
3D Scene Graph Prediction on Point Clouds Using Knowledge Graphs

Yiding Qiu1 and Henrik I. Christensen2

Abstract— 3D scene graph prediction is a task that aims
to concurrently predict object classes and their relationships
within a 3D environment. As these environments are primarily
designed by and for humans, incorporating commonsense
knowledge regarding objects and their relationships can signifi-
cantly constrain and enhance the prediction of the scene graph.
In this paper, we investigate the application of commonsense
knowledge graphs for 3D scene graph prediction on point clouds
of indoor scenes. Through experiments conducted on a real-
world indoor dataset, we demonstrate that integrating external
commonsense knowledge via the message passing method leads
to a 15.0% improvement in scene graph prediction accuracy
with external knowledge and 7.96% with internal knowledge
when compared to state-of-the-art algorithms. We also tested
in the real world with 10 frames per second for scene graph
generation to show the usage of the model in a more realistic
robotics setting.

I. INTRODUCTION

A 3D scene graph is a high-level semantic scene repre-
sentation that captures objects and their relationships within
a 3D environment. This representation has recently demon-
strated its potential for robotics tasks, including 3D scene
reconstruction [1], path planning [2], [3], and navigation [4],
[5]. Most object-level semantic mapping methods primarily
focus on predicting the class of objects in a scene [6], [7].
However, 3D scene graph estimation diverges from these
methods, as it requires additional tasks of (a) predicting if
an edge should exist between two objects, and (b) predicting
the label of the edge as a semantic relationship. Fig. 1
exemplifies the 3D scene graph prediction problem. Given
point cloud data segmented into class-agnostic clusters, the
task is to simultaneously classify the objects and relation-
ships. The resulting scene graph comprises objects labeled
as nodes and relationships labeled as directed edges. Multiple
directed edges can exist from one object to another object.
The graph can also be described using the triplet Subject-
Predicate-Object. To clarify the concept further, we follow
the convention established in the 2D scene graph prediction
domain, using the term ”relationship” to describe the triplet
and the term ”predicate” to describe the label of the edge.

These relationships offer valuable information that benefits
robotic tasks in multiple ways. First, semantic relation-
ships can direct robots to search for target objects more
efficiently. For instance, during object-goal navigation, the
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Fig. 1. Given a 3D point cloud segmented into class-agnostic clusters, the
objective is to generate the corresponding scene graph that labels the clusters
and infers spatial or semantic relationships among them. The resulting 3D
scene graph has nodes representing classes of objects, and directed labeled
edges representing semantic relationships.

spatial relationship between two objects, such as Cup-On-
Table, can constrain the search space and improve object
search efficiency. Secondly, labeled relationships offer robots
a richer vocabulary to communicate with humans. For exam-
ple, instead of describing a scene with the coordinates of a
chair and a table, an agent can use the phrase Chair-NextTo-
Table, which resembles natural language more closely.

Compared to tasks focusing solely on object classification
accuracy, scene graph prediction is more challenging, as
accuracy is evaluated based on the correct prediction of
triplets. One intuitive approach to address this problem
is to utilize knowledge—the common structure or pattern
typically found in most environments—to infer which object-
relationship pairs are more likely to be present, given the
current observation. Indoor environments have a human-
centered structure and adhere to the laws of physics. For
instance, chairs are usually situated near tables, and cups
are commonly placed on tables or other large flat surfaces.
Some triplets are more likely to exist than others, while some
are nearly impossible to encounter in reality, such as Table-
On-Cup. Acquiring this knowledge from external resources
or through training can simplify the prediction process. In
some sense, knowing the predicates can help improve object
recognition accuracy, and having higher confidence in object
classes can increase or decrease the likelihood of some
predicates.

We propose to incorporate external common-sense knowl-
edge into 3D scene graph prediction tasks. The external
knowledge graph is generated from various sources, includ-
ing Visual Genome [8], ConceptNet [9], and WordNet [10].
Inspired by the Graph-bridging Network (GB-net) [11], we
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use graph message passing methods to learn both node
embeddings and edge embeddings within and between scene
graphs and knowledge graphs and perform experiments on
the indoor 3D scene graph dataset 3DSSG [12]. A major
distinction between our work and [11] lies in the dataset
type; [11] performs the task on 2D images for 2D scene
graph prediction, whereas our task utilizes 3D point cloud
data. This presents a greater challenge because 3D segmented
point clouds often suffer from missing points. In general,
object recognition on point cloud data has lower accuracy
as compared to images. Moreover, relationships in indoor
environments are primarily spatial and geometric, while rela-
tionships in 2D image datasets can be conceptually abstract.
Consequently, the types of knowledge graphs we employ
differ from those used for 2D scene graph tasks. Additionally,
indoor datasets typically have a smaller vocabulary for both
objects and relationships, making it easier for common-sense
knowledge to capture relationships.

To the best of our knowledge, our work is the first to
leverage external common-sense knowledge for the 3D scene
graph prediction problem. The current state-of-the-art algo-
rithms are [12] and [1]. However, neither of these methods
utilizes external knowledge for prediction. We compare our
prediction results with both works and demonstrate that our
model outperforms both in scene graph prediction tasks.

The main contributions of this paper are: (1) we proposed
the model for 3D scene graph construction problem that
incorporates common-sense knowledge and shows the im-
provement of the result. (2) we performed experiments in a
real-world setting and demonstrate the possible application
in the robotics domain.

The remainder of the paper is organized as follows.
In Section II, we discuss related work, followed by the
problem formulation in Section III. The main method and the
network structure for our approach are described in Section
IV. In Section V we discuss the dataset used, the overall
experimental design, and the results. Finally, we summarize
our work and outline future challenges in Section VII.

II. RELATED WORK

A. Scene graphs prediction with knowledge

Scene graph prediction problems have been predominantly
tackled on 2D image datasets. Two main methods are preva-
lent for integrating knowledge into the model. The first
method is to extract the high-level structure inherent in
the training dataset. For instance, MotifNet [13] leverages
the most frequent relations between labeled object pairs
in the training set for scene graph prediction. Knowledge-
embedded routing network (KERN) [14], on the other hand,
employs the co-occurrence probabilities between objects
implicitly to aid in resolving the long-tail problem in the
dataset.

The second method involves utilizing external knowledge
sources for the task. For example, Gu et al.[15] used
ConceptNet [9] to refine object and relationship features
prior to training on scene graph generation. In [11], Zareian
et al.introduced GB-Net, which unifies scene graphs and

knowledge graphs by learning the node encoding and edge
encoding both within and between graphs. In their model,
a scene graph represents an ”image-conditioned instantia-
tion” of a commonsense knowledge graph. They employed
multiple knowledge bases as external knowledge sources,
including WordNet [10], ConceptNet [9], and Visual Genome
[8]. This represents one of the latest attempts to merge
knowledge graphs and scene graphs, enabling learning of
object features and predictors with neighboring nodes, while
also constructing a ”bridge” that infuses information between
the two graphs through message passing.

Our work adopts the second method since we aim to
generalize beyond the training data and deploy the algorithm
in a real-world setting. we also aim to explore the effective-
ness of external commonsense knowledge in generating 3D
scene graphs, and as such, we adapt the bridging structure
similar to [11]. However, due to inherent differences in our
dataset (image vs. point cloud), our method also takes into
account the incompleteness of the point cloud dataset and
innate 3D relationships in the reconstructed scene. Moreover,
the knowledge graphs we construct differ from [11]., as
the indoor robot task employs a distinct set of objects and
relationships.

B. 3D scene understanding and scene graph generation

The application of deep learning methods for 3D point
cloud recognition can be traced back to PointNet [16], a
model still extensively to encode and predict point cloud
data. In our study, we likewise use PointNet as a backbone
for point cloud embedding.

Recently, there has been some research into indoor scene
graphs specifically designed for indoor robot mapping. One
example is the 3D scene graph [17], which establishes
a semi-automatic framework to create a dataset unifying
objects, rooms, and cameras in a structured manner. While
some traditional approaches [18], [19] use SLAM for se-
mantic mapping at the object level, their maps do not
include labeled semantic relationships. Certain methods [5],
[3] construct a scene graph from each image, and then
merge the 2D scene graphs into a global 3D graph. However,
these approaches are tested on a small selection of objects
and minimal relationships. The works most similar to ours
include [12], [1], with the 3DSSG dataset first introduced
in these studies. [12] proposed the Scene Graph Spatial
Network (SGPN), which learns the 3D scene graph from the
reconstructed point clouds. [1] further extended the method
to accommodate RGB-D images as input and demonstrated
that a model initially trained on reconstructed point cloud
could be used for online scene graph prediction with a minor
decline in prediction performance.

Based on these insights, our work focuses on generating
scene graphs using the point cloud dataset, considering that
the image-to-reconstructed point cloud can be accomplished
either by traditional SLAM or by the graph fusing method.
Notably, our approach differs from all previously mentioned
methods by explicitly incorporating common-sense knowl-
edge.
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Fig. 2. The pipeline of the overall model. The input is the class-agnostic point cloud of a scene. We begin by extracting point clouds such that each
segment is either a subject or an object, and the predicate is the union of two segments. This forms the nodes of the Scene Representation(SR). Each node
comprises a PointNet encoding feature and a contextual vector, with edges defined by distance. The knowledge input draws from three sources: ConceptNet,
Visual Genome, and WordNet. The knowledge graph feature is the glove embedding, with edges constructed from these three sources. The scene graph
and knowledge graph are subsequently trained together, allowing for simultaneous updates to both nodes and edges using the Knowledge-Scene Graph
Network. Finally, the updated nodes from the intermediate scene graph are classified to establish relation triplets Subject-Predicate-Object.

III. PROBLEM FORMULATION

Consider a constructed 3D scene with point cloud P ⊂ R3

segmented into n class-agnostic clusters Ci for i = 1, . . . , n,
and a directed graph G = (V, E). The objective of the task
is to classify each cluster Ci as an object V and associate
predicates from E with it. The class of nodes and the directed
edge eventually outputs a set of relation triplets Subject-
Predicate-Object. There are two forms to represent the 3D
scene graph, which are semantically equivalent and can be
transformed into each other. The triplet form is used for
the evaluation of the model, whereas the graph form is
utilized for map visualization and subsequent tasks, such as
navigation.

IV. METHOD

A. Pipeline
As shown in Figure 2, the entire pipeline consists of

two streams: one originating from the point cloud and the
other from knowledge. The first stream generates the scene
representation (SR) of the scene graph. Given the input
of a room’s point cloud, we extract the point cloud of
each object and the predicate, in the form of the union of
two clusters. These are encoded with a three-layer PointNet
structure, constituting the first part of the SR node features.
Additionally, we concatenate a set of contextual vectors to
the PointNet feature embedding, as described in section IV-
B. Edges of the SR graph are kept if two objects in the 3d
space are within a certain Euclidean distance threshold, with
both directions preserved at this stage.

The second stream originates from knowledge sources and
thus is named knowledge representation(KR). Each node,
representing either an object, subject, or predicate, is encoded
using GloVe [20] embedding. The edges are provided by
three different knowledge sources: Visual Genome, Concept-
net, and WordNet. The process of constructing a knowledge
graph is explained in detail in section IV-C.

Next, both SR and KR are fed to a Knowledge-Scene
Graph Network(KSGN). Through message passing, the node
feature of both SR and KR will update alongside their
neighboring node features, and the edge within and between
graphs will update as well (Section IV-D). The resulting up-
dated SR node feature of the object and predicate will finally
pass through two layers of multi-layer perceptron(MLP) to
predict relation triplets.

B. Input feature

The nodes features of the input point cloud consist of
the PointNet encoding and the contextual vector. The con-
textual vector is an 11-dimension vector first introduced in
[1]. The vector includes the centroid of the point cloud
(x, y, z) ∈ R3, the standard deviation that describes the
sparsity of the segment (σx, σy, σz) ∈ R3, size of the
bounding box (bx, by, bz) ∈ R3, maximum length of the
segment l = max(bx, by, bz) ∈ R, and bounding box volume
v = bx ·by ·bz ∈ R. The vector is calculated for each segment
in the room as well as the union of two segments for the
predicate.

C. Knowledge Graph Construction

The knowledge graphs are constructed from three different
sources:

Visual Genome [8]: This contains labeled scene graphs
for image datasets. We filtered the object and relation-
ship vocabulary for the training data and constructed four
different matrices: subject-object, object-subject, subject-
predicate, and predicate-object.

ConceptNet [9]: A multilingual crowd-sourcing-based
knowledge graph database. We retrieved an object-object
matrix from it.

WordNet[10]: A lexical database that contains semantics
explanations and synonyms for nouns, verbs, and adjectives.
We use WordNet for predicate-predicate relationships.
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Fig. 3. The pipeline of the graph bridging model

The knowledge graph in our study is defined using four
types of adjacency matrices, as depicted in Figure 2 and
Table I. For each object in the dataset, we assume they can
either be an object type or a subject type. Thus for both
subject-object and object-subject relationships, the adjacency
matrices are square matrices. We list the details of the
knowledge graph in Table I. Because the dataset we use
contains 160 objects and 27 relationships, we also listed the
matrix dimension for clarity.

Regrading ConceptNet, we use relatedTo for between-
object relationships, with a binary weight. As for the
predicate-predicate relationship, we have created a manually
crafted categorical adjacency matrix. This matrix connects
all directional spatial relationships (such as left, right, be-
hind, front), comparison relationships (smaller than, bigger
than, higher than, lower than), and relationships that imply
an attachment (attached to, standing on, lying on). This

Type Subtype Knowledge

obj-obj subject-object VG

(3 x 160 x 160) object-subject VG

relatedTo ConcepNet

obj-pred sub-pred VG

(2 x 160 x 27) obj-pred VG

pred-obj pred-sub VG

(2 x 27 x 160) pred-obj VG

pred-pred category hand label

(2 x 27 x 27) wup score WordNet

TABLE I
KNOWLEDGE GRAPH ADJACENCY MATRIX DESCRIPTION

manually created matrix is binary as well. For determining
similarity scores between predicates, we use WordNet to
get the Wu-Palmer (WUP) scores. For all other adjacency
matrices, weights are normalized in a range from 0 to 1.

D. Knowledge-Scene Graph Network
The Knowledge-based Scene Graph model (KSGN) is a

modified version of Gb-Net [11]. As shown in Figure 2,
KSGN accepts two types of graph input: the scene graph and
the knowledge graph. Notably, both inputs are heterogeneous
graphs.

The detailed model is depicted in Figure 3. The scene
representation consists of Scene Entities(SE) and Scene Pred-
icates (SP), and the common-sense knowledge representation
consists of Common-Sense Entities (CE) and Common-
Sense Predicates (CP). In the following, we use ∆ ∈
(SE, SP,CE,CP ) to represent different types of nodes.

Each node is encoded by 2-layers of Multi-Layer Percep-
tron (MLP) to form the node features as the Message Send:

m∆→
i = ϕ∆

send

(
x∆
i

)
(1)

where ϕsend is the MLP that is named as ”send head”, It is
trained and shares the weight across four types of nodes.

With each outgoing message, we compute the message
along each incoming edge. This is done by first summing the
weight of the same types of edges, and then concatenating
across different types of edges.

m∆←
j = ϕ∆

receive

⋃
∆′

Ek∈E∆
′′→∆⋃ ∑

(i,j,ak
ij)∈Ek

akijm
∆′→
i


(2)

Finally, given the original input nodes and the received
message, we use Gated Relu Unit (GRU) to update the node
representations. The updated node vector is used to classify
objects and predicts through training and back-propagation.



O160R26 O27R7

Model RE ↑ REsingle ↑ Obj@1↑ Obj@5 ↑ RE ↑ REsingle ↑ Obj@1 ↑ Obj@5 ↑

SGPN [12] 0.071 0.119 0.357 0.623 0.383 0.385 0.420 0.780
SGFN[1] 0.113 0.169 0.504 0.754 0.417 0.417 0.624 0.923
Ours (internal KG) 0.122 0.184 0.466 0.739 0.450 0.450 0.644 0.917
Ours (external KG) 0.130 0.187 0.473 0.742 0.469 0.470 0.637 0.922

TABLE II
QUANTITATIVE RESULTS OF THE EVALUATED METHODS IN THE RECALL.

E. Loss

The model is trained in an end-to-end fashion, and the
total loss consists of the classification loss for both objects
and predicates:

Ltotal = λLobj + Lpred

where λ is a user-defined weight factor. Because a subject
can have multiple relationships with an object, we used cross-
entropy loss for the Lpred.

V. EXPERIMENT ON DATASET

A. Task description

The task objective is twofold: to generate scene graphs
by (1) predicting the labels of segmented clusters of point
cloud, and (2) predicting the labels of relationships between
two point cloud clusters. For this, we use the 3RScan[21]
dataset, which consists of 1482 scans across 478 different
scenes. Each scene is recorded using Google Tango, yield-
ing sequences of RGB-D images with accurately calibrated
camera poses. The ground truth scene graph annotations are
provided by 3DSSG [12].

The entire dataset is divided based on the number of scans,
including 1061 scenes for training, 117 for validation, and
157 for testing. The original dataset contains 534 object
classes and 40 relationship classes. The type of relationships
captured in the data include supporting relationships (e.g.
standing, lying), proximity relationships (e.g. next to, in front
of), and comparative relationships (e.g. bigger than, taller
than). In this project, we trained and evaluated the algorithm
in two different settings. The first setting consists of 160
object classes and 26 predicate classes (O160R26), and the
second setting consists of 27 object classes and 7 predicate
classes(O27R7).

B. Comparison Models

Scene Graph Spatial Network (SGPN) [12] The network
takes as input the object point cloud and the predicate point
clouds and uses Graph Neural Network(GNN) to predict the
scene graph.

Scene Graph Fusion Network (SGFN) [1] The network
uses only contextual vectors as predicate input instead of
PointNet encoded feature. It uses Graph Attention Net-
work(GAT) among the triplets for the prediction.

Ours We present two versions of models, one uses internal
knowledge graphs, and the other use external knowledge
graphs. Both models have the same structure. The only
difference is that for the internal knowledge graphs, we
initialize the knowledge representation with zero matrices,
which allows the model to capture the relationship within
the dataset.

C. Implementation details

The model is implemented in PyTorch. The learning rate
is set to 0.001. The input graphs are generated based on the
distance between entities (0.5 meters). We use 100K epochs
for our models and 300K epochs for SGPN and SGFN. The
weight loss factor λ is 0.5.

D. Evaluation metric

To evaluate the model’s performance on scene graph
generation, we compare the predicted Subject-Predicate-
Object triplets with the ground truth triplet. Considering that
multiple predicates can co-exist between two objects, we
employ two measures for evaluation: RE (abbreviation for
relationship): This measure evaluates if the predicted triplets
exactly match the ground truth. REsingle: This is a relaxed
form of evaluation where at least one predicted relationship
matches the ground truth.

Most of the current 2D scene graph prediction problems
adopt recall rate as the evaluation metric [22], [13], [15],
[11]. Note that Recall = TP/(TP + FN), where TP is
true positive and FN is false negative. The major reason is
that the ground-truth annotations of relationships are likely
to be incomplete, and thus using metrics like accuracy or
precision, which penalize false positive predictions, is unfair
to reflect the actual performance of a model. In the table, we
use Obj@K to represent if the prediction for objects exists
in top K predictions.

E. Results

Table II summarizes the qualitative results for our model in
comparison with state-of-art models. Our model outperforms
in triplet prediction. The results indicate that incorporat-
ing knowledge graphs enhances overall performance, with
external knowledge graphs offering greater improvements
than internal knowledge graphs. Nevertheless, in terms of
object classification accuracy, our model does not always
give better predictions. This may be attributed to the inherent
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challenge of classifying objects using point cloud data, which
in turn complicates the association between scene graphs and
knowledge graphs for objects.

Fig 4 illustrates how the use of knowledge graphs can
expedite model convergence. When compared to the SGFN
model, our model reaches convergence in earlier epochs,
implying a reduced need for training epochs.

F. Error Analysis

We performed error analysis for both object classifica-
tion and predicate classification. The top five misclassifica-
tions for objects, denoted as ground truth/prediction, were
wall/curtain, wall/wardrobe, wall/blinds, pillow/cushion and
chair/side table. The difficulty in recognizing curtains and
blinds was also a common challenge faced during seman-
tic classification for the ScanNet point cloud dataset [23].
Regarding predicate classes, the most frequently occurring
mistakes were learning against/close by, cover/lying on, and
cover/standing on.

VI. REAL-WORLD EXPERIMENT

We conducted real-world experiments to assess both the
limitations of our algorithm and its potential applications
for robotics. While the 3RScan dataset is based on real-
world data and employs RGB-D and inertial measurement
unit(IMU) data from a Google Tango cell phone, there
are hurdles to directly utilizing the trained model in real-
time scenario. These challenges are primarily due to the
requirement of offline post-processing for constructing the
segmented 3D point cloud from RGB-D and IMU inputs, and
the reliance on manually cleaned segmentation. Moreover,
the camera poses provided by the original data was generated
offline, providing a higher degree of accuracy than online
camera pose estimates.

For our real-world experiments, we used the Intel Re-
alSense D435 and RealSense T265 sensors. The camera
poses and trajectories were estimated online using RTAB-
Map[24]. Similar to [1], we adopted the online segment

fusion method from Tateno et al.[25]. This algorithm per-
forms image segmentation on depth images and fuses point
clouds given camera poses. In addition, while the model
was trained on GPU, we employed Open Neural Network
Exchange (ONNX) [26] in our real-world experiments to
enhance inference speed and eliminate the need for a GPU.
We conducted our scene graph generation experiments in
two locations—an office area and a basement containing a
kitchen—within a school building. Using RGB-D images,
camera poses, and online image segmentation, the algorithm
predicted the class of each point cloud and the relationships
between segments for each frame, subsequently fusing this
information on-the-fly. The result was a constructed 3D point
cloud with annotated scene graphs on segments.

The results indicate that our model is particularly adept at
detecting larger structures and furniture, such as walls, floors,
cabinets, tables, and chairs. However, due to the sparsity
of point clouds associated with smaller objects, segmenting
and classifying these objects remains challenging. Our model
operated in real-time, achieving more than 10 frames per
second on average. The most frequently predicted accurate
triplets are Wall-AttachedTo-Floor and Chair-AttachedTo-
Floor.

Potential improvements include the utilization of a more
refined image segmentation algorithm, which could result in
better 3D point cloud segmentation, albeit with a potential
trade-off in inference speed. Additionally, the depth images
provided by RealSense are somewhat noisy, suggesting that
implementing filtering algorithms could help smooth the
depth data, thereby improving segmentation.

VII. CONCLUSION

In this study, we used external knowledge sources from
Visual Genome, Conceptnet, and WordNet to predict the 3D
scene graph on point cloud data constructed from RGB-D
images. Our findings reveal that the use of external knowl-
edge enhances the accuracy of scene graph prediction and
expedites model convergence. We also conduct real-world
experiments with the algorithm, demonstrating its capability
to generate scene graphs online in a cluttered environment.

Nonetheless, our method exhibits several limitations. The
primary challenge in 3D scene graph prediction lies in the ac-
curacy of object classification on point clouds. One potential
avenue for improving object recognition could involve the
use of RGB-D images projected onto point clouds. Another
limitation pertains to our current lack of use of common-
sense knowledge regarding spatial and size relationships
between objects. Given that point cloud data can be quite
sparse for smaller objects, we could potentially leverage
larger-sized objects and room information to improve the
classification accuracy for smaller objects. As a future re-
search direction, we plan to investigate various types of
common-sense knowledge that can be used for scene graph
prediction.
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