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Abstract—In the context of increasing automation and dig-
itization of production processes, efficient communication and
coordination among agents in Multi-Agent-Systems (MAS) is
crucial for achieving optimal performance and productivity.
This study analyzes a MAS’s communication and coordination
processes utilized in a gearbox assembly scenario. The system is
decomposed based on the assembly process, focusing on delay
times. Messages are classified based on sender and receiver
agents, communication protocols, message types, and query
content. Local and network delays of each communication
message are measured and compared to modeled delays. The
results indicate that modeling delay times before implemen-
tation can lead to a more efficient approach to elaborating
on complex systems’ hard and soft real-time capabilities. The
delay times estimated through the analysis can be employed in
forthcoming models, enabling the modeling of delay times be-
fore system implementation. Additionally, the generalizability
of the findings allows for their application to repetitive modules
within production systems.

Index Terms—multi-agent-system (MAS), communication
and coordination processes, gearbox assembly, delay measure-
ment, delay modeling, real-time capabilities, digital twin

I. INTRODUCTION

Agent-based systems are an effective way to implement
a decentralized system architecture, which can be advanta-
geous for large systems. However, due to the size of these
systems, it may be difficult to measure operation times
and delays directly. Instead, they are often modelled or
calculated, which can lead to inaccuracies and lack of gen-
eralizability. Additionally, planning for these systems may
be challenging as it is often done before the actual system
is built. Therefore, it is important to carefully consider the
limitations and potential challenges associated with using
agent-based systems in order to ensure their effectiveness
and success. In our research, we have identified limita-
tions in the domain-specific language (DSL) for modeling

larger systems and delays in DSL for robot-alike systems
(DSL4RAS). To address these limitations, we propose an
expanded and adapted version of the DSL. To evaluate the
effectiveness of our proposed method, we applied it to two
industrial use cases, including their Digital Twins (DTs),
and compared the modeling outcomes with the measured
outcomes for operation and delay times. Our results show
that our method can successfully model and calculate delay
times for modular systems in an agent-based environment,
while it allows for a more generalizable way, which can be
particularly useful for complex systems.

II. BACKGROUND AND RELATED WORK

This section presents the standard commercial off-the-
shelf (COTS) ethernet network components and distributed
protocols for real-time communication and discusses its
limitations. To address this challenge, This section presents
Multi-Agent-System (MAS) control strategies described by
DSL for timing characteristics and requirements of modular
and distributed systems, especially in the context of Cyber-
Physical Production Systems (CPPS) and DTs.

A. Network Delays

Standard COTS ethernet network components and dis-
tributed protocols are not designed for real-time commu-
nication. While average per-hop One-way delay (OWD) in
the network could be low, individual outliers in the OWD
could be very high. Such distributed Internet Protocol (IP)
networks cannot guarantee reliable and timely information
delivery. Modern factories with MAS will need higher
bandwidth to run applications such as collective learning,
point cloud updates for Digital Twin (DT), Augmented
Reality (AR)/Virtual Reality (VR) etc. Such a factory will
need very high bandwidth, which cannot be serviced by
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legacy industrial networks which provide real-time guaran-
tees. Moreover, agent-based endpoints may need to run on
operating system (OS) such as Robot OS (ROS) [1] and
not real-time Programmable Logic Controller (PLC) like
controllers. Such OSs need a full IP network and usually
run on COTS equipment.

Even in a simple assembly example, many short mes-
sages need to be exchanged by the agents to coordinate
the start and completion of individual tasks in the entire
assembly process. These messages must be reliable, and the
sending agent must verify their delivery to the appropriate
receiving agent. Thus, the Transmission Control Protocol
(TCP) ensures that the agents’ coordination messages are
reliable, ordered, and error-checked. A particular TCP mes-
sage sequence is called a flow. Many methods have been
proposed to model the message delivery time of a TCP flow
[2], [3]. The messages described in this paper are typically
characterized by short sizes of only a few bytes that can fit
into one packet. The flow completion time of such messages
can be modeled using a more appropriate model considering
the time of the TCP initiation handshaking phase [4]. Such
a model sums the expected delays for the different phases of
TCP. In section IV-C, we propose a model for the message
completion time for a given TCP connection in an example
factory with MAS.

B. Multi-Agent-Systems and DSL4RAS

MAS comprises numerous self-governing agents collabo-
rating to accomplish a shared objective or resolve a problem.
Each agent within a MAS possesses unique objectives,
skills, and knowledge and can perceive its surroundings and
communicate with other agents [5]. In production systems,
MAS control strategies have been established to enhance the
adaptability of intricate and dynamic manufacturing systems
[6]. Agents in a modern industrial network rely on the socket
interface to send data. Sockets use the layered OSI reference
model [7] to send and receive data. Figure 1 shows the
layers a packet goes through after it’s written to the socket.
However, the delay in the information as it passes through
the layers in the agent devices is difficult to model until
real-time OS are used at the agent’s hosts.

There is a trend towards using DSL and models to cre-
standardate visual notations that are more familiar to indus-
trial automation practitioners [8]. Multi-model approaches
in the early design phase allow investigating system per-
formance more transparently [9]. Accurately describing the
timing characteristics and requirements of modular and
distributed systems is crucial in the context of CPPS and
DTs [10]. Hujo et al. [9] introduce an extension to an
established notation that facilitates the examination of timing
properties and demands of automation solutions and expands
it by incorporating the relationship between physical devices
and their controlling software based on soft and hard real-
time capabilities. The majority of sensor and actuator delays
were ascertained through measurement due to the limited
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Fig. 1: The layered network stack in the Agent host. The
packet goes from one application to the other through each
layer, adding delay. This work proposes a simple delay
model of the message completion time between agents. The
network can either be a wired local network, wireless local
network or internet.

information available in the corresponding data sheets. In the
case of agents incorporating the digital twin, the number of
reference points available is even more limited. To address
this challenge, the proposed approach involves comparing
delay times measured in the physical system to those pre-
dicted by the models, allowing for more precise information
regarding the system’s timing properties.

III. SYSTEM MODEL

This section provides an introduction to the underlying
network assumptions, the fundamental assumptions for the
industrial setup, and a detailed description of the use case.

A. Network Assumptions

We assume that the network traffic is carried over COTS
hardware. An IP address identifies each device, and packets
are dropped in the network due to congestion. The delay
of packets in the network from agent A to B is stable
throughout the assembly process. Such a controlled network
can be achieved using central monitoring and control in
of the factory network. We use Chameleon [11] to make
sure that no packets are dropped and the total end-to-end
delay in the network is stable and bounded. Our future
work will address the delays arising from faults and network
path reconfigurations. All agent-based systems except for the
Azure Analysis Services (AAS) based DT are implemented
on the Linux OS. The Cubic TCP variant [12] is used as
it is optimized for fast operation with short messages. For
the sake of a simplified evaluation of our models, a single
network switch connects all agents in our network except
for the DT.

B. Basic Assumptions

Investigating system components in an CPPS setting, we
assume a logistics and assembly scenario for this work. The
system setup includes a storage agent (supermarket cell), a
path planning agent ("Central.AI”), a logistics agent (MiR
Transporter Robot), an assembly agent (Franka Emika Panda
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Fig. 2: Use Case Description of this work based on previous DSL design [8], [9] with lab implementations of the agents

robot), and the digital twin agent (implemented by the AAS,
MS Azure Digital Twin, and Nvidia Omniverse), cp. Fig.
2. Given the academic phase of the setup, the system is
not restricted by either hard or soft real-time boundaries;
rather, the primary focus is to examine the system’s real-
time capabilities, including the investigation of mean delays
associated with each setup’s communication channels.

C. Digital Twin Setup

The system’s architecture is based on a socket-based
client/server principle, enabling bidirectional data exchange
between applications via TCP/IP. The digital twin is created
using the Asset Administration Shell (AAS) as a well-
defined asset representation, deployed on the Azure DT plat-
form. The AAS encompasses the necessary information for
the assembly process of gearbox parts with the Panda Robot,
obtained from relevant documentation and online resources.
The AAS is deployed in Azure DT, and a 3D representation
of the assets is created using Nvidia Omniverse Isaac Sim.
The simulation environment allows for real-time monitoring
and interaction with the digital twin. The Extensible Twin
Communication Interface Module (ETCIM) serves as an
interface application, facilitating the integration between the
Azure DT AAS instances, the Isaac Sim extension, and the
hardware control programs [13].

D. Gear Assembly Use Case Description

The study examines an industrial assembly use case of
two gearbox parts by Wittenstein for a customer order.
DSL4Production is applied on our assembly use case, il-
lustrated in Fig. 2. The workflow (cp. Fig. 3) involves
breaking down the customer order into tasks, which are
further decomposed into skills, and primitives. The MAS
then allocates the necessary agents, verifies their availability
and capability, while updating their individual digital twin
and the central path planning agent after succeeding each
task. The use of task decomposition, agent allocation, and
digital twin tracking enables assessing the automated pro-
cessing of orders, delays, and resource utilization. In the
context of DSL4Production, the majority of delay times
are obtained through measurements. However, it requires
significant practical effort to measure each communication
individually. Once we verify that our model for the system’s
delay aligns with the measured delay times, we can rely on
mathematical equations to make further assumptions about
delays, thus simplifying the estimation process.

IV. ANALYSIS

The following section provides an in-depth analysis of
the experimental results and their implications, aiming to
answer the research goal outlined in the introduction.
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Fig. 3: UML Use Case Diagram of the assembly process of two gearbox parts in the MAS architecture
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A. Decomposition of MAS communication

The analysis of the system focuses on the delay times
but not the operation times. The system’s decomposition
grounds on the procedure of the assembly process (cp.
Fig. 3). Following the sequencing of communication-based
on the sender and receiver agents, communication types,
message types, and concrete query content were assigned
to each communication message, as shown in Tab. 1. In
addition to the agents’ classification, the communication
messages can be differentiated based on their content, in-
cluding availability requests, detailed skill and primitive
information queries, task completion or status reports, and
position reports, such as those of the assembly or logistics
agent.

All messages are of the type TCP. However, messages 15-
17 go over the gateway to the AAS cloud hosted DT. The
rest of the messages go over the local network. We further
classify our local messages from Table I into 3 types:

1) Messages 1-3 initiate a connection and close it imme-
diately.

2) Messages 4, 5, 10, and 11 initiate the connection but
do not close it.

3) Messages 6-9 and 12-14 send the message on an
already established TCP connection and terminate it.

B. Measured Delays

To obtain network measurements and determine the delay
of the network, we employ application layer time-stamping
at the start and end of a message. We run the applications
of both the sender agent and the receiver agent on the same
computer hardware. This allows us to eliminate any errors in
the delay measurements arising from unsynchronized clocks
between the two agents. The time stamps are taken from
the CLOCK REALTIME on a Linux system. This time is
synchronized with the DT via an Network Time Protocol
(NTP) daemon running on the host computer. To ensure
the CPUs are not overutilized, we use a computer with 16-
core Intel 19 processors and 32 Gigabytes of RAM. The
sender and the receiver agent have their dedicated network
interface controller connected to separate PCle slots on the
computer’s motherboard. We also separate these ethernet
ports and the IP addresses into different network names-
paces, otherwise, the Linux kernel will route the packets
internally. The example network of a 1Gbps ethernet switch
is connected between the sender port and receiver port. This
approach guarantees consistent delay measurements, relying
on the same CPU power and network hardware for all
measurements. The delay measurements for each message
are performed a hundred times. The distribution across the
one hundred measurements for each message type is plotted
in Figure 4. The mean delay times of each communication
message can be found in Tab. I. These measurements also
show that the total message delay for all the local messages
never exceeded 1 ms pointing to its usability in real-time
communication where such delays are tolerable. The delays

for the messages with the DT were 3 orders of magnitude
higher than the delays observed between the other 3 agents.
These are plotted in Figure 5. These delay measurements
also point to the fact that if cloud-based DT solutions are
to be used in sync with the production environment, the
communication delay might prove to be a bottleneck in
terms of real-time communication.

C. Modelled Delays

We simplify the model from [4, Equation 25] by removing
the delays caused due to packet losses and the slow-start
phase of the TCP algorithm. The total expected message
completion time for a TCP flow m is given by,

E[Cm] = E[Dinit] + nE[Dpacket]7 (1)

where E[D;,;:] is the time taken to complete the 3-way
handshake and E[Dp,cke:] is the time it takes to send a
packet and receive its acknowledgment. Note that the FIN
message to terminate a flow is sent with the last packet,
and no delayed ACK mechanism is used as the messages
are very short. The packet sizes for the messages in Table
I are a maximum of 3 bytes, and the time difference in
the transmission of a packet of 1 byte vs. a packet of 3
bytes over a 1Gbps link is 16 nanoseconds. Hence, for all
practical purposes, we consider the delay of all packets to be
the same. Round Trip Time (RTT) is the time a packet takes
from one agent and back through the network. Since there
is only one switch between all local agents in the network,
which is not congested, this RTT is the same. We evaluate
the RTT with a simple ping message readily available on
all Linux OS. The mean RTT was found to be 0.274 ms.
We use this value along with the message types explained
in section IV-A to find the expected delay for each message
from Table 1. The estimated mean times for each message
are shown in Table II.

D. Comparing Measured Delays to Modelled Delays

In a majority of cases, the model aligns with the mea-
surements. All the theoretical mean delay times lie within
one standard deviation of the measured value. If one were
to extend the messages or message types in the production
environment, the modeled delays could be summed along
with the sub-task completion time to provide us with an
estimate of the total task completion time. Interestingly,
the models provided in the previous section were orders of
magnitude off when the delay measurements of the messages
with the DT from Figure 5. The mean RTT from each
agent to the DT was measured to be 10 ms. This points
to the fact the responses to the API calls to the AAS hosted
DT take much longer internally. The modelling of the API
response times of the DT is beyond the scope of the paper.
However, one could rely on the measurements to obtain
a rough estimate of the amount of time it takes for the
completion of messages 15,16, and 17.
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TABLE I: An overview of communication messages between agents

Index Name Agent Agent Commun. Mess. Mess. content Measures
sender receiver  protocol type mean delay
(ms)
Central Al schedules tasks to Supermarket cell, MiR and Robot for assembly
. TCP str {""Task™ ”Assembly”, ”Product’:
1 Capability_SupCell CenAl SupCell "Gearbox”, "Required resources” [*1000- 0.495
122079b01000_Zahnrad_LP070.stp”,
”1000-122036B01000_Bolzen_LP090.stp”,
”1000-122323b01000_Ritzel_LP070_i10.stp™],
“Required time”: ”60s”}
TCP byte ”SupCell can do task assembly.”
. . . TCP str {”Task”: ”Assembly”,”Product”:
2 Capability_MiR CenAl MiR »Gearbox”,"Required time”: ”120s”} 0.495
TCP byte ”"MiR can do task assembly.”
. TCP str {”Task”: ”Assembly”, ”Product’:
3 Capability_RobAssem CenAl RobAssem "Gearbox”"Required  procedures”:[pick 0.530
up item”, “assembly”, place item”],
“Required time™: "300s”}
TCP byte “RobotAssem can do task assembly.”
MiR picks up parts from Supermarket cell
. TCP byte ”Is SupCell free?”
4 Avalability_SupCell CenAl SupCell TCP byte »SupCell is free.” 0.555
. . . TCP byte ”Is MiR free?”
5 Avalability_ MiR SupCell MiR TCP byte MR is free.” 0.474
6 SupCell_MiR_PickUpParts SupCell MiR TCP byte ”MiR picks up parts.” 0.269
7 MiR_SupCell_AtSupCell MiR SupCell TCP byte ”"MiR is at SupCell.” 0.265
8 SupCell_MiR_PartsReady SupCell MiR TCP byte ”SupCell finishes task collect parts.” 0.291
9 SupCell_CenAl_Done SupCell CenAl TCP byte ”SupCell finishes task collect parts.” 0.264
MiR brings parts to Robot assembly and let it do the task assembly
- TCP byte ”Is RobAssem free?”
10 Avalability_RobAssem CenAl RobAssem TCP byte "RobAssem is frec.” 0.605
11 MiR_RobAssem_AtRobotAssem MiR RobAssem TCP byte ”MiR is at robot assembly” 0.303
12 RobAssem_CenAI_Done RobAssem CenAl TCP byte “"RobAssem finishes task assembly.” 0.325
13 RobAssem_MiR_Done RobAssem MiR TCP byte ”"MiR picks up assembled parts.” 0.304
14 MiR_CenAl_Delivery MiR CenAl TCP byte ”"MiR finishes task delivery.” 0.309
Supermarket cell, MiR and Robobt assembly updates their digital twins
15*%  SupCell_UpdateDT SupCell DT HTTP json “[{’op’: ’replace’)joint0’: ’radius’,value’:  917.352
0.7899125}, —y *position_theta’:
’radius’,'value’: 0.2145814}]”
16 MiR_UpdateDT MiR DT HTTP json “[{op’: ‘replace’,’x’: ‘m’value’:  815.126
10.688876152038574}, "op’: ’replace’,’y’:
’m’,’value’: 31.457216262817383},
’op’:  ’replace’,’theta’:  ’degree’,value’:
101.114486694335941}1”
17*  RobAssem_UpdateDT RobAssem DT HTTP json ”[{’op’: ’replace’)joint0’: ’radius’,value’:  933.470

0.1254187349436}, ..., ’position_theta’:
‘radius’,'value’: 0.3654874215457}]”

* The message content contains the information of joints, gripper and position of the robot, which are 12 degrees of freedom.
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TABLE 1II: Estimated delay times for message types from
Table 1

Messages E[Crn] Delay Value (ms)
1-3 2-E[RTT 0.548
4,5,10,11 2-E[RTT 0.548
6-9, 12-14 1-E[RTT 0.274
109 X Estimated
0.8
= 0.6
£ X
&
8
0.4
0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Message Types from Table |
Fig. 4: The measured communication delay for all local
messages. The measured mean agrees in most cases with
the estimated mean provided in Table II
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Fig. 5: The measured communication delay for Digital Twin
related messages. These delays are much higher as they are
not present in the local network as well as the application
layer response time to the API calls to the DT are unknown.

V. DISCUSSION

According to the assumptions made about the underlying
network and the industrial setup, we assumed that the
network traffic is carried over COTS hardware, each device
with an IP address and the network conditions remain
stable over time. The setup includes a storage agent, a
path planning agent, a logistics agent, an assembly agent,
and a digital twin agent. The system is not restricted by
either hard or soft real-time boundaries, and the focus is on
examining the real-time capabilities of the system, including
the investigation of mean message delivery delays associated
with each of the setup’s communication channels. The study
examines an industrial assembly use case of two gearbox
parts by Wittenstein for a customer order. The authors apply
DSL4Production to the assembly use case and use task
decomposition, agent allocation, and digital twin tracking
to assess the automated processing of orders, delays, and
resource utilization. The authors obtain delay times through
measurements, and they simplify the estimation process by
relying on mathematical equations once they verify that their
model for the system’s delay aligns with the measured delay
times.

The test setup still contains only a simple network with
one ethernet switch in between any two local agents. The
validity of the models over larger local networks needs
to be tested. Variations in the network conditions such as
congestion and packet drops can be modelled using methods
such as network calculus (NC) [14]. While this would make
the delay model much more complex, it would also be more
robust in a real industrial deployment. The duration of delays
is considerably influenced by the hardware specifications
chosen, e.g., in our case by the protracted processing times
of the MiR robot and its corresponding fleet manager for sta-
tus and location information. Additionally, communication
with the cloud-based digital twin exhibits extended delay
times, which do not factor in the DT processing times of
up to 200 ms. While the delays observed in the digital
twin communication may initially appear concerning, it is
important to consider the broader context and purpose of
using a digital twin in the production scenario. The primary
purpose of incorporating a digital twin in the system is to
enable assessment and evaluation of automated processing of
orders, delays, and resource utilization. Despite the delays
observed in the digital twin communication, it still offers
significant value in terms of system analysis, optimization,
and decision-making. Hence, to facilitate a comprehensive
modeling and pre-calculation for DSL4Production before
conducting measurements or implementing the system, it
is necessary to have more transparent and comprehensive
information about hardware delays (e.g., from industrial data
sheets, including sensors and actuators delay information).

VI. CONCLUSION AND OUTLOOK

In this section, we will conclude the study’s findings and
provide a outlook based on our results.
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A. Conclusion

The methodology of the paper involves assumptions about
the network, fundamental assumptions for an industrial
setup, and a detailed description of a use case involv-
ing an industrial assembly scenario. The study applies
DSL4Production on the assembly use case to assess auto-
mated processing of orders, delays, and resource utilization.
The delay times are obtained through measurements, and
mathematical equations are used to make further assump-
tions about delays. The focus is on examining the real-time
capabilities of the system and investigating the mean delays
associated with each of the setup’s communication channels.
We decomposed the system based on the procedure of
the assembly process and classify communication messages
based on sender and receiver agents, communication types,
message types, and concrete query content. We performed
measurements of the network delay of each communica-
tion message using and obtained the mean, maximum, and
minimum delay times. The grouping of the violin charts
are derived based on communication messages and their
content for analysis. Modelled delays were also compared
to the measured ones, and the mean delaysfrom the model
were found to approximate the measured mean values in
most scenarios. Based on the analysis, thus we were able
to determine estimated delay times that can be generalized
and utilized for future DSL4Production models.

B. Outlook

Further research is necessary to advance the field of
communication and coordination processes in MAS for fu-
ture production scenarios. Our study proposes the extension
of our findings to repetitive modules within production
systems, as well as an exploration of the impact of different
network loads on delay times. Additionally, the application
of machine learning approaches could be investigated for
optimizing MAS communication in production scenarios. A
more efficient approach for achieving hard and soft real-
time capabilities in complex systems could be implemented
by utilizing modeled delay times prior to implementation.
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