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Abstract— Robustness in Simultaneous Localization and
Mapping (SLAM) remains one of the key challenges for the
real-world deployment of autonomous systems. SLAM research
has seen significant progress in the last two and a half decades,
yet many state-of-the-art (SOTA) algorithms still struggle to
perform reliably in real-world environments. There is a general
consensus in the research community that we need challenging
real-world scenarios which bring out different failure modes in
sensing modalities. In this paper, we present a novel multi-
modal indoor SLAM dataset covering challenging common
scenarios that a robot will encounter and should be robust to.
Our data was collected with a mobile robotics platform across
multiple floors at Northeastern University’s ISEC building.
Such a multi-floor sequence is typical of commercial office
spaces characterized by symmetry across floors and, thus, is
prone to perceptual aliasing due to similar floor layouts. The
sensor suite comprises seven global shutter cameras, a high-
grade MEMS inertial measurement unit (IMU), a ZED stereo
camera, and a 128-channel high-resolution lidar. Along with the
dataset, we benchmark several SLAM algorithms and highlight
the problems faced during the runs, such as perceptual aliasing,
visual degradation, and trajectory drift. The benchmarking
results indicate that parts of the dataset work well with some
algorithms, while other data sections are challenging for even
the best SOTA algorithms. The dataset is available at https:
//github.com/neufieldrobotics/NUFR-M3F.

Index Terms— Multi-modal datasets, Simultaneous Localiza-
tion and Mapping, Indoor SLAM, lidar mapping, perceptual
aliasing

I. INTRODUCTION

This paper presents a multi-modal SLAM dataset of sev-
eral real-world sequences captured in a large-scale indoor
environment. Simultaneous Localization and Mapping is an
extensively researched topic in robotics that has seen major
advances in recent decades [1]. It is a hardware and software
co-design problem, and the performance of the solution is a
function of the right choice of complementary sensors, their
proper configuration and calibration, vehicle motions, and,
finally, the uncertainties in the real-world mapping environ-
ment. Often, methods that work well in certain scenarios fail
in the real world due to various factors. These may include
environmental uncertainties, dynamic objects, illumination
artifacts, and issues associated with robotic motion and
trajectories.

The performance of state-of-the-art (SOTA) SLAM algo-
rithms is limited by the lack of publicly available datasets
for testing: KITTI[2], TUM RGB-D[3], TUM Mono[4],
and Euroc MAV[5]. These datasets have many strengths
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Fig. 1: (a) The data collection rig mounts to an omnidirectional base with
the sensors approximately 1.2m above the ground. (b) The data collection
site, Northeastern University’s Interdisciplinary Science and Engineering
Complex (ISEC), which has an open atrium and several floors with a high
degree of symmetry in their layout and overall design.(c) A composite
rendition of the lidar point cloud depicting all the floors from top view.

and have positively impacted the SLAM algorithm design
and evaluation using different sensor modalities, including
monocular vision, stereo vision, visual-inertial odometry
(VIO), RGBD cameras, and 3D lidars. However, new large-
scale public datasets with multiple sensing modalities are
essential. Recent work [6][7] has also shown that fusing
data from multiple sensors improves the robustness and
accuracy of SLAM estimates in challenging scenarios often
encountered in the real-world.

Our dataset described in table I consists of visual, inertial,
and lidar sensor data, allowing for multi-modal SLAM
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TABLE I: An overview of the indoor multi-modal SLAM datasets

Sensors Arrangement Frame
Rate(Hz)

No.
of Se-
quences

Platform Ground truth Sync Environment

Newer Col-
lege

2 GS cameras
1 LiDAR
1 IMU

2 stereo, 2 Non-
overlapping

30 3 Handheld Survey grade
3D Imaging Laser HW +

SW
Campus

PennCosy-
VIO

3 RGB GS cameras
2 Gray RS cameras
2 IMUs

3 min overlap-
ping, 2 stereo

20 4 Handheld Fiducial
Markers HW +

SW
Campus

HILTI
5 GS Gray cameras
2 LiDARS
3 IMU

2 stereo, 3 Non-
overlapping

10 12 Handheld MoCAP HW
+SW

Construction
site

HILTI-
Oxford

5 GS IR cameras
1 LiDAR
1 IMU

2 stereo, 3 Non-
overlapping

40 16 Handheld Survey grade
3D Imaging Laser HW +

SW

Construction
Site

Ours

7 GS RGB cameras
1 Zed 2i
1 LiDAR
1 IMU

5 Fronto-Parallel
2 Side-ways 20 14 Mobile Robot

Fiducial markers
+3D
LiDAR alignment

HW +
SW

Campus

office

HW + SW

evaluations. The specifications of each sensor are detailed
in table II. The entire sensor suite shown in figure 1a is time
synchronized and spatially calibrated across all sensors for
accurate data capture and analysis as shown in figure 2.

To the best of our knowledge, this is the first dataset that
has continuous multi-floor data for SLAM, and we know of
no algorithm that is capable of processing the uninterrupted
data across multiple floors into an accurate map of the entire
building in an autonomous manner. The dataset presents new
fundamental challenges to further the research on inform-
ing design decisions and algorithmic choices in performing
SLAM with higher reliability. Even if (or when) this becomes
possible, the dataset poses interesting questions related to
localization due to symmetry across floors. This dataset
serves to complement the recent multi-modal benchmarking
datasets [8][9][10]. The contributions of this paper can be
summarized as:

• It outlines challenging multi-modal indoor datasets cov-
ering a variety of scenarios including featureless spaces,
reflective surfaces, and multi-storeyed sequences.

• The multi-storeyed sequences, as is typical with modern
architecture, features floors that are essentially identical
in design and layout which leads to perceptual alias-
ing scenarios. These scenarios trip up state-of-the-art
SLAM algorithms, the vast majority of which rely on
bag of words models for relocalization and loop closure.

• It features an extensive set of sensors consisting of seven
cameras, a high-resolution lidar, and an IMU. All the
sensors are hardware synchronized and calibrated across
the entire sensor suite.

• We have benchmarked several state-of-the-art algo-
rithms across the visual, visual-inertial, and lidar SLAM
methodologies and present a comparison among these
different algorithms and sensor modalities that high-
lights their individual strengths and areas where there
are engineering or fundamental theoretical issues that
the community may need to focus on.

II. RELATED WORK

Several SLAM datasets exist in the literature which vary in
regards to the data acquisition environment, varying sensing
modalities, type of motions, degree of difficulty, number of
sensors, and synchronization of the data capture. The table
I summarizes several multi-modal datasets closely related to
us.

KITTI[2] is one of the first and most popular benchmark-
ing multi-modal datasets motivated by self-driving cars. It
has a linear array of four cameras consisting of two stereo
pairs - One RGB and one grayscale, a lidar, an IMU, and a
GPS. Following this, many outdoor urban datasets emerged
in the domain of autonomous driving, such as [11][12][13],
which allowed the evaluation of various odometry and SLAM
algorithms. Many earlier indoor SLAM datasets targeted
visual odometry(VO) and visual-inertial odometry (VIO)
tasks for monocular and stereo systems. The TUM[14] and
EUROC[5] datasets are extensively used for benchmarking
VO and VIO solutions. These datasets have global shutter
stereo cameras, hardware synchronized with the IMU, and
millimeter-accurate ground truth from motion capture sys-
tems.

A few recent efforts [8][15] gathered multi-sensor (beyond
stereo) and multi-modal data in urban indoor environments.
PennCOSYVIO[15], is collected at Upenn’s campus area
with a stereo VI sensor, two project Tango devices, and three
GoPro cameras arranged in a minimally overlapping config-
uration. The sensors are mounted on a handheld platform
and carried across indoor and outdoor areas. The ground
truth is provided using fiducial markers placed along the
trajectories. The Newer College Dataset[8] and its extension
contain synchronized image data from the Alphasense sensor
with four cameras - two facing forward and two on the side
as well as a lidar mounted on a handheld device.

More recently, the Hilti[9] and Hilti-Oxford[16] datasets
attracted a lot of attention through their SLAM challenge,
where multiple teams from both academia and industry
participated. The main objective of this dataset is to push
the limits of the state-of-the-art multi-sensor SLAM algo-
rithms to aid real-world applications. There are indoor and



Fig. 2: Top view of the sensor rig showing sensor frames for the front-
facing camera array (red), the non-overlapping side cameras (orange), the
ZED camera (purple), the IMU (green) and the lidar (blue). Note the above
image follows the convention that ⊗ indicates an axis into the plane of the
image, and • indicates an axis out of the plane of the image. All of the
cameras are z-axis forward, y-axis down.

outdoor sequences of construction sites and parking areas
that contain some challenging scenarios of abrupt and fast
motions and featureless areas. These datasets are collected
with an Alphasense five-camera module with a stereo pair,
three non-overlapping wide-angle cameras, an IMU, and two
laser scanners.

All these datasets contain challenging sequences with
changing lighting and texture, challenging structures such
as staircases, and featureless spaces. Our dataset also con-
sists of multi-modal data with cameras, lidar, and inertial
measurements. In addition to featuring the challenging sce-
narios mentioned above, our dataset showcases symmetrical
structures located on multiple floors which present unique
challenges due to perceptual aliasing.

III. DATA COLLECTION SYSTEM

A. Hardware Setup

We built a rigid multi-sensor rig consisting of seven
cameras, five facing forward and two facing sideways, an
inertial measurement unit (IMU), a zed 2i sensor, and a
lidar. The description and configuration of the sensors is
shown in table II. The sensors’ placement and coordinate
frames are shown in the schematic figure 2. The cameras are
arranged to accommodate overlapping and non-overlapping
configurations. The front-facing multi-stereo camera array,
together with the left and right cameras, collectively yields
a 171-degree field of view. We use Ouster’s 128-beam high-
resolution lidar, which gives high-density point clouds with
130,000 points. All the cameras except the ZED stereo
cameras are hardware synchronized with IMU at 20 frames
per second. We built a buffer circuit where the IMU sends
a signal to trigger all the cameras simultaneously. The lidar
and zed sensor are software/network time synchronized with
the other sensor streams. All the sensor timestamps are
assigned based on the hardware trigger in combination with
the computer’s system clock. The multi-sensor rig and a
Dell XPS laptop with 32GB RAM were mounted on a
Clearpath’s Ridgeback robotic platform and driven using a
joystick across multiple floors of two of the Northeastern
University’s buildings for data collection. The Zed 2i sensor

TABLE II: Description of various sensors and their settings used to collect
our dataset. Note that Zed2i sensor is available only in the Snell dataset.

Sensor No Type Description

Camera 7
FLIR
Blackfly S
USB3

1.3 megapixel color cameras
with a resolution of 720 x 540
and FoV of 57 ◦ at 20 hz.

Lidar 1 Ouster
OS-128

128 channel LiDAR with
vertical FoV of 45◦
at 10 Hz

RGB-D
camera 1 Zed 2i

stereo cameras with resolution of
1280 x 720 at 15 Hz,
IMU at 200 Hz

IMU 1 Vectornav
100 9-DOF IMU running at 200 Hz.

is mounted for data collection in the Snell library building
and is unavailable for the ISEC building.

B. Calibration

We obtain both intrinsic and extrinsic calibration for cam-
eras, IMU, and lidar by applying different methods. We used
Kalibr[17] to obtain the intrinsic and extrinsic parameters of
the overlapping set of cameras and zed stereo cameras using
a checkerboard target. For the side-facing cameras, it is not
possible to use the same multi-camera calibration methods
as we need the cameras to observe a single stationary target
at the same time to find the correspondences and solve for
the relative transformation. Instead, we perform IMU-camera
calibration independently for the two side-facing cameras
and the center front-facing camera to obtain T IMU

ci and chain
the camera-IMU transformations to get the inter-camera
relative transforms using T ci

cj = (T IMU
ci )−1T IMU

cj . We used
target-based open source software packages [18] and [19] to
obtain the lidar-camera extrinsic calibration parameters but
noticed some misalignment of the point cloud with images
which amplifies with range. We adjust the error by manually
aligning the lidar point cloud with camera data.

C. Ground truth

Ground truth poses are essential to test and evaluate
the accuracy of the SLAM algorithms. However, generat-
ing ground truth trajectories in indoor environments is a
challenging task due to the lack of GPS signals and range
limitations of popular indoor ground truthing mechanisms
like MOCAP. There are additional challenges particular to
our dataset, where the robot moves across multiple floors
which makes it impossible to deploy a MOCAP system to
track the robot. Given the necessity of ground-truth data for
benchmarking novel algorithms, we used fiducial markers-
based ground truth. These markers were used as stationary
targets to localize the robot when they came into the cameras’
field of view. We carefully placed multiple fiducial markers
made of April tags[20] near the elevators on each floor. The
location is chosen so as to allow the April tags to be visible
at the start and end of trajectories on each floor as we drive
the robot in loops, as well as at the transits across floors
when we enter and exit the elevators. We explain how we
compute the error metrics in detail in section (V-A).
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Fig. 3: This figure shows a sample of the various available data streams, showing (a) the left facing side camera (Cam5), (b) and (c) a stereo pair from
the front facing array (Cam1 & Cam3), (d) the right facing side camera (Cam6), and (e) the lidar point cloud.

Fig. 4: The full dataset has several points where the robot enters an elevator.
The vision-only and lidar SLAM algorithms are not able to handle a scenario
where significant movement is not rendered in the data. This figure shows
the z-axis IMU acceleration as the robot ascends in the elevator from the
first to the second floor. The spikes as the robot enters and exits the elevator
correspond to the robot wheels rolling over the gap between the elevator
and the hallway.

IV. DATASET

We collected two large datasets of indoor office envi-
ronments. The datasets were generated by driving in a
loop through different floors of Northeastern University’s
campus buildings and traveling by elevator between floors.
The trajectories include several challenging scenarios that
occur on a day-to-day basis, including narrow corridors,
featureless spaces, jerky and fast motions, sudden turns,
and dynamic objects, which are commonly encountered by
a mobile robot in urban environments. All the trajectories
have loops to allow the SLAM systems to perform loop
closure and compute drift when continuous ground truth is
unavailable. All the data is collected using ROS drivers for
the respective sensors. The dataset details, including location,
length of the trajectory, and ground truth, are consolidated
in the table III.

A. ISEC Dataset:

The multiple-floor trajectory was collected in Northeast-
ern University’s Interdisciplinary Science and Engineering
Complex (ISEC) building. There are four complete floor
sequences in the dataset and multiple transit sequences,
which include five elevator rides between floors. We start on
the 5th floor and drive through the space such that it contains

two loops, where the second part is a trajectory down and
back a long corridor with a loop closure. We then take an
elevator ride to the 1st floor, where we acquire another loop.
The 1st floor sequence contains more dynamic objects, glass,
and distinct architecture when compared to the other floors.
From the 1st floor, we transit through a long corridor with
white walls, take an elevator to 3rd floor, and then another
one to the 4th floor. We cover the 4th floor and then proceed
to the 2nd floor before taking the final elevator ride to the 5th

floor, where we started. The first loop of 5th floor, 4th, and
2nd floor sequences are nearly identical with similar-looking
office spaces. Thus, these indoor sequences cover areas with
good and bad natural lighting, a mix of artificial and natural
light, reflections, and dynamic content, such as students. The
indoor data snapshots are shown in the figure 3.

B. Snell Library Dataset

This dataset is collected across multiple floors of North-
eastern University’s library building by taking elevator rides
similar to the ISEC dataset. In general, the Snell dataset
has better visual features but has longer trajectories with
more dynamic content than the ISEC dataset, which can be
a failure point for SLAM algorithms. This sequence poses
a challenge to SLAM algorithms to map highly dynamic
environments. We travel through 3 floors of the building
with loop closures on each floor and where the 1st floor’s
appearance differs from the other two floors.

V. BENCHMARKING THE SOTA

To demonstrate the quality and usefulness of the dataset,
we benchmark across a set of well-known state-of-the-art
SLAM algorithms. The investigated algorithms are selected
so as to have a broad coverage of the field, including
visual SLAM, visual-inertial, and lidar-based solutions. The
complete list of algorithms can be seen in table IV. We
also provide the configuration settings we use to run each
algorithm.

A. Evaluation

We run the visual and visual-inertial methods in stereo
mode to use the metric scale in the evaluation. We use
front-facing cameras 1 and 3 as the stereo pair for each
algorithm (see figure 2 for camera placement), except for
MCSLAM, which uses the full array of front-facing cameras.
This pair was selected as a compromise between a wider
stereo baseline and camera proximity to the IMU. We
evaluate visual SLAM algorithms on trajectories collected



TABLE III: A comprehensive list of all the sequences in our dataset and their description. Trajectory lengths are approximate and should
only be used for qualitative comparison. They were derived from the best available trajectory estimate for each segment. This was typically
lidar odometry (LegoLOAM) for the loop sequences and VIO (Basalt or VINS Fusion) for sequences inside elevators. See section V for
more details on trajectory estimates.

Datasets
Label Size (GB) Duration

(s)
Appx.
Length
(m)

Description

ISEC
full sequence 515.0 1539.70 782 reflective surfaces, minimal dynamic content, day-

light, symmetric floors, elevators, open atrium
5th floor 145.8 437.86 187 one loop, one out and back
transit 5 to 1 36.8 109.00 * transit from 5th to 1st floor in middle elevator
1st floor 43.0 125.58 65 one loop, open layout different from other floors,

many exterior windows
transit 1 to 4 112.4 337.40 144 transit across 1st floor, up to 3rd floor in freight

elevator, across 3rd floor, up to 4th floor in right
elevator

4th floor 43.2 131.00 66 one loop, some dynamic content towards end
transit 4 to 2 21.9 65.00 22 transit from 4th floor to second floor in right

elevator,
2nd floor 89.7 266.00 128 two loops in a figure eight
transit 2 to 5 22.2 65.86 128 transit from 2nd floor to fifth floor in right elevator

SNELL LIBRARY
full sequence 573.5 1,700.6 699 feature rich rooms, featureless hallways, many

obstacles, stationary and dynamic people in scene
1st floor 144.6 428.70 221 two loops with shared segment, some dynamic

content
transit 1 to 3 28.3 84.00 * transit from 1st floor to 3rd floor in left elevator
3rd floor 213.7 633.59 345 two concentric loops with two shared segments,

narrow corridor with dynamic content, near field
obstructions

transit 3 to 2 27.8 82.41 * transit from 3rd floor to 2nd floor in right elevator
2nd floor 126.1 374.00 186 one loop, out and back in featureless corridor
transit 2 to 1 33.0 97.90 * transit from 2nd floor to 1st floor in right elevator,

dynamic objects cover FOV near end

on each floor, whereas visual-inertial algorithms are also
evaluated during the transit sequences in the elevators. The
elevator sequences are particularly valuable as they give us
an insight into the utility of the inertial sensors when vision is
ineffective, which is discussed in section V-B. We conducted
quantitative analysis on the ISEC dataset by computing error
metrics and limited the Snell Library dataset to qualitative
results.

In most portions of the dataset, lidar odometry computed
using Lego-LOAM can be used as a reasonable ground truth,
but it does fail in some portions, and while the results are
very good qualitatively, it is non-trivial to compute an upper
bound on trajectory errors in the resulting pseudo ground
truth. To avoid this kind of analysis, we provide a more
limited ground truth evaluation for the dataset using fiducial
markers, with a separate evaluation for each floor. We mount
an AprilTag [20] tracking target on walls that are visible
at the beginning and end of the trajectory at each floor,
giving a fixed reference point from which to compute the
drift accumulated by each algorithm. For the initial and final

portions, when the target is visible, we compute the ground
truth poses of the robot Ttarget

rig by localizing it with respect
to the target using PnP ransac[21] followed least squares
optimization. To align the trajectories, we estimate the rigid
body transformation Ttarget

O ∈ se(3) using the positions
tO

(i)

rig and ttarget
(i)

rig of the tracked and ground truth poses
belonging to the starting segment of the trajectory such that

T target
O = argmin

T target
O trig

∑
i

∥T target
O tO

(i)

rig − ttarget
(i)

rig ∥2 (1)

Once we have the transformation Ttarget
O , we compute

the total translational error or the drift at the end of the
trajectory between the investigated algorithm’s reported pose
and the ground truth pose computed using the fixed markers.
We report this final drift error for each investigated algo-
rithm as the Absolute Translational Error(ATE), and as a
percentage of the approximate total length of the trajectory
in table IV. We compute this drift for each floor individually
for all the algorithms. We compute the average of the ATEs



TABLE IV: This table outlines the performance of various algorithms on the ISEC dataset. We evaluate each algorithm on loops on
the 5th, 1st, 4th, and 2nd floors, in the order they appear in the continuous dataset. Inertial algorithms are also evaluated on the full
dataset, which includes elevator transits between floors. Results are reported as the absolute transnational error at the final position in
meters, and as a percentage of the estimated trajectory length.We run each algorithm with loop closure disabled, because most algorithms
can use the AprilTag markers to form a loop closure, bringing the error close to zero, which does not produce a useful performance
metric. While testing the 2nd and 4th floors individually, vins-Fusion resulted in unusually high drift and was left out of this analysis. All
vins algorithms surprisingly display higher drift than the visual counterparts due to issues with initialization. We perform a loop closure
analysis in Discussion subsection A.

Algorithm 5th Floor 1st Floor 4th Floor 2nd Floor Full Dataset
ATE(m) % ATE(m) % ATE(m) % ATE(m) % ATE(m) %

Visual SLAM
ORB-SLAM3[22] 0.516 0.28% 0.949 1.46% 0.483 0.73% 0.310 0.24% – –
SVO[23] 0.626 0.33% 0.720 1.11% 0.482 0.73% 0.371 0.29% – –
MCSLAM 0.778 0.42% 1.085 1.67% 0.484 0.73% 0.458 0.36% – –

Visual-Inertial
vins-Fusion[24] 1.120 0.60% 2.265 3.48% - - - - 15.844 2.03%
Basalt[25] 1.214 0.65% 4.043 6.22% 1.809 2.74% 3.054 2.39% 1.753 0.22%
SVO-inertial 0.649 0.35% 2.447 3.76% 0.558 0.85% 0.621 0.48% 16.202 2.07%

Deep Learning
Droid SLAM[26] 0.441 0.24% 0.666 1.02% 0.112 0.17% 0.214 0.17% – –

LIDAR
LEGO LOAM[27] 0.395 0.21% 0.256 0.39% 0.789 1.20% 0.286 0.22% – –

(a) Glass Surfaces (b) Elevator Areas

Fig. 5: A sample of some challenging points in the dataset. Image (a)
shows a glass wall with reflections that can introduce spurious features.
Image (b) shows one of the elevator areas, where once the robot enters,
the exteroceptive sensors such as LiDARs and cameras are fundamentally
limited to track motion.

accumulated at the April tags on different floors for inertial
algorithms. The April tags are placed at exactly known
locations on each floor so that they are displaced vertically
by a fixed distance, which is verified from the building floor
plan.

B. Discussion

We want to point out that the accuracy metric does
not fully describe the performance of a SLAM system.
Evaluating drift from the beginning to the end of a trajectory
can overlook essential details but is somewhat reflective
of the pass-fail nature of real-world scenarios. A more
comprehensive evaluation should look at features, like loop
detection and closure, tracking failures, and map correction
while considering reliability and robustness. In this section,
we provide some qualitative assessments of the tested algo-
rithms.

1) Perceptual Aliasing: Our dataset targets this primary
challenge by showcasing multi-floor trajectories with similar-
looking areas. Most of the vision-based SLAM frontends use
a bag of words model [28] to compute the appearance-based
similarity between images for loop detection. In addition,
vision-only SLAM methods inherently lack the ability to

recognize elevator motion. Based on the end-to-end runs of
the algorithms, we observed that all the evaluated VO and
VIO algorithms are prone to wrong loop closures, confusing
one floor with another. This happens with the 5th, 4th, and
2nd floors, which are symmetrical in structure, color, and
layout. This leads to incorrect loop constraints between poses
belonging to different floors causing the entire trajectory of
one floor to shift in space. Figure 6 shows the constraints as
edges between the 2nd, 3rd, 4th, and 5th floors even though
there is no direct visibility across them whereas the first floor
remains disconnected since it is unique in appearance. As a
result, the trajectories appear to be on the same floor, and
the possibility of wrong loop detections is high. In the case
of VIO, despite having a good sense that we are not on the
same floor, incorrect loop detections still happen.

2) Visual Degradation: Visual degradation occurs at mul-
tiple places along the trajectories when we encounter fea-
tureless spaces, reflective surfaces, and dynamic content, as
shown in figure 5. All the algorithms run without tracking
loss on the 1st, 2nd, and 4th floors with minimal drift. In the
presence of dynamic objects such as moving people, stereo
visual slam algorithms cause jagged artifacts due to corrupted
relative motion estimates, as shown in figure 7. Visual-
inertial and multi-camera SLAM systems do not display
these problems. The vision-only algorithms do not always
provide accurate estimates when we run into plain walls,
glass surfaces, and during elevator rides. Among vision-
only methods, feature-based methods such as ORBSLAM3
are more prone to tracking failures when featureless walls
are encountered. Direct methods like SVO can still track
due to optical flow but result in incorrect pose estimates
causing drift in the subsequent poses. DroidSLAM, which
is a learning-based stereo method, also copes in featureless
scenarios; however, it lacks scale. These problems are high-
lighted in figure 7. Visual-inertial algorithms perform well in
these scenarios due to the presence of a proprioceptive iner-
tial sensing component, which can detect the physical motion



(a) (b)

Fig. 6: This shows the perceptual aliasing problem that is typical of modern buildings. (a) It shows the estimated trajectory of Basalt, a visual-inertial
SLAM system for the full multi-floor sequence of the ISEC building without the loop detection, and (b) shows the same sequence run after the loop
closure detection. Here the green line segments connecting floors are the incorrectly identified loop closure constraints between poses due to the similarity
in appearance.

Fig. 7: This figure shows the 5th-floor trajectories calculated by the various
algorithms with two highlighted areas, (A) and (B). (A) shows a portion
of the sequence with dynamic content and its impact on the trajectory
estimates, resulting in jagged artifacts for the vision-only algorithms. (B)
highlights a featureless environment during a tight turn, which caused
incorrect trajectory estimates or failure in the vision-only algorithms.

of the vehicle. However, we observed that inertial sensing is
not always effective when vision fails. For instance, when
we ride in the elevator, the visual features detected on the
elevator walls interfere with the inertial sensing leading to
erroneous poses.

3) Other Issues: We have noticed that the performance
of VIO algorithms heavily relies on the initial conditions
and parameter tuning. In some sequences, the algorithms
perform poorly when we start from specific points. Even
starting the data with a time difference of +/- 2 seconds
shifts the final drift by about 5 meters. The current SLAM
algorithms have a massive list of different parameters that
need to be tuned specifically to the dataset. These parameters
are generally not standardized or consistent across different
algorithms, and tuning them can be arduous. Learning-based
methods have an edge in this regard since they do not need
as much manual intervention. Additionally, the type and
configuration of sensors also impact the performance of the
algorithms, which is essential but is unfortunately one of the
less researched topics. To demonstrate this, we compare the

Fig. 8: This figure shows the difference in performance when we run VINS-
Fusion on the Library dataset with the VN 100 IMU and ZED IMU.
The figure compares x, y, z positions estimated by VINS fusion in both
configurations. The red dotted lines show when we enter the elevator. On
every floor, we come back to the starting position, and after 2nd floor, we
come back to the first floor starting position again which was our origin.
The figure clearly shows that VINS Fusion accumulates more drift with
ZED sensor setup in all three axes.

estimated trajectories of one of the visual-inertial algorithms
(VINS-Fusion) executed on the ZED’s stereo inertial system
and the stereo configuration with VN100 IMU used in earlier
evaluations on the complete multi-floor sequence of the
Snell Library dataset. We observe that the two runs differ
significantly, as shown in figure 8.

4) Potential usage: The previous discussion clearly shows
that the current algorithms fall short in performing large-
scale indoor SLAM. There is much room for improvement
in the various real-world scenarios discussed above. An
upcoming research direction in this regard is to incorporate
semantic information from vision into the SLAM framework,
as explored in many recent works. One possible solution to
improve loop closure detection would be to use contextual
information specific to the location, structure, and objects to



distinguish between the floors. There is also a need for better
modeling of IMU data that captures the noise properties
better [29], contributing to better SLAM back-ends.

VI. CONCLUSION

We have presented a novel multi-modal SLAM dataset
that contains visual, inertial, and lidar. The dataset contains
several challenging sequences collected by driving a mobile
robot across multiple floors of an open-concept office space
with narrow corridors, featureless spaces, glass surfaces, and
dynamic objects, which challenge the SLAM algorithms.
One of the exciting features of our dataset is the symmetric
and visually similar locations across different floors that
cause perceptual aliasing. We evaluated several SLAM and
visual odometry methods across different sensor modalities.
The results demonstrate the limitations and areas of improve-
ment in the current SOTA. The main goal of this dataset is to
enable the development and testing of novel algorithms for
indoor SLAM to address the various challenges discussed.
We intend to expand the dataset to outdoors and add more
challenging sequences in the future.
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