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Abstract— Task specification for robot manipulators continues
to be a time consuming and expensive process, limiting their
rapid deployment for industrial applications. This is especially
true for the automation of sensor-based tasks, where the
robot should adapt to uncertainties and disturbances in the
environment. Previous work showed how robot task specification
can be eased by using the task function approach to synthesize a
robot controller. The main novelty of this paper is to further ease
task specification by also using the task function approach to
synthesize an estimator, which can be used to estimate geometric
position uncertainties and the disturbances acting on them.
Furthermore, as a result of the duality between control and
estimation, an existing constraint-based robot task specification
framework can be reused to perform both control and estimation
without modification. The approach is validated on the well-
known force-controlled contour following task. It is shown that,
as expected, when disturbances are estimated and compensated
for, the force tracking errors can be substantially decreased,
while the contour following speed can be substantially increased.
The presented approach is quite generic and can be applied
in many practical applications to significantly improve the
performance of constraint-based controllers for sensor-based
robotic tasks.

I. MOTIVATION AND BACKGROUND

While robots have traditionally been used for automating
repetitive tasks in highly structured environments, there is
an increasing demand for robots to perform more complex
tasks in less-structured environments. However, this increased
complexity results in longer application development and
deployment times, and hence a higher automation cost. To
address this issue, robot task specification frameworks have
been designed with the goal to enable easy specification of
sensor-based controllers that can react to the disturbances in
these less-structured environments.

The pioneering research in this field focused on specifying
the desired behavior of the robot (e.g. position, velocity,
or contact force) directly in the task space [1, 2]. It was
found that by using the Task Function Approach (TFA)
proposed in [3], complex sensor-based behaviors could be
implemented with relative ease. This approach is referred to as
constraint-based robot task specification, and several software
frameworks have been developed over time based on these
ideas (e.g. COMRADE [4], iTaSC [5], eTaSL [6], SOT [7]).
Some of these frameworks perform only kinematic control
and rely on the internal motion controllers of the robots [8]
for its execution, such as [4–6], while other frameworks also
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allow for full dynamic control and directly output control
torques to the robots, such as [7]. The focus of this paper is
on software frameworks that use the former approach. Using
the TFA in such frameworks allows for easy tuning of the
sensor-based constraint controllers, as it imposes a desired
closed-loop response, with a bandwidth that is required to
stay sufficiently below the bandwidth of the robot’s internal
motion controllers, which is easily determined.

However, purely reacting to sensor measurements can lead
to tracking errors, caused by unmodeled disturbances. These
disturbances can be accounted for by incorporating a model
of the environment and explicitly estimating the disturbances
based on sensor measurements, as demonstrated in [9] for a
1-degree-of-freedom (1–dof) force tracking task. The Kalman
filter family stands out as the most widely used estimator, as
it involves a probabilistic approach that is provably optimal
under certain assumptions [10]. However, these assumptions
do not hold in most applications, making the tuning of the
process and measurement noise covariance matrices a tedious
and time-consuming effort. An alternative approach is to
use the Luenberger observer with pole placement [11], a
deterministic estimator that imposes a desired closed-loop
response for the estimated state variables.

Given the TFA’s control approach, the duality which exists
between control and estimation, and the inspiration provided
by the Luenberger observer, the following question arises: is
it possible to also implement an estimator using the TFA and
will this also result in easy tuning of the estimator? This paper
addresses this question and shows how the TFA can in fact
be used to synthesize an estimator, the tuning of which only
relies on knowing the bandwidth of the sensor noise. If this
bandwidth is not specified by the manufacturer of the sensor,
it can be easily determined experimentally. The design of the
estimator is presented in a unified framework that uses the
TFA to synthesize both the controller and estimator, exploiting
the duality that exists between them.

This concept was tested using an existing task specification
framework, eTaSL [6], and it was found that, by also
formulating the estimator using the TFA, the framework can
be used without modification to implement and easily tune
both the controller and estimator. From a pragmatic point
of view, this offers a significant advantage, as no additional
software has to be developed and maintained.

A force-controlled contour following application was
selected to validate the performance of the proposed approach.
Contour following has become a benchmark in literature,
as it represents a challenging task requiring accurate force
control, and is also integral to many industrial applications



(e.g. grinding [12], deburring [13], shape recovery [14]).
Even though this task can be accomplished using only sensor
feedback and without the use of an estimator, it has been
shown that the use of an estimator can improve the tracking
accuracy [5]. When estimators are used for contour following,
it is typically done using an Extended Kalman filter (e.g. [5])
or a use-case-specific approach (e.g. [15]). However, these
approaches introduce significant complexity, which we aim
to reduce.

It has also been shown that the tracking performance of the
contour following can be improved by incorporating a CAD
model [16], or using additional sensors, such as vision [17].
This additional information can be used by a feedforward
controller [17], or by using preview control [18]. However,
for the sake of simplicity, we demonstrate our approach on
an application that only relies on force measurements. This
is because contour following in itself is not the focus of
the paper, but is only used to demonstrate the advantages of
the proposed approach. Nonetheless, the approach allows for
incorporating CAD models and additional sensors.

This paper has the following outline. Section II shows
how the TFA can be extended to specify both the controller
and estimator while exploiting the duality between them.
Section III describes the contour following application used
to validate this approach and formulates its specification.
Experimental results are provided in Section IV, which is
followed by a discussion and conclusion in Section V.

II. CONSTRAINT-BASED ROBOT TASK SPECIFICATION

Part A of this section models the overall system, defining
the system states, system dynamics, and system outputs. Part B
describes the system constraints, which are used to specify
the desired behavior of the system. Additionally, it introduces
the TFA as a way to enforce the system constraints. Part C
shows how the control inputs and estimated disturbances can
then be found by applying the TFA.

A. System model

Most robot applications involve motion. Motion can always
be seen as relative motion between two objects. In many
applications, one object is manipulated by the robot, hence
its motion can be controlled by the robot, while the other
object is external to the robot (i.e. belongs to the robot
environment), and hence its motion cannot be controlled by
the robot. However, an estimate of its position or orientation
is usually available from a CAD model, from on-line teaching
of the robot task, or from sensor measurements. Still, the
true position or orientation of the external object is uncertain,
especially if it is subject to disturbances. These disturbances
affect the relative motion between the two objects. This is
illustrated in Fig. 1 (a) and (b) for position and orientation,
respectively. This simple model can be extended to motion in
contact where contact forces and moments occur, as forces
and moments are always generated in a contact between two
objects. If one object is manipulated by the robot, and the
other belongs to the environment, disturbances in the position
or orientation of the latter affect the contact force or moment.

Fig. 1. Illustrations of 1–dof relative motion between the robot and the
environment: in free space with a desired position (a) or rotation (b); in
contact with resulting force (c) or moment (d). xc represents a state that
can be controlled by the robot, while xu represents an uncontrollable state.

This is illustrated in Fig. 1 (c) and (d), where a spring with
stiffness Kstiff is introduced as a simple model for the contact
dynamics.

In Fig. 1, xc represents the 1–dof position or orientation of
the manipulated object. Generalizing to multiple degrees of
freedom, we introduce controllable states xc comprising of
both robot joint states xq ∈ Rnq and virtual states xv ∈ Rnv ,
the latter of which are used to model additional controllable
states which arise in the specification of tasks, such as an
imposed degree of advancement along a path to be followed
by the robot. In Fig. 1, xu represents the 1–dof position
or orientation of the environment. Similarly, we introduce
uncontrollable states xu that can be used to model geometric
position or orientation uncertainties in multiple degrees of
freedom in the environment. This concept is inspired by the
uncertainty coordinates introduced in [5], where it is argued
that a variety of different sensor-based applications can be
modeled in this way. More formally, the states of the system
are:

x =

[
xc
xu

]
xc =

[
xq
xv

]
. (1)

Next, the dynamics of the system are modeled as:

ẋ =

[
ẋc
ẋu

]
=

[
u
d

]
. (2)

This model of the system assumes that the dynamics
of the controllable states can be reliably controlled by
using the control input u ∈ Rnc , while the dynamics of
the uncontrollable states are modeled as being affected by
exogenous inputs, or disturbances d ∈ Rnu . While the states
x are defined at position level, it follows from (2) that u and
d are inputs at velocity level. Similarly as for the controllable
states, the control inputs are also divided into desired robot
joint velocities uq ∈ Rnq and virtual control inputs uv ∈ Rnv .

It is assumed that the robot can reliably execute the desired
robot joint velocities uq. This assumption is valid when



using industrial manipulators, as they are equipped with
high-performance internal motion controllers, provided the
closed-loop bandwidth of the task controllers to be designed
stays sufficiently below the bandwidth of the internal motion
controllers. It is also assumed that the robot joint states xq are
accurately known at all times. Again this assumption is valid
when using industrial manipulators, as they are equipped with
joint encoders which provide accurate measurements of the
robot joint positions at the control sampling rate.

The values of the virtual states xv can be kept track of
internally by taking into account the sampling time of the
controller ∆T and using forward Euler integration:

x+
v = xv +∆T uv, (3)

where x+
v is the state xv at the next time step.

Next, we distinguish between two different types of system
outputs, namely the task outputs y and the measured outputs z.
An example of a task output could be the Cartesian position of
the robot end-effector, or the distance between a manipulated
object and the environment as illustrated in Fig. 1. On the
other hand, measured outputs relate to sensors, such as force,
laser, or camera sensors. An output can be both a task output
and a measured output, such as the distance between the
robot and an obstacle, which has to be constrained, but is
also measured using a camera.

The task outputs can be modeled using the task function g,
while the measured outputs can be modeled using the
measurement function h. Both the task function and the
measurement function depend on the states x of the system,
and can also have an explicit dependency on time t:

y = g(x, t) z = h(x, t). (4)

The measurement function can be used to produce predicted
measurements ẑ, provided that a state estimate x̂ is available.
Since the controllable states xc are either accurately measured,
as is the case for the robot joint positions xq, or kept tracking
of internally, as is the case for the virtual states xv, the
estimate of the state is formed by the correctly known values
for the controllable states xc, and estimated values for the
uncontrollable states xu:

ẑ = h(x̂, t) x̂ =

[
xc
x̂u

]
. (5)

B. Dual task function approach for control and estimation

The desired behavior of the system can be described using
a constraint-based approach, where the constraints are either
task constraints or measurement constraints. For task con-
straints, the desired behavior is that the task output y should
track a desired task value yd. For measurement constraints, the
desired behavior is that the predicted measurements ẑ should
correspond to the actual measurements zm. The difference
between the task output and desired task output is referred
to as the task error ey, while the difference between the
predicted measurement and actual measurement is referred
to as the prediction error ez.

ey = g(x, t)− yd ez = h(x̂, t)− zm (6)

In previous work [6], the TFA was used to satisfy task
constraints by imposing a first-order decay on task errors.
We propose to similarly use the TFA to satisfy measurement
constraints, by imposing a first-order decay on the prediction
errors:

d
dt
ey = −Key

d
dt
ez = −Lez. (7)

The feedback gain matrices K and L are chosen to be
diagonal with entries Ki and Li corresponding to the desired
closed-loop time constants K−1

i and L−1
i of the individual

task and measurement constraints. While the values of both
Ki and Li are chosen as large as possible, Ki should be
chosen to be below the bandwidth of the robot’s internal
motion controllers, while Li should be chosen below the
bandwidth of the sensor noise. Both the bandwidth of the
motion controllers and that of sensor noise can be easily
determined experimentally if they are not known beforehand.
This makes the overall tuning process for the controller and
estimator fast and intuitive. It is useful to introduce the
following short-hand notation when specifying individual
tasks or measurements constraints:

yi
Ki−−→ yd,i ẑi

Li−→ zm,i (8)

While the TFA is typically used to enforce position-level
constraints, it can also be used to specify velocity-level
constraints. This can be done by setting the feedback gain to
zero. A shorthand similar to (8) is introduced in (11):

d
dt
(y − ẏdt) = 0 (9)

ẏ = ẏd (10)

ẏi
vel−→ ẏd,i. (11)

C. Solving for control inputs and estimated disturbances

Once the task and measurement constraints have been
specified, it is possible to solve for the control inputs and
estimated disturbances, as shown in this section. However,
it should be noted that in practice the following derivations
are performed in an automated way, by making use of an
automatic differentiation tool (e.g. the expressiongraph library
of eTaSL [6]).

It is possible to find the control inputs which enable the
decay in task errors by expressing the time-derivative of the
task errors in terms of the control inputs u:

d
dt
ey =

∂ey(x, t)

∂x

∣∣∣∣
xk,tk

ẋ+
∂ey(x, t)

∂t

∣∣∣∣
xk,tk

(12)

= Jy,xẋ+
∂ey

∂t (13)

=
[
Jy,xc Jy,xu

] [u
d

]
+

∂ey

∂t . (14)

Equation (13) is the same as (12), but using a more
compact notation. Equation (14) is found by splitting up the
Jacobian term, and substituting the system dynamics from (2)
into (13). Finally, the equation for finding the control inputs
u which enforce the decay in task error can be expressed by



combining (7) and (14), showing the feedback, feedforward
and disturbance rejection terms:

Jy,xcu = −
feedback︷︸︸︷
Key −

feedforward︷︸︸︷
∂ey

∂t −

disturbance
rejection︷ ︸︸ ︷
Jy,xud . (15)

The feedforward term arises from the fact that both the task
function g and the desired task value yd are allowed to be
time-varying. Solving (15) for u provides the desired control
input. To evaluate (15), it is necessary to have both an estimate
of the system states x̂, as seen in (12), and an estimate of
the disturbance d̂. Because of this added complexity, the
disturbance rejection term is often neglected, which results
in tracking errors. It will now be shown how this estimation
can in fact be performed in a simple way by using a similar
approach as used by the controller.

As stated in Section II-A, the values of the controllable
states are known. Hence, it is only necessary to estimate
the values of the uncontrollable states x̂u, as well as the
disturbances d̂. The estimates of the uncontrollable states can
be updated as in (3), using forward Euler integration:

x̂+
u = x̂u +∆T ˙̂xu. (16)

This of course requires that ˙̂xu is known. It is possible to find
˙̂xu by going through a similar procedure as is done in (12)
through (15), as a result of the similarity which exists between
control and estimation. In the case of the controller, the goal
is to accurately track desired task outputs, which is done by
applying control inputs u. In the case of the estimator, the
task is to accurately estimate the uncontrollable states xu,
which can be done by applying the estimator correction ˙̂xu.

Similarly as for (12) through (14), the value of ˙̂xu can
be found by expressing the time-derivative of the prediction
errors in terms of the correction term ˙̂xu:

d
dt
ez =

∂ez(x̂, t)

∂x

∣∣∣∣
x̂k,tk

˙̂x+
∂ez(x̂, t)

∂t

∣∣∣∣
x̂k,tk

(17)

= Jz,x
˙̂x+ ∂ez

∂t (18)

=
[
Jz,xc Jz,xu

] [ ˙̂xc
˙̂xu

]
+ ∂ez

∂t . (19)

The terms ˙̂xc and ˙̂xu represent the correction we want to
make to the estimates of the states. Using the assumption
that the controllable states xc are good estimates already,
they do not contribute to the innovation and do not have to
be corrected. Hence, it is only necessary to correct for the
states xu. We therefore set the values of ˙̂xc to zero, and by
combining (7) and (19) we arrive at:

Jz,xu
˙̂xu = −Lez − ∂ez

∂t . (20)

The feedforward term ∂ez

∂t arises because the measurement
function h is allowed to be time-varying.

Correcting the estimate x̂u can then be done using ˙̂xu
according to (16). Also, ˙̂xu can be used as an estimate of
the disturbance d̂ in (15). This approximation is valid if
a constant-velocity model is a good approximation for the

geometric uncertainty xu and when the estimator, and hence
the innovation, reaches a steady state.

The sets of linear equations in (15) and (20) can be
(partially) over- and/or under-determined. One way to find
a solution for the general case is to use the approach of
eTaSL [6], where a Quadratic Programming (QP) problem
is formulated to find a solution. As explained in [6], this
approach can also be used to enforce inequality constraints,
which are useful for specifying joint position and velocity
limits. The similarity between (15) and (20) is what enables
an existing constraint-based task specification framework like
eTaSL to synthesize both a controller and estimator.

III. CONTOUR FOLLOWING APPLICATION

A force-controlled contour following application is selected
to validate the performance of the proposed control and
estimation strategy. Fig. 2 shows the setup which consists
of a 2D contour and a robot arm (Universal Robots UR10),
equipped with a tool and JR3 force-torque sensor. Attached to
the tool is a roller, which follows the contour while providing
near-frictionless contact. For simplicity, it is assumed that the
contour is in the horizontal plane of the world.

The code used to implement the application can be found
here1, and makes use of the eTaSL framework. The expres-
siongraph library of eTaSL allows for generating symbolic
expressions of the task and measurement functions, based on
the URDF file of the robot. These symbolic expressions are
then used to automatically generate the necessary Jacobians
by making use of automatic differentiation.

A. Geometric modeling

The following reference frames are defined: the world
frame {w}, which coincides with the robot base; end-effector
frame {ee}, which is known as a function of the joint states
xq; force sensor frame {sensor} and tool center point frame
{tcp}, which are both attached to the end-effector. The {tcp}
frame is placed at the center of the roller with its z-axis
pointing up towards the robot end-effector.

Furthermore, following the task frame formalism [1, 2],
a task frame {tf} is defined. Due to the circular symmetry
of the roller, the contact between wheel and contour can

1https://github.com/ruanViljoen/Contour-Following

Fig. 2. Contour following setup where the robot is tasked to follow the
contour of the object using force feedback.

https://github.com/ruanViljoen/Contour-Following


be modeled as a contact between a point and a contour
that is grown by the radius r of the roller. Therefore, the
origin of {tf} is placed at the origin of {tcp}. In the task
specification, the orientation of {tf} will be constrained to
align with the contour normal. This can be done using two
different scenarios. In scenario 1, {tcp} is fixed in orientation
to {tf}. This has the limitation that after having completed
one revolution around the contour, {tcp} has also rotated by
one revolution, and the robot will have reached its joint limits.
This problem is avoided in scenario 2, where {tf} is allowed
to rotate freely around the z-axis of {tcp} by introducing
an additional degree of freedom. Hence, the transformation
between {tcp} and {tf} is expressed using a homogeneous
transformation matrix

Ttf
tcp (xv1) =

[
R(Z, xv1) 03×1

01×3 1

]
, (21)

where xv1 is a virtual state as introduced in Section II-A.
Since the application involves a point contact, no moments

are generated, and only forces are considered. The contact
forces sensorfm are measured within the sensor frame, but can
be transformed to the task frame using

tffm = Rsensor
tf sensorfm. (22)

B. Constraint-based task specification

Contour following can be achieved using the following
specification. Firstly, the robot should maintain a desired
orientation between the task frame and the contour. In
particular, the task frame should remain aligned with the
contour surface normal. This is an application of the relative
motion illustrated in Fig. 1 (b). Secondly, the robot should
maintain a desired force between the roller and the contour.
This is an application of the relative motion illustration in
Fig. 1 (c). Both of these constraints will be affected by
disturbances as the contour following progresses, caused
by the curvature of the contour as well as changes in
contact stiffness. By making use of the approach presented
in Section II, these disturbances can be estimated and then
compensated for by the controller. Finally, it is also necessary
to specify constraints which keep the roller in a horizontal
plane, as well as a constraint which enforces a desired
tangential velocity along the contour. The specification of
all these constraints are discussed in the remainder of this
section.

1) Orientation constraint to align the task frame: The
orientation of the {tf} is constrained such that its x-axis
is aligned with the contour normal, which is not known
beforehand, and can change as the tool progresses along the
contour. Therefore, the orientation of the contour normal is
modeled as a rotational geometric uncertainty xu1 defined
relative to the x-axis of the world. From Fig. 3 (a) it follows
that the alignment error δo between the contour normal n
and the x-axis of {tf} is modeled as:

δo = relativeAngle(xu1 , tfθyaw ), (23)

where tfθyaw is the yaw angle of the task frame, and can be
controlled by the robot. The relativeAngle function is used

Fig. 3. An illustration of the orientation constraint (a) and force constraint
(b). For the force constraint it is assumed that the task frame is aligned the
contour. These constraints are examples of the relative motions shown in
Fig. 1.

to deal with wrap-around. The alignment error δo can be
measured indirectly, by noting that in the absence of friction,
the contour normal coincides with the direction of the force:

δo,m = arctan2( tffm,y, tffm,x ). (24)

The alignment error δo is set both as a task output to be
controlled to zero, and as a measured output used to estimated
the disturbance acting on xu1. Firstly, δo is controlled to zero
with a task constraint:

g1(x) : δo
K1−−→ 0. (25)

Secondly, δo is used to estimate the disturbance d1 acting
on uncontrollable state xu1 by imposing a measurement
constraint:

h1(x) : δ̂o
L1−−→ δo,m. (26)

2) Force constraint in the normal direction: The objective
is to maintain a desired force fd. This is achieved with
an admittance control type of strategy, where the force is
modeled by a deformation multiplied with a stiffness.

Assuming that the orientation constraint ensures that {tf}
stays aligned with the contour, the force constraint reduces
to regulating the force along the x-axis of {tf} as illustrated
in Fig. 3 (b). In this figure, the position of the contour is
modeled as a geometric position uncertainty xu2, while the
position of the roller is represented by the virtual state xv2,
which represents the cumulative movement of the roller along
the x-axis of {tf}. Hence, xv2 is kept track of by integrating
the translational velocity of the roller along the x-axis of the
task frame, tfvx, during the task execution. Accordingly, the
deformation δn between the roller and the contour is modeled
as:

δn = xu2 − xv2. (27)

To obtain the normal contact force, δn is multiplied by the
modeled contact stiffness Kstiff. This force is regulated to a
desired value using the task constraint:

g2(x) : Kstiff δn
K2−−→ fd. (28)

To estimate the disturbance d2 acting on the uncontrollable
state xu2 the following measurement constraint is specified:

h2(x) : Kstiff δ̂n
L2−−→ fm,x. (29)



3) Planar constraints: For planar contour following, it is
necessary to constrain the movement of the roller to a fixed
horizontal plane. This can be done in two steps. First, the
z-position ptf

z of {tf} is constrained to the known z-position
of the contour pc

z using the shorthand introduced in (8):

g3(x) : p
tf
z

K3−−→ pc
z. (30)

Second, to keep the roller level with the contour, the roll
and pitch of {tf}, θtf

roll and θtf
pitch, are constrained with:

g4(x) : θ
tf
roll

K4−−→ 0, g5(x) : θ
tf
pitch

K5−−→ 0. (31)

4) Velocity constraint in the tangential direction: The tool
should move with a desired velocity vd along the contour.
Assuming that {tf} is aligned with the contour, this can be
achieved by using a task constraint:

g6(x) : tfvy
vel−→ vd, (32)

where tfvy is the y component of the roller velocity in {tf}.

IV. EXPERIMENTAL RESULTS

The method was tested using two different contours, a
circular contour with an effective radius Reff of 6.5 cm (i.e.
circle radius R + roller radius r), and a complex contour
consisting of circular arc and straight-line segments as shown
in Fig. 4. In all experiments, the desired contact force was
10 N, and a modeled stiffness Kstiffness of 2500 N.m−1 was
assumed.

The controller gains K1,K3,K4 and K5 where chosen to
be 3 s−1, while the force control gain K2 was chosen to be
5 s−1. These gains were tuned experimentally to be as large
as possible but sufficiently below the bandwidth of the robot’s
internal motion controllers. As for the estimator gains, L1 =
L2 = 3 s−1 were tuned experimentally, so as to also be as
large as possible but sufficiently below the bandwidth of the
force sensor’s measurement noise.

The controller was implemented as an Orocos component
on a desktop PC with a 12-core Intel Xeon E5-1650v3 CPU
running Ubuntu 20.04. The control and estimation frequency
was set to 200 Hz.

Fig. 4. Complex contour showing starting position and direction. The
effective radius Reff is shown with the dashed line.

Three experiments were conducted involving scenarios 1
and 2 (see Section III-A), as summarized in Table I.

TABLE I
OVERVIEW OF EXPERIMENTS

exp. contour vd [cm.s−1] scenario disturbances rejected fig.

1 circle 4 1 vs. 2 none vs. d1 5
2 circle 4 2 none vs. d1 vs. d1 & d2 6
3 complex 2 2 none vs. d1 & d2 7, 8

scenario 1: {tcp} aligned with {tf}; scenario 2: {tcp} not aligned with {tf}
d1: disturbance in orientation; d2: disturbance in normal direction.

Experiment 1: The aim of experiment 1 was to compare
the force tracking error with the circular contour for scenarios
1 and 2, while also evaluating the effect of adding disturbance
rejection for d1 in the orientation direction. For the circular
contour, the steady-state force tracking error when using
disturbance rejection for d1 is expected to be zero, while as
shown in [8], without disturbance rejection it is given by:

∆f =
Kstiffness

K1K2

v2d
Reff

. (33)

For a desired tangential velocity vd of 4 cm.s−1, (33) results
in a steady-state error of 4.1 N.

Fig. 5 shows the results of experiment 1. For scenario 1,
the force tracking behaves as expected, with a steady-state
error of approximately 4.1 N initially, and approximately 0 N
when the disturbance rejection is activated. However, after
one revolution around the contour the robot reaches a joint
limit and has to stop. This joint limit is avoided in scenario
2, but the force tracking error does not correspond with the
predicted behaviors, and there is a sinusoidal tracking error
even when rejecting the disturbance d1. This force tracking
error is caused by an unmodeled effect, such as a directional
variation of the overall contact stiffness, or an eccentricity in
the tool.

Experiment 2: The aim of experiment 2 was to show that
the unmodeled disturbance observed in experiment 1, for
scenario 2, could be compensated for by also performing
disturbance rejection of d2 in the normal direction. Fig. 6
shows the results of experiment 2. As expected, the force
tracking error was reduced by adding the disturbance rejection
of d1, but the sinusoidal tracking error observed in experiment

no disturbance  
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approach 
to contact

disturbance  
rejection     

Fig. 5. Experiment 1: force tracking error for circular contour for the two
scenarios, without and with disturbance rejection d1.
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Fig. 6. Experiment 2: force tracking error for circular contour (multiple
revolutions) and scenario 2, with different disturbance rejection modes.

1 was still present. When the disturbance rejection of both
d1 and d2 was used, this tracking error was further reduced.

Experiment 3: The aim of experiment 3 was to show
how the force tracking error could also be reduced when
using the complex contour of Fig. 4. Here vd was specified
as 2 cm.s−1, the fastest velocity that could be maintained
without losing contact when no disturbance rejection was
used. Fig. 7 compares the force tracking error with and
without the disturbance rejection of both d1 and d2. By using
the disturbance rejection, the RMS of the force tracking error
during the contour following phase could be decreased by
79.2%, from 2.4 N to 0.5 N. Fig. 8 shows both the ground truth
and estimated values of the disturbance d1 in the orientation
tracking direction, showing accurate tracking. The ground
truth of d1 was obtained by dividing vd by the effective
radii of the circular arc segments. A benefit of using the
disturbance rejection was that faster tangential velocities
could be maintained without losing contact during the contour
following exercise. Without disturbance rejection, tangential
speeds of up to 2 cm.s−1 could be specified without losing

contour following
approach
to contact

Fig. 7. Experiment 3: force tracking error for complex contour (1 revolution)
and scenario 2, without and with disturbance rejection of d1 and d2.

Fig. 8. Experiment 3: round truth versus estimated values of disturbance d1.

contact with the contour. With disturbance rejection, this value
increased to 3.5 cm.s−1, representing a 75% improvement.

V. DISCUSSION AND CONCLUSION

The main novelty of this paper is that it presented a unified
framework for the specification of sensor-based robot tasks,
enabling the dual synthesis of a controller and an estimator
using the TFA. The advantage of this approach is two-fold.
Firstly, it allows for easy tuning of the controller and estimator,
which enables more rapid application deployment. Secondly,
as this approach makes use of the duality between control
and estimation, the same software component can be used for
both the controller and estimator. In fact, it was found that
an existing constraint-based task specification tool, which
is normally used only for control, could be used without
modification to also perform the estimation. As a further
advantage (not shown in the paper), this allows us to easily
incorporate hard or soft constraints between the geometric
uncertainties that have to be estimated.

While the approach for the estimator was inspired by the
Luenberger observer with pole placement, it is conceptually
different, as it imposes a decay on the innovations whereas the
Luenberger observer imposes a decay on the state estimation
errors. Still, if the Jacobian matrix in (20) is diagonal, both
approaches yield the same result. We refer to this as the case
of decoupled uncertainties.

As an illustration, we showed how this approach can be ap-
plied to a complex sensor-based task, namely the well-known
force-controlled and model-free planar contour following
task. As expected based on previous studies, experimental
validation confirmed that the performance of the task could
be significantly improved by estimating and compensating for
the geometric disturbances. More specifically, when tracking
the contour with a tangential speed of 2 cm.s−1, the RMS
force error could be decreased by 79.2% when the disturbance
rejection was used. Additionally, the maximum speed that
could be achieved without losing contact was increased
by 75% when using the disturbance rejection. The results
achieved by using this simpler approach are comparable to
those which use more complex estimation strategies, such
as in [15] and [18], which validates the usefulness of the
proposed approach. Moreover, this experimental validation
could be carried out with the existing software framework
eTaSL [6], without any modification.

As for the tuning, the control and estimator gains have an
intuitive interpretation, being the inverse of the time constants
of the first-order decay of the control and estimation errors.
All achieved control gains were in the range 3 s−1 to 5
s−1 that we expected based on our previous experience with
constraint-based control of the UR10 and comparable robots
such as the KUKA LBR iiwa. On the other hand, the two
estimator gains that we achieved were only 3 s−1. This is
lower than we expected, because usually estimator gains can
be tuned higher than control gains, as correcting an estimate
does not involve any actual robot motion, hence there is
no limitation related to the bandwidth of the robot’s motion
controllers. In the contour tracking application, these small



estimator gains result from the fact that force sensors have
significant sensor noise. In fact, a low-pass prefilter was used
in the experiments to attenuate the noise as much as possible.
In contrast, in preliminary experiments with laser distance
sensors, which are known to have much lower noise levels,
we found that much larger estimator gains (up to 15 s−1)
could be used, yielding much more accurate performance in
a non-contact surface tracking experiment. As a conclusion,
estimator gains are limited by the bandwidth of the low-pass
filter used to attenuate the sensor noise, if any.

One limitation of this approach is that it only models
disturbances acting on the uncontrollable states of the system,
and assumes a constant velocity model for these disturbances.
Even though a constant velocity model might seem limiting,
it is known to provide surprisingly good performance [19].
Nonetheless, allowing for more complex disturbance models
will improve the generalizability of the approach.

Also, our validation experiment only involved decoupled
uncertainties, resulting in decoupled estimation constraints
(26) and (29). While this case is very common in practical
applications, it is not a restriction of the proposed estimator.

The approach was only verified using one application.
However, as argued in [5], many sensor-based tasks can be
described in terms of relative motion between the robot and
the environment. For example, as explained in Section III-B,
the contour following could be achieved by combining two of
the four types of relative motion shown in Fig. 1. Whenever
such type of relative motion is part of the application, the
proposed approach can be used to estimate and compensate for
disturbances caused by motion of the environment. Hence,
we believe that the proposed method has the potential to
simplify the specification of a wide range of sensor-based
tracking tasks, both in free space (e.g. visual servoing) and
in contact, allowing for faster robot application deployment.
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