optimal trajectories. These are
converted to steering and acceleration input vectors, and the
ego-vehicle executes the first five elements of these in the
open loop before initiating the next re-planning. We compare
our MPC-Bi-Level with the following baselines.

o MPC-Vanilla: This baseline runs without a behavioural
layer. We only have the lower-level optimization (5b)-
(3c). The parameter p is a scalar representing the set-
point for the desired longitudinal velocity.

¢ MPC-Grid: This baseline uses the same set of be-
havioural parameters p as our MPC-Bi-Level but sam-
ples them from a pre-specified fixed grid.

o MPC-Random: This baseline is similar to MPC-Grid
but samples p from a Gaussian distribution.

e Batch-MPC of [19]: This baseline is similar to MPC-
Grid but uses a different set of behavioural inputs,
namely goal positions for the longitudinal and lateral
components of the trajectory. That is, p = [m 5 yf].

4) RL Baselines : We also compare our approach against
Deep Q-Network (DQN) and Proximal Policy Optimization
(PPO), developed using the framework outlined in [20] and
[21] respectively. The input observation is the same as our
MPC-Bi-Level. The action space is discrete with 5 different
behaviours, namely faster, slower, left-lane change, idle,
right-lane change. These behaviours are then mapped to
a set-point for lateral offset or longitudinal velocity and
tracked through a PID controller using appropriate steering
and acceleration commands. Both DQN and PPO have been
trained on the highway-env simulator using Stable-Baselines
3 [22]. See Appendix [[I] for further details.

5) Environments, Tasks, and Metrics: The driving scenar-
ios are presented in Fig@ For each scenario, we had two
different traffic densities. We use the internal parameter of
HighEnv named “density” to control how closely each vehi-
cle is placed at the start of the simulation. The RL baselines
did not perform well in very dense environments and thus
were tested in sparser environments than the MPC-based
approaches. In each scenario, we evaluated 50 episodes with
different randomly initialized traffic. We fixed the random
seed of the simulator to ensure that all RL and MPC baselines
are tested across the same set of traffic configurations.

The task in the experiment was for the ego-vehicle to drive
as fast as possible without colliding with the obstacles and
going outside the lane boundary. Thus, the upper-level cost
of our bi-level optimizer has the form (y/a**(t) 4 ¢**(t) —
Vmaz )2 Where (2*(!) y*()) are the optimal velocity profiles
obtained from the lower-level optimization. Note that these
are obtained from £* through relationship (T)). The safety is
handled by the constraints of the lower-level optimization.
Our evaluation metric has two components: (i) collision rate
and (ii) average velocity achieved within an episode. Since
the ego-vehicle can achieve arbitrary high velocity while
driving rashly, we only consider velocities from collision-
free episodes.

B. Empirical Validation of Convergence

Fig[f] shows the performance of our bi-level optimizer
presented in Alg[I] on a typical environment with static
obstacles. The top plot of Fig.(a), (b) shows the trajectory
distributions at the first and the fifth iteration, respectively,
resulting from sampling the behavioural inputs p from a
Gaussian distribution and solving the QP presented in line
7 of Alg[l] The bottom plots in these figures show how the
distribution changes when we project them onto the feasible
set of collision avoidance and kinematic constraints. The
following key observations can be made from Figl6}

o The projection operation results in trajectories residing
in different homotopies, which in turn proves crucial for
proper exploration of the state space.

o The variance of the trajectory distribution shrinks, and
the upper-level cost (Fig@c)(top)) saturates. This is
a typical convergent behaviour observed in sampling-
based optimizers such as Alg[T] Please note that shrink-
ing of trajectory variance in Fig[f[a), (b) (top) also
signifies that the sampling distribution for p has also
converged to an optimal one.

« Finally, Fig[f(c)(bottom) validates the role of our pro-
jection operator.

C. Importance of Bi-Level Adaptation

In a two-lane driving scenario, there is only a limited set
of manoeuvres that the ego-vehicle can do. Thus, on a
low traffic density, all the baselines except MPC-Random
achieve perfect collision rate (Fig[7] (a)). This shows that
it is not critical to have a dedicated behavioural layer on
simple driving scenarios. Our observation is not surprising as
existing results like [23], [24] have shown promising results
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the lower-level optimization at each iteration.
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Fig. 7. Comparison of MPC Bi-Level (Ours) with other MPC-based
baselines in two (a, ¢) and four-lane (b, d) driving scenarios.

without explicitly incorporating behavioural inputs, but in
very sparse environments. Fig[7(a) also shows that in a sparse
two-lane environment, a simple grid-search used by MPC-
Grid and Batch-MPC [19] is enough to come up with the
right set of behavioural inputs. However, as traffic density
increases in the two-lane setting, the safety improvement
provided by our MPC-Bi-Level becomes distinctly apparent.
The trend is particularly stark in highly dense four-lane
driving scenarios, where our approach provides a 4-10x
reduction in collision rate over other baselines. Fig[7[b), (d)
shows that the average speed achieved by our MPC-Bi-Level
is generally either better or competitive with all the baselines.

D. Safety Improvements over RL

We trained both DQN and PPO for over 5 million steps.
However, we could make them work reasonably in only
sparse two-lane traffic. Nevertheless, the collision rate and
velocity (Fig[§[a, ¢) ) achieved by DQN and PPO were still
drastically worse than our MPC-Bi-Level. The performance
gap increased further in a dense four-lane setting, as shown

in Fig[8{b, d).
E. Effect of CVAE Initialization

Fig[9)(a) shows that for a relatively small batch size of 250,
the learned CVAE initializer achieves a 4x reduction in
collision rate over the naive Gaussian distribution. However,
the performance gap between both initializations reduces
a bit as we increase the batch size (Fig[9(b)). Thus, both
FigEka)—(b) validate that a learned CVAE initializer can
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Fig. 8. Comparison of MPC Bi-Level (Ours) with other RL-based baselines
in two (a, c¢) and four-lane (b, d) driving scenarios.

be particularly helpful when Alg. [T] is run with a limited
computation budget or on resource-constrained hardware,
wherein we have to contend with a smaller batch size for

Algl}
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Fig. 9. Computational advantage achieved by initializing Alg. mthrough
samples drawn from learnt CVAE over baseline Gaussian distribution. CVAE
allows us to achieve a better collision rate with a smaller batch size.

FE. Computation Time

Fig[10]shows the computation time requirement for our Alg[T]
on a laptop with RTX 3080 GPU. In sparse traffic scenarios,
two iterations of Alg[l] proved enough to achieve a low
collision rate when initialized with the learned CVAE. For
a batch size of 250, this corresponds to a feedback rate of
around 100 Hz. All the benchmarking presented in Section
[V-C] [V-D] were obtained with the same batch size but used 5
iterations of Alg[l] totalling to 0.03s. Fig[I0[b) demonstrates
a moderate increase in the computation time with respect to
batch size; even for a batch size of 1000, the computation
time was less than 0.06s. Finally, both Figma), (b) shows



that the additional overhead of inferencing the learned CVAE
is very minimal.
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Fig. 10.  Samples drawn from learnt CVAE distribution leads to better

collision-rate without the expense of computational time.

VI. CONCLUSION AND FUTURE WORK

We proposed a novel bi-level optimization that can si-
multaneously search for the optimal higher-level behavioural
decisions along with the lower-level trajectories necessary
for executing them. Our custom optimizer combines features
from gradient-free, sampling-based optimization with QP and
runs in real time due to an efficient GPU parallelization of the
lower-level optimization. We also proposed a CVAE archi-
tecture constructed from a feed-forward neural network and
differentiable optimization layers to learn good initialization
for our bi-level optimizer.

We conducted extensive experiments to showcase the
importance of having a dedicated behavioural layer. Our
approach also outperformed competing MPC and RL base-
lines. Finally, the learned CVAE initialization improved
the computational tractability of our bi-level optimizer by
reducing the batch size and number of iterations required to
achieve a given collision rate.

Our bi-level optimizer sets the groundwork for an RL
framework where the policy is a combination of a neural
network that provides higher-level decisions and a local
MPC. We conjecture that an Augmented Random Search
technique [25] for training both the network and MPC in
an end-to-end fashion will have a very similar structure as

Algl]
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APPENDIX |
A. CVAE ARCHITECTURE & TRAINING
HYPERPARAMETERS
Encoder Network
Block Layers Output Size | Activation
MLP 1 - 4 | Linear, Batchnorm 1024 ReLU
MLP 5 Linear, Batchnorm 256 ReLU
Mean Linear 2 None
Variance Linear 2 Softplus
Decoder Network
Block Layers Output Size | Activation
MLP1 -4 Linear, Batchnorm 1024 ReLU
MLP 5 Linear, Batchnorm 256 ReLU
P Linear 8 None
[ Optimization Layer 22 None

TABLE I
CVAE ARCHITECTURE COMPOSED OF ENCODER AND DECODER
NETWORKS ILLUSTRATED IN FIG[3]

The optimizer used for training the CVAE was AdamW
[26] with a learning rate of le-4 and weight decay of Ge-
5 for a total of 80 epochs. Moreover, the learning rate was
decayed by v = 0.1 every 10 epochs. We tackle the KL-
vanishing issue by applying a monotonic annealing schedule
of 3 coefficient [27], starting with 0 and gradually annealing
the 3 at each step.

APPENDIX II
B. ADDITIONAL EXPERIMENTS ON TwWO-WAY

ENVIRONMENT
Tezovence |

Fig. 11. Two-way highway driving scenario for benchmarking our approach
with MPC and RL-based baselines.

DQN and PPO fail to work reasonably in a relatively
simple Two-Way highway driving scenario Fig[IT] MPC-
based approaches, including our MPC Bi-Level, achieved
zero collision rate and higher velocity than RL baselines,
as shown in Fig[T2] (a, b).
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Fig. 12.  Comparison of MPC Bi-Level with other RL-based baselines in
two-way (a, b) driving scenario.

TABLE 11
RL BASELINES TRAINING PARAMETERS

Agent Parameter Value
Number of training steps M
Policy Scheduling Time Is
Input neurons 55
Hidden layers 2
Hidden layers neurons 256
Output neurons 5
Discount factor 0.8
Learning rate Se-4
DQN Replay Memory size 15k
Initial exploration constant 1
Final exploration constant 0.1
Target Network update frequency 50
Batch size 32
PPO number of steps 10
Batch size 64
Generalized Advantage Estimation(GAE) A  0.95
clipping coefficient 0.2
value-function coefficient 0.5

APPENDIX III
RL TRAINING HYPERPARAMETERS

The policy estimators employed in RL baselines are MLPs
with two hidden layers of 256 neurons each. The action space
is discrete with the following different behaviours:

e faster: Increase velocity by 5 m/s

o slower: Decrease velocity by 5 m/s

o left-lane change: change lateral position by 4 m to the
left of the current position.

o idle: Keep moving with the current velocity and lateral
offset set-points.

o right-lane change: change lateral position by 4 m to the
right of the current position.

The complete set of RL training hyper-parameters are
summed up in Table [}

APPENDIX IV
GPU ACCELERATED BATCH PROJECTION

In this section, we modify the projection operator of [10]
to make it suitable for car-like vehicles while retaining the
batch QP structure presented in (8). We begin by summariz-
ing the set of inequality constraints used in the lower-level
optimization (g;(z(¢)) < 0) in Table m

A. Reformulating Quadratic Inequalities

The collision avoidance constraints can be re-written in the
following form:


https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/K16-1002

TABLE III

LIST OF INEQUALITY CONSTRAINTS USED IN THE LOWER LEVEL OPTIMIZATION

Constraint Type Expression Parameters
.. . (z(t)—20.0)% (¥(®)—vo.4)? 2 5. axis of the circumscribing ellipse of vehicle footprint.
_ Toi)” _ . < 272 . 1 : .
Collision Avoidance a? b2 +1<0 To,i(t), Yo,i(t): trajectory of neighboring vehicles
Velocity bounds VE)? + 9(1)? < Vmas Umae: Maximum velocity of the ego-vehicle
Acceleration bounds VE®)2 +§(1)? < amax Gmaz: Maximum acceleration of the ego-vehicle

Curvature bounds —Kmaz <

—FKmaz: Maximum curvature bound for the
ego-vehicle trajectory

Centripetal Acceleration bounds

—Cmaz < i(t)zn(x(t)) < Cmaz

Cmage: Maximum centripetal acceleration bound
for the ego-vehicle.

Lane boundary

yin(z(t)) < y(t) < yun(z(t))

Yib, Yup: Lane limits as a function
of the ego-vehicle’s position.

P { Z(t) — Zo,i(t) — do,i(t) cOs ao,i(t)
7L (@) = yo,i(t) — dosi(t) sin i)

where «, ;(t) represents the angle that the line-of-sight
vector between the ego-vehicle and its i*" neighbor makes
with the X axis. Similarly, the variable d,, ;(t) represents the
ratio of the length of this vector with the minimum distance
separation required for collision avoidance. Following a sim-
ilar approach, we can rephrase the velocity and acceleration
bounds from Table [l as:

o[ 0~

{ y(t) —
B(t) —

f —
{ 4(t) -
The variables v, ;(t), o i(t), tq,i(t), dos(t), dy i(t), and
d,;(t) are additional variables that will be obtained by our
batch projection optimizer along with &;.

Using (TT){I2} curvature and centripetal acceleration can
also be reduced to the (I3a) and (I3b) respectively.

}do,i(t) >1 (10)

d:E );Onssj((t)) }7”mm < dy(t) < Vmas (11

t)
da(t) cos aq(t)
da(t

o (t) sin ag (1) }70§da(t) < Omae  (12)

(Dfsinan() ~ 00 a
4. (1)? < fima
dy (t)? cos o ()% K (2(2))|< Cmax (13b)

The variable k(z(t)) represents the curvature of the road.
We approximate it as the curvature of the reference reference
center-line aligned with the road geometry. Note that x(xz(t))
depends on the ego-vehicles position x(t) with respect to the
center-line.

1) Reformulated Problem: Using the developments in the
previous section and the trajectory parametrization presented
in (I)), we can now replace the projection operator on line 8
of Alg. [T] with the following. Note that (T4g) is the matrix
representation of the lane boundary constraints presented in
Table [

1
£j —argmln || € H2 (14a)
eqﬁj = beq (14b)
ng = hj(aj,dj) (140)
do,j 2 1, VUmin S du,j S Umazx, 0 S da,j S Umazx (l4d)

(14e)
(14f)
(14g)

da7j|Sin(aavj - a’U,j)|S d?},jﬂmaz
(dy,; cos @ ;) K(€;) < Cmaa-

Géj < e(&j)

Xo + ado,j cos ao, j
0 d, ; cos ay,j
h — dg,j COS O, j
Y X, + ad,,j sin o, 5
d, jsin oy
dg,jsin o 5

227

- SNCE)
o W
W

aj = (Qj, Qaj, 0t j),  dj = (doj,dy 5, daj)

The matrix F, is obtained by stacking the matrix W

from (I) as many times as the number of neighboring
vehicles considered for collision avoidance at a given plan-
ning cycle. The vector X,,y, is formed by appropriately
stacking ,;(t), yo:(t) at different time instants and for all
the neighbors. Similar construction is followed to obtain
Q,, 0y, 0, d,,d,d,.
Constraints (T4c)-(T4g) acts as substitutes for g(£;) < 0
in the projection operator (line 8, Alg[I). Please also note
the addition of subscript j indicating that the (I4a)-(14g) is
defined for the j* sample of ¢;

The approach of [10] can efficiently handle (14a)-(T4d).
Thus, our aim is to accommodate the new constraints (T4e))-
(I4g) while incurring minimal change to the batch update
rule proposed in [10]. This motivates our solution process
that is discussed next.

2) Solution Process: The projection process relies on two
key ideas. First, we relax the non-convex equality and
affine inequality constraints as o penalties and augment them
into the projection cost (14a).

1
s & =&l - 2.8

+ g lGg; —e(&;) + 55

+ 5 [Fe; g

[’(5]3)‘]): 2 (16)

The constant p controls the trade-off between minimizing the
projection cost and constraint residuals. The slack variable
s; > 0 is unknown and will computed by the projection
process along with é’;‘» and other variables. The variable A;




Algorithm 2: Efficient Batch Optimization for Lower Level Trajectory Planning

1: Initialize k)\j7k£j,kao,j, oy i, Fo i, ¥do g, Fdy, j, *dg,; for iteration k =0

2: for k = 1, k < maxiter, k + + do

end
. k+1
3: Return &,

1 = 2 2 2
ey =argmin & — &3 - (A 6) + 5 [Fg —hy(fayta)|+ S Ggs —elte) + s
J
Acg€; =beg a7
2
k+laj k+1d = arg min &, —hj(ay,d; )‘ (18)
ojydy 2
Mla, i = clip(1, 00) (19a)
k+1dv,j = Clip(@min75maz) (20a)
Umin = maX(Umi'ny \/kda,j|5in(k+1aag - k+1a’07j|)) (20b)
Umaz = Min Umazx, Cmax [ ké Ccos k+1av i)? (ZOC)
g J
F1a, 5 = clip(0, Tmaz) (21a)
_ . k+1d12;’§ma:c
@mae = min (amaz, (o, — o, J)|> (21b)
ks —max (0, —GkHEj - e(kﬂﬁj)) (22a)
ktly _ky _ PRt (Fk+1£j _ h(k+1aj7 k+1dj)> gGT (Gk+1€j _ e(k+1£j) + k+1s) (22b)

is the so-called Lagrange multipliers and play a crucial role
in driving the residuals to zero for any arbitrary p [28].

The second part of the idea is to apply Alternating Mini-
mization (AM) approach for computing the optimal solution
of (T6) subject to (I4c)-(T4g). This is presented in Algorithm
[2l At each step, we minimize only one block of variables
while others are fixed at values obtained in the preceding
iteration or the previous step of the current iteration. We
elaborate on each step next.

3) Analysis Step . At step k + 1, we use the
k¢, to make an estimate of the exact lane bounds e(*¢;)
and curvature m(kﬁj). As a result, the curvature and lane
bounds become independent of &; and (17| turns to a equality
constrained QP of the form presented in (7). The solution
for the entire batch can computed in one-shot using (8)

4) Analysis Step : For a given *T1¢, the optimiza-
tion over a;,d; have a closed form solution that can be
evaluated across all the batch in one-shot [10] . In this step,
we ignore the constraints on «;,d;.

5) Analysis of Step (194)-(21a) - In these steps, we clip
the values of d, ;,d, j,dg ; computed in the previous step
to satisfy their respective bounds. The clipping over d, ;
follows from [10] while the remaining two are new additions
which are obtained in the following manner. For a given
Mla, i, ¥ lay, ; obtained in and *d, ; from previous

iteration, the curvature and centripetal acceleration
(T41) constraints reduce to just upper and lower bounds on
d, ;. Similar reasoning leads to (21a).

6) Analysis of Step : The update [22a)-(22b) follows from
[29], [28] and herein, we update the Lagrange multipliers and
slack variables based on the residuals at the current iteration.
Summary: Using a combination of clever reformulations and
a AM approach, each step of the batch projection either boils
down to (i) batch QP ((I7)) or simply function evaluations

((T8)-(228) ).
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