
  

  

Abstract— Given that the numerous data embedded in 

manufacturing processes and products are separated, it is 

challenging to tackle and integrate heterogeneous data in 

industrial scenarios. In this context, an industrial knowledge 

graph (iKG) has been developed as a promising semantic 

organisation to leverage the rich information from multiple 

resources. However, relations are usually missing and hidden in 

original iKGs, which results in the necessity for iKG completion. 

Given these two perspectives, a framework of iKG construction 

is proposed based on ontology and link prediction in this study. 

Firstly, an ontology design framework is deployed to generate 

domain-centric ontologies after extracting numerous data (e.g., 

entities and relations). Secondly, the missing relations between 

each couple of entities are discovered over existing knowledge to 

increase the number of edges that complete and refine iKGs. 

Thirdly, iKG visualisation is conducted by importing data into 

the generated ontology. The feasibility and effectiveness of the 

proposed framework are substantiated and demonstrated in a 

case study using real-world data.   

I. INTRODUCTION 

 

As the industry develops, enormous data embedded in 
manufacturing processes and products are accumulated and 
stored in isolated silos [1]. A complex industrial phenomenon 
usually involves abundant data from multiple different sources, 
which provide comprehensive and versatile information for 
follow-up tasks [2]. However, it is challenging to integrate the 
data derived since there are varying distance metrics across 
facet boundaries [3]. Specifically, there is still a lack of 
semantic organisation of numerous heterogeneous 
manufacturing resources, which enables the free flow of ever-
evolving knowledge among processing modules, information 
systems, and users, thereby impeding the effective exploitation 
of knowledge in industrial scenarios [4]. 

Knowledge graph (KG) is proposed as a semantic network 
for knowledge representation, which displays a powerful 
expressive ability and a high degree of modelling flexibility, 
making it a promising content-retrieval approach [5]. 
Concisely, KG adopts practical and straightforward 
representation approaches based on triplets (represented by 
<head, relation, tail>), containing entities and relations. An 
entity refers to an individual (e.g., organisation, person, event, 
location etc.), and a relation represents a specific relational 
connection between an entity pair [6]. Presently, KGs have 
been utilised energetically in many scenarios, such as 
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recommendation systems [7], question answering [8], and 
knowledge visualisation [9] etc. In this context, it has been 
conducted that the KG has a crucial role in breaking the 
semantic gap in industrial scenarios as it provides a promising 
mechanism to fuse more sophisticated knowledge and 
structure from multiple sources [10]. 

Compared with other domains, since relations usually have 
physical significance in industrial applications, knowledge 
demands in industrial products and services require higher 
synthesis and creation. Even though knowledge extraction can 
be performed accurately for the development of iKGs, it is 
common that the information on relations is insufficient [11, 
12]. Concisely, the relation is often missing in iKGs 
constructed from raw data, which means that the potential 
relations are needed to be predicted and discovered. In other 
words, iKGs need to completed by link prediction before 
applying in application scenarios. According to the essential 
physical significances, potential relations are discovered 
through more sophisticated relation structures in industrial 
fields [4, 13-15]. Presently, most research on link prediction in 
iKGs relies on shallow models and methods based on path 
sorting. Despite their simplicity, intuitiveness, and 
computational lightness, conventional methods cannot learn 
more complex patterns posed by in-depth iKGs. A further 
challenge in the construction of iKGs is that the scale is large. 
Therefore, the iKG must have good scalability, whereas these 
models have poor scalability. In this context, with the 
successful utilisation of deep learning in natural language 
processing, methods based on deep learning are going to be 
more advantageous, such as graph neural networks (GNNs) 
and their variants [16, 17]. 

To address the above-mentioned issues, a framework of 
iKG construction has been presented based on ontology and 
link prediction in this study. The proposed iKG construction 
framework serves as a model that aims to design a reliable 
ontology and complete relations in constructing iKG for 
information management and knowledge sharing. In summary, 
the following are the major contributions of this study: 

• A framework of iKG construction is presented to 
solve the problem of 'data island' by associating multi-
source data in industrial scenarios. 

• A link prediction model based on GraphSAGE is built 
to identify the potential relations over the existing 
knowledge, enhancing the reliability of iKGs. 
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• A real-life iKG of the strip-breakage phenomenon in 
the cold rolling process is constructed, which serves 
as an example to validate the proposed framework.  

The remainder of this study is given as follows. Section 2 
introduces related work. In section 3, a detailed technical 
roadmap has been demonstrated and explained. A real-world 
case study from the steel industry is shown in section 4. 
Section 5 concludes this study and gives future insights. 

I. RELATED WORK 

A. Link Prediction 

Link prediction has been proposed as a process of 
completing KG by discovering and adding the missing and 
implicit relations. Existing knowledge is utilised to infer 
potential relations between entity pairs for KG completion. 
Essentially, link prediction augments KG in some respects by 
increasing the edge number to enhance reliability. 

The existing methods of link prediction are divided into 
three types: decomposition-based methods, path-based 
methods, and embedding-based methods [18]. Since many 
parameters need to be adjusted, decomposition-based methods 
suffer two major limitations: low efficiency and poor 
scalability [19]. A path from one entity to another entity has 
been regarded as a sequence of edges in path-based models, 
and relation-structure information has been considered as 
input features regarding a stronger representation of new 
relations [20]. Additionally, these approaches have been easily 
extended to large-scale graphs. However, these models have 
more computational complexity, resulting in high 
computational costs. Unlike the two former methods, 
embedding-based models have been proposed to learn the 
semantic representations of entities and relations 
simultaneously. One major advantage of KG embedding 
algorithms is that the structural and underlying semantic 
information has been preserved in the process of mapping 
entities and relations into a low-dimensional vector space to a 
great extent. As a powerful technique, embedding-based 
approaches play an important role predict the potential links in 
KGs. Especially, the link prediction models based on deep 
learning (e.g., GraphSAGE) have proven to be more beneficial 
accompanied by the success of deep learning. 

B. Industrial KG Construction  

Generally, iKG construction is composed of two major 
parts: knowledge extraction and iKG completion. The earliest 
research focused on knowledge extraction, including named 
entity recognition and relation extraction. These models have 
continued to be popular and dominated most research in 
constructing iKGs. For instance, a hybrid approach was built 
to gain an effective representation of sentence semantics and 
output the maximum probability sequence for chemical-
named entity recognition [4]. A reinforcement learning 
approach was deployed to collect knowledge from the ternary 
space of humans, cyberspace and the Internet of Things (IoT) 
[21]. The interdependencies between different time series and 
the before-and-after relations of time series were mined using 
a CNN and LSTM, respectively [22]. 

Subsequently, as one of the promising research topics, iKG 
completion is arousing great attention. For instance, a GCN 
and tensor factorisation model was used as an end-to-end 
learning model to predict the missing entities in knowledge 
completion [23]. A pre-training model, namely LP-BERT, was 
proposed to leverage the linkage prediction strategy using the 
semantic matching representation [24]. 

As mentioned previously, KG has been referred to as the 
advanced technology of knowledge representation, which 
provides an important way to integrate multi-source 
information in industrial fields. However, the construction of 
iKG has certain limitations. Relation information of iKGs 
constructed from raw data is inadequate, where the missing 
relationships are not included in the iKG. 

II. METHODOLOGY 

In this section, a framework of iKG construction is 
proposed based on ontology and link prediction. In Figure 1, 
the overall framework consists of three main stages. In the first 
stage, a two-step section comprising ontology design and 
knowledge extraction is conducted. After clarifying the 
request for the iKG construction, the class hierarchy structure 
is designed to conform to the requirements thoroughly. Based 
on that, the property hierarchy is confirmed by the class 
hierarchy, including the object property hierarchy and the data 
property hierarchy. For the second stage, a two-layer GNN 
model is built to predict potential relations for iKG completion. 
Specifically, the edges are divided into two types: existing 
edges and non-existing edges. The relations represented by the 
embeddings of two entities are classified in the pre-trained 
GNN model. Finally, the third stage contains iKG construction 
and iKG visualisation. The overall triplets are described by the 
RDF format based on the triplet integration. Subsequently, the 
open-source platform is used to fuse the triplets for iKG 
construction, and the visualisation tool is deployed to present 
the generated iKG in a graphic format. 

 

Figure 1.  The overall framework of iKG construction. 



  

A.  Industrial Ontology Design 

For iKG construction, the first key step is to determine the 
applicable ontologies. As semantic data models, industrial 
ontologies are mainly utilised to describe the relationships 
between concepts in a given domain and provide standardised, 
clear and unambiguous definitions that can be shared. 
Specifically, although the general types of things that share 
certain properties are modelled in industrial ontologies, these 
models do not contain information about specific individuals 
from domains. 

In this section, a flowchart of ontology design has been 
proposed in Figure 2. Two minor revisions are incorporated to 
enhance the effectiveness of the ontology design process. 
Firstly, 5M1E (including man, machine, material, method, 
measurement, and environment) was introduced to determine 
whether or not the data collected was comprehensive. 
Secondly, to aid in the process of the design process, two tools 
were introduced (SmartKG and OOPS!) to be used to examine 
and test temporary ontologies. It avoids the need to evaluate 
and revise the final ontology after it has been constructed. In 
this case, it is possible to modify and improve ontologies in 
design procedures in an effective and time-saving manner.  

 

Figure 2.  The detailed flowchart of industrial ontology design. 

Firstly, the specific industrial scenario is determined, 
allowing us to identify the objectives and requirements of 
ontology applications. Subsequently, it is necessary to check 
if there are any reusable ontologies for the selected domain, 
providing participants to gain insight into both its 
opportunities and challenges. In the case of reusable 
ontologies, the ontology construction is carried out based on 
the previous ontologies in the next step immediately. 
Otherwise, industrial knowledge integration should be 
accomplished before constructing ontology. Secondly, three 
regular procedures have been applied to integrate the domain 
knowledge in the stage of industrial knowledge integration. 
The fragmented domain knowledge is collected from six 
different sources (5M1E) comprehensively after building the 
integrated planning. After that, the collected information 
should be further classified into different and incompatible 
subsets for the next step. In the last step, the hierarchical 
structure of concepts should be designed first in the context of 
a given domain. The top-level classes have been depicted as 

the root of concepts in the hierarchical structure. It has been 
ascertained that classes have properties and interrelations, and 
constraints. Then, an implementation of the SmartKG 
framework, developed by Microsoft, is made to visualise the 
developed hierarchy structure quickly. It will be possible to 
quickly determine if the hierarchy structure is appropriate and 
complete. In the case of high-quality classes, the instances are 
created and collected into a repository for ontology 
construction. Following that, it is to document the ontologies 
into a file, as it is essential to achieve iKG. Otherwise, the 
properties and interrelationship constraints of the classes are 
needed to be ascertained and fused again. 

B.  Link Prediction 

As an inductive representation learning for node 
embedding, the GraphSAGE algorithm is especially 
advantageous and useful for large graphs with rich node 
attribute information [25-27]. The main idea of GraphSAGE 
is to adhere to GNN and aggregate the neighbours' information 
by embedding them into each node. Generally, the 
GraphSAGE-based link prediction method involves 
propagating GraphSAGE networks forwards and propagating 
GraphSAGE networks backwards. 

A graph is represented by = (𝐕, 𝐄) , where 𝐕  denotes 
entities, and 𝐄 is relations between entity pairs. Specifically, 
the 𝑖𝑡ℎ  node is indicated by 𝑣𝑖 ∈ 𝐕 , and the features of all 
nodes are defined as 𝐗𝑣 , ∀𝑣 ∈ 𝐕. Meanwhile, the adjacency 

matrix 𝐀 ∈ 𝐑|𝑛|×|𝑛|, 𝐴𝒊𝒋 ∈ {0, 1} is usually used to describe 𝐄, 

which is a |𝑛| × |𝑛| square matrix. If an edge exists between 
node 𝑣𝑖 and node 𝑣𝑗, then  𝐴𝒊𝒋 = 1, otherwise  𝐴𝒊𝒋 = 0.  

In the embedding process, the node's current representation 

h𝑢
𝑘−1 has been concatenated with the aggregated neighbours' 

vector h𝑁(𝑣)
𝑘−1 . Then, this combined vector is fed into a fully 

connected layer with nonlinear activation function 𝜎, which 
updates the representations for the final representation. The 
mean aggregator has been applied in this study: 

h𝑣
𝑘 ← 𝜎(𝐖 ∙ 𝑀𝐸𝐴𝑁({h𝑢

𝑘−1} ∪ {h𝑢
𝑘−1, ∀𝑢 ∈ 𝑁(𝑣) })        (1) 

For learning the weights of aggregators and embeddings, 
the cross-entropy function is usually utilised as a loss function 
in this study, as shown as follows: 

ℒ = −
1

𝑁
∑ ℒ𝑖 =

1

𝑁
∑ −[𝑦𝑖 ∙ log(𝑝𝑖) + (1 − 𝑦𝑖) ∙ log (1 − 𝑝𝑖)]𝑖𝑖  (2) 

where: 𝑦𝑖 ∈ {0, 1} is label, 𝑦𝑖 = 1 for the positive sample, 
and 𝑦𝑖 = 0  for the negative sample; 𝑝𝑖  is the predicted 
probability that sample 𝑖 is a positive sample. 

Figure 3 illustrates a link prediction model based on 
GraphSAGE. Firstly, iKGs are used to derive and compute the 
node-feature matrices and adjacency matrices. In this context, 
iKGs are expressed by the attributes of the entities (defined as 
node features) and the relationship features (regarded as 
adjacency matrices). Then, the two types of matrices are fed 
into a two-layer GraphSAGE model, which is a supervised 
training model. The features of each node have been updated 
by its neighbour within the share parameters. After 
propagating two GraphSAGE layers, the updated 
representations of each node have been obtained. Compared 
with the common GraphSAGE model, the sample labels are 
different from the node classification. Since the goal task is 



  

regarded as the link classification, the edges are divided into 
two different types: positive edges and negative edges. In 
terms of positive edges, the real-existing edges are defined as 
positive edges. Similarly, the non-existing edges are 
considered negative edges. In this context, the link prediction 
task can be considered a binary classification. For the next step, 
the embeddings of each edge have been represented by two 
linked entities in the proposed model. Accordingly, the 
proposed model employs the rule that minimises the 
classification error to achieve the final embeddings of nodes. 
In this context, the proposed model has already been trained to 
estimate the possible edges. 

 

Figure 3.  The architecture of the two-layer GraphSAGE model. 

C. iKG Construction and Visualization 

The key steps of iKG construction and visualisation are 
present in this section. The potential triplets have been 
discovered by the GraphSAGE-based link prediction model. 
After that, all triplets are integrated into a united repository. 
Through using open-source platforms, the RDF language is 
used to describe each triplet for the industrial knowledge 
representation. In other words, the iKG is constructed and 
stored on these platforms. Meanwhile, graph visualisation 
tools are often embedded in these platforms. In this context, 
iKG visualisation is usually accompanied by iKG construction.  

Several independent open-source packages can directly 
achieve iKG visualisation. Presently, several open-source 
graph databases are available, including Neo4j, Gephi, Grakn 
etc. The iKG has been visualised using Gephi in this study 
because of its user-friendliness and high visual performance. 

III. CASE STUDY 

A number of important industries (i.e. military and defence, 
and manufacturing) rely on the production of iron and steel by 
providing raw materials, making it one of the largest industries 
in the world [28]. Meanwhile, cold rolling in the steel-making 
industry is recognised as an important process in the 
production of electrical steel strips because of its advantages 
with regard to accuracy, efficiency, and output rate. Presently, 
cold rolling contributes to the improvement of the properties 
of steel strips on changes both in the microstructure and 
thickness of the steel. Since the properties that have been 
improved include surface smoothness, tensile strength, yield 
strength and hardness, cold-rolled products usually have 
superior mechanical properties, small dimensional tolerances 
and high-quality surfaces [29]. As science and technology 
continue to advance, the quality requirements for steel strip 
products from cold rolling processes are becoming more 
detailed and demanding. Therefore, it is imperative 
increasingly to analyse and monitor the quality of cold-rolled 
products. This section conducted a real-world experimental 
study on the cold rolling process to validate the proposed 
framework. 

A. Cold Rolling in the Steel Industry 

Regarding the modern steel industry, steel strips are 
produced by cold rolling in a high-speed, high-precision, and 
continuous process. It is not uncommon for cold rolling to 
encounter certain defects in the same manner as the process of 
metal forming. As the most serious defect, strip breakage 
needs to be paid special attention to as it causes huge financial 
losses. Specifically, strip breakage has damaged rolls and mill 
accessories badly, not only the increase of production costs. 
Hence, the information integration of different resources 
around the cold rolling process of the steel industry contributes 
significantly to the prediction of this failure. The relevant 
procedures contribute to the influence of different degrees of 
the quality of cold-rolled products, including hot-rolling 
process, annealing process, pickling process, cold-rolling 
process, and quality inspection. The dataset was collected and 
stored from these resources, which covers a production period 
of six months in this study. Specifically, this historical dataset 
contains 1254 samples, including 94 variables. 

B. Ontology for Cold Rolling 

In this section, a strip-breakage ontology for cold rolling 
was designed. The strip breakage knowledge involves steel-
coil material, chemical reagents, transportation, processing, 
treatment, etc. The class hierarchy considers the concepts of 
processes, facilities, products, operations, parameters, 
chemicals, fault diagnosis, etc. Meanwhile, these seven parts 
are regarded as the top classes. Based on the provided concepts, 
the subclasses of each top class are determined subsequently. 

 

Figure 4.  The classes, object properties and data properties of the strip-

breakage ontology. 

The strip-breakage ontology was finished in open-source 
software (Protégé5.5), which supports OWL. The concepts, 
properties, and associated relationships of the strip-breakage 
ontology were defined in this software. Figure 4 shows an 
illustrative example of the classes, object properties and data 
properties of the strip-breakage ontology. There are seven 
main concepts in this ontology, including 'chemicals', 'cold-
rolled coil patterns', 'facilities', 'manufacturing processes', 
'operations', 'parameters', and 'products'. In sum, the second 
level of ontology comprises 20 subclasses, such as 'OES-



  

SoIAI', 'Mill', 'Observation', 'accumulator', 'pickling process', 
etc. Meanwhile, the object properties and the data properties 
are defined as well for a better understanding of the concepts 
in Figure 4. 

C. Link Prediction 

In this section, the experiments were conducted to predict 
the potential edges for relation completion of the strip-
breaking KG. A brief overview of the dataset is provided in 
the following. The dataset contains 13113 samples, which are 
divided into two types (existing edges and non-existing edges). 
Regarding training and testing data split, the 5-fold cross-
validation tests were conducted to evaluate the performances, 
and the mean values of the five folds were outputted and 
labelled. Specifically, 80 per cent of the overall data were 
selected for training, and the remaining 20 per cent was 
reserved for testing.   

As mentioned above, the experiments were conducted 
using our proposed two-layer GraphSAGE model. Meanwhile, 
three common machine learning algorithms were built to 
compare the performances, including back propagation neural 
network (BPNN), SVM, and random forest (RF). For the 
BPNN model, the hidden unit number and learning rate were 
set to 50 and 0.71, respectively, and the training epoch was set 
to 500. In terms of the SVM model, the kernel function was 
set as a radial basis function. Lastly, for the RF model, the 
number of estimators was set to 600. Based on that, the edges 
were fed respectively into three different models (BPNN, 
SVM, and RF) after calculating the representations of entities. 
Meanwhile, as shown in Figure 3, the representations of 
graphs (entity matrices and adjacency matrices) were fed into 
the two-layer GraphSAGE mode to predict the potential for 
relation completion.  

Moreover, in the task of link prediction, the goal is to 
output the potential edges by predicting the edge types. Since 
the edges are classified into two types (existing edge and non-
existing edge), the link prediction is considered a binary 
classification. In this context, five following metrics were 
introduced to evaluate the performances of the proposed 
model, including accuracy, precision, recall, F1-Score, and 
False Alarm Rate (FAR): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                         (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                 (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                    (5) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                    (6) 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                      (7) 

where: 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁 mean true positive, true negative, 
false positive, and false negative, respectively. 

TABLE I.  THE BINARY CLASSIFICATION RESULT OF FOUR MODELS. 

Models Accuracy Precision Recall 
F1-

Score 
FAR 

BPNN 76.99 70.45 73.17 71.78 20.46 

SVM 77.34 71.13 72.96 72.04 19.74 

RF 78.06 72.17 73.48 72.82 18.89 

GraphSAGE 82.02 76.6 79.26 77.9 16.14 

Table 1 gives the detailed binary classification result by 
five different metrics of BPNN, SVM, RF, and GraphSAGE 
models. It is obvious that the GraphSAGE model shows 
advantages over the other three machine learning models. 
Specifically, the GraphSAGE model surpasses the other 
machine learning baselines in terms of accuracy (82.02%), 
precision (76.6%), recall (79.26%), and F1-Score (77.9%). 
Additionally, the experimental results indicate that the 
GraphSAGE model had a smaller value on the FAR metric 
(16.14%) than the other three models. In this context, the 
GraphSAGE classifier performs well across all different 
performance metrics, showing that incorporating the 
neighbours' information is better for the link prediction task in 
this study. Moreover, for the considered three benchmark 
models, it can be observed that the RF model achieves much 
better performances on all different metrics than SVM and 
BPNN models. Despite the fact that the BPNN classifier had a 
better recall than the SVM classifier, both classifiers showed 
about the same level of performance during the comparison 
experiment. 

After training the GraphSAGE classifier, the existing 
graphs were fed into the proposed model to learn the edge 
representations and discover the potential edges. As shown in 
Figure 5, the missing relations are found to complete the strip-
breakage KG, for example, the relation between 'DSP width' 
and 'Z6Temp std dev' and the relation between 'Gauge average 
(microns)' and 'Crown min (microns)'. 

 

Figure 5.  An illustrative example of link prediction. 

D. Construction of Knowledge Graph 

Based on ontology and link prediction, all triplets were 
integrated to construct the strip-breakage-centric KG of the 
cold rolling process. In this section, the free software Gephi 
was implemented to store and visualise the generated iKG due 
to its easy operation and great function. Specifically, 2295 
triplets were integrated and imported into Gephi to construct 
and visualise the strip-breakage KG in the cold rolling process 
of the steel industry. In Figure 6, an entire strip-breakage-
centric KG composed of seven subclasses is present. The 
entire strip-breakage KG contains 230 entities and 2295 
relations. 

 

IV. CONCLUSIONS AND FUTURE WORK 

 In this study, a framework of iKG construction is proposed, 

containing two parts: ontology design and link prediction. 

Firstly, the relevant knowledge is extracted and integrated to 

construct a strip-breakage ontology in the cold rolling process. 



  

Secondly, the potential relations are predicted by a two-layer 

GraphSAGE model from the existing knowledge. The 

experimental results show that the proposed model performs 

better on five different metrics than other baseline models. 

Methodologically, this framework improves the reliability, 

efficiency and effectiveness of constructing iKGs, and 

enables the effective exploitation of knowledge in industrial 

scenarios. In the future, the following research work will 

focus on developing and refining iKGs automatically. 
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Figure 6.  The entire strip-breakage KG. 


