
Deep Segmented DMP Networks for Learning Discontinuous Motions

Edgar Anarossi1, Hirotaka Tahara1, Naoto Komeno1 and Takamitsu Matsubara1

Abstract— Discontinuous motion which is a motion composed
of multiple continuous motions with sudden change in direction
or velocity in between, can be seen in state-aware robotic
tasks. Such robotic tasks are often coordinated with sensor
information such as image. In recent years, Dynamic Movement
Primitives (DMP) which is a method for generating motor
behaviors suitable for robotics has garnered several deep
learning based improvements to allow associations between
sensor information and DMP parameters. While the imple-
mentation of deep learning framework does improve upon
DMP’s inability to directly associate to an input, we found
that it has difficulty learning DMP parameters for complex
motion which requires large number of basis functions to
reconstruct. In this paper we propose a novel deep learning
network architecture called Deep Segmented DMP Network
(DSDNet) which generates variable-length segmented motion
by utilizing the combination of multiple DMP parameters
predicting network architecture, double-stage decoder network,
and number of segments predictor. The proposed method is
evaluated on both artificial data (object cutting & pick-and-
place) and real data (object cutting) where our proposed method
could achieve high generalization capability, task-achievement,
and data-efficiency compared to previous method on generating
discontinuous long-horizon motions.

I. INTRODUCTION

With the increasing usage of robotics in various domains,
robots must be able to perform tasks with varying complexity
and precision such as shown in Fig. 1. These precise tasks
often utilizes discontinuous motions where sudden change
of direction or velocity happens within the motion [1], [2]
connected by a short-pause which is necessary to prevent
overshoot especially in fragile environments. In addition to
utilizing discontinuous motion, robots also need the intelli-
gence to consider the environment’s state received through
sensor inputs to properly perform its task which in recent
years comes in the form of imitation learning (IL) [3].

A well known method to generate those robotic motor
behavior is the motion generation method called Dynamic
Movement Primitives (DMP) [4]. Beside being able to rep-
resent a motor movement with a set of parameters, motion
generation through DMP also boasts its stability as it is
based on the well-established spring-damper model. Through
the use of separate scalable and temporal parameters, DMP
also features scalability in both spatial and temporal domain
which adds more flexibility to the motion generation process.
Recent trend which improves upon DMP is the prediction of
DMP components such as its parameters or forcing function
through deep learning based methods [5] which allows the

1Authors are with the Division of Information Science, Graduate School
of Science and Technology, Nara Institute of Science and Technology, Japan.

This work was supported by JSPS KAKENHI Grant Numbers
JP21H04910.

Fig. 1: Discontinuous motions found in everyday life. Initial position of the
motion is shown by the green dot while the transition between continuous
motions is shown by ×.

generation of motion represented by DMP with regards to
input data.

Nevertheless, an issue exist that would prevent accurate
generation of discontinuous motion using a DMP based
imitation learning which stems from how DMP represents
a motion. To accurately represent a motion using DMP,
multiple weighted Gaussian basis functions are combined
to construct a forcing function that alters the motion’s
acceleration. However, discontinuous motions with multiple
accelerations and decelerations require more basis functions
and larger basis function weights, making them unsuitable
for DMP-based imitation learning models as it would expand
the feature size by a large degree. For this problem, we
found that by decomposing the discontinuous motion, sim-
pler primitives easier to represent with DMP are produced,
which ultimately resulted in a shorter or at least equal length
of feature size, with an additional benefit of a more accurate
discontinuous motion generation.

Based on the idea mentioned above, we propose a novel
deep auto-encoder based neural network which produces
variable-length segmented motion by implementing: (i) mul-
tiple DMP parameters predicting network architecture to
support prediction of varying number of segments, (ii) dou-
ble-stage decoder network to capture similarities that can be
found in-between segments of the same data, and (iii) num-
ber of segments predictor to limit the final number of
segments. The proposed method is evaluated using two artifi-
cially generated data (object cutting and pick-and-place) and
a real data (object cutting). Based on the evaluation result,
the proposed method has shown to outperform comparison
method in generalization capability, task achievement, and
data-efficiency.

The main contributions of this paper are: (i) propos-
ing a data-efficient deep learning based motion generation
method which is effective against long-horizon robotic tasks

ar
X

iv
:2

30
9.

00
32

0v
1 

 [
cs

.R
O

] 
 1

 S
ep

 2
02

3



requiring discontinuous motion, (ii) implementing motion
sequencing within an imitation learning framework, and
(iii) an empirical study of the proposed method and existing
DMP-based deep imitation learning framework on the task
of object cutting and pick-and-place with varying difficulties
and dataset amount.

II. RELATED WORK

A. Path Continuity

In order to identify the problem with representing discon-
tinuous motion in robotics, it is best if we know exactly the
characteristics of a discontinuous motion which is closely
related to the topic of path continuity [1]. Path continuity
can be described by 2 types: (i) Geometric continuity which
ensures the endpoints between segments meets with equal
tangent vector’s direction, and (ii) Parametric continuity
which ensures the endpoints between segments meets with
equal tangent vector’s direction and magnitudes. Based on
that definition, discontinuous motion in robotics can be
defined as a combination of segments of motion which
endpoints (i) have different direction including curves, and
(ii) have different velocity, with the requirement of having
the endpoints meet being a necessity, as an executed motion
couldn’t just suddenly displace to another position without
any translation.

B. Motion Representation through DMP Sequencing

An ongoing trend within the DMP domain is the pro-
cess of sequencing multiple movement primitives in order
to learn motor skills which requires complex motion [6]–
[8]. Through primitives sequencing, complex motions could
be reconstructed more accurately as compared to motion
reconstruction by a single DMP. Past works on this topic
however are mostly implemented within a reinforcement
learning framework, which is often dangerous to be used
in the real world.

Advancements in this research area comes in the form
of methods to seamlessly join the primitives thus reducing
sudden changes in velocity [9], [10]. This improvement how-
ever, would only be strictly required in connecting primitives
where reconstruction of velocity profile is strictly required,
which is not the case if the segments are connected at zero
velocity as shown in this work.

C. Deep Learning Implementation of DMP

Recent developments in DMP research expands on DMP
application in the deep learning domain [11] which can be
categorized into imitation learning (IL) [12] and reinforce-
ment learning (RL) [13]. In the IL domain, deep learning
capability to process different kind of input types can be
utilized to associate various input state into components of
DMP used to reconstruct the motion, resulting in a state-
motion mapping framework. Some works which use this
approach include Deep-DMP by Pervez et al. which maps
input image into DMP’s forcing terms [14], and Image-to-
Motion Encoder Decoder Network by Pahic et al. which

utilizes latent space to map input image into its corre-
sponding DMP parameters [5], [15]. While this approach
does improve upon DMP’s inability to process other type
of inputs, naive prediction of DMP’s components often
resulted in inaccurate motion reconstructions which appears
especially with complex motions that requires a large size of
the DMP components to represent.

DMP’s implementation in the RL domain on the other
hand, while also predicts DMP’s components, does so mul-
tiple times as the action produced by the control policy [8],
[16], [17]. This behavior of generating multiple primitives
and executing them sequentially in essence is the behavior
of primitives sequencing which is an effective approach on
generating a complex DMP-based motion [18], [19]. Stulp
et al. investigated on this issue on their work which utilizes
DMP-based RL for robust manipulation [16], [17]. This
application of primitives sequencing however hasn’t been
much investigated in the IL domain which could utilize
demonstration data to replace RL’s need for explorations.

III. PRELIMINARY

A. Dynamic Movement Primitives

DMP is based on the spring damper model [4] shown by
the following differential equations,

τ ż = αz(βz(g − y)− z) + F (x), (1)
τ ẏ = z, (2)

where τ is a time constant responsible for temporal scaling,
αz ∈ Rd and βz ∈ Rd are positive constants which when
assigned the appropriate value (βz = αz/4), causes the
dynamical system to be critically damped, y ∈ Rd and
g ∈ Rd are the current position and the goal position which
is responsible for the spatial scaling, F ∈ Rd is a forcing
function of phase x ∈ R which is responsible for altering the
dynamical system trajectory, phase x is a component used to
avoid explicit time dependency within the dynamical system,
and finally d is degree-of-freedom of the dynamical system.
In this research we used the discrete implementation of DMP
which attractor system is defined as,

F (x) =

∑N
i=1 ψi(x)wi∑N
i=1 ψi(x)

x(g − y0), (3)

ψi(x) = exp (− 1

2σ2
i

(x− ci)
2), (4)

where ψi(x) are N exponential basis functions with σi ∈ R
and ci ∈ R acting as the width and centers of the basis
functions weighted by wi ∈ Rd. Forcing function Eq. (3)
is modulated by (g − y0) which corresponds to the scaling
properties of the model by the initial position y0 and goal
position g, and the phase x which vanishes the forcing term
when the goal g is reached.

Given this forcing function equation, we can see that the
number of basis function and its corresponding weight is the
one mostly responsible for defining the resulting force profile
which depends on the complexity of the motion, such as
(i) how often accelerations and decelerations happen, and



(a)

(b) (c)

Fig. 2: (a) DMP-reconstructed discontinuous motion with varying number
of basis functions, (b) Reconstruction error decreases with the increase of
basis functions but some error is still available even with a large number
of basis functions, (c) DMP basis functions weight interval increases with
more basis functions used.

(ii) the intensities of the acceleration and decelerations.
Based on this complexity criteria, a complex motion would
require more basis functions with large weight value to
accurately reconstruct using DMP.

B. Convolutional Image-to-Motion Encoder Decoder
Network (CIMEDNet)

Previous work done by Pahic et al. called Convolu-
tional Image-to-Motion Encoder Decoder Network (CIMED-
Net) [5] utilizes latent spaces within a deep encoder de-
coder network to map an image input to its corresponding
DMP parameters encoded motion. Four DMP parameters
({y0, g, τ,w}) are predicted by CIMEDNet used to define a
DMP attractor landscape, as shown in Fig. 3.

In their implementation, Pahic et al. normalized their
predicted DMP parameters to avoid large value difference
between parameters. However, normalizing DMP parame-
ters with a large interval can cause sensitivity issue on
its denormalization, requiring the deep learning model to
be highly accurate in its predictions. Additionally, when
a motion requires a lot of basis functions to reconstruct,
the neural network architecture would require more neurons
in the output layer to predict the additional basis function
weights. Both of these issue are visualized in Fig. 2.

Therefore, to summarize the issues that appear when we
try to predict the DMP parameters for a discontinuous motion
using CIMEDNet, (i) the size of the network output layer
will be large because of the large number of basis functions
required, and (ii) the need for a very accurate prediction
because of the large value interval of the DMP parameters.
Both of these issues resulted for the need of a very accurate

DMP 
reconstruction

Conv
Conv

FC
FC

Output layer

{𝒚0, 𝒈, 𝜏, 𝒘}

DMP
parameters

Generated 
motion

Input image

Fig. 3: CIMEDNet generating a DMP-based motion for a tracing task.

model representation, which for a deep learning based model
means that a large amount of good quality training data is
required.

IV. PROPOSED METHOD

This section explains the idea and details of the proposed
method visualized in Fig. 4. As explained in the previous
section, the problem of predicting a discontinuous motion’s
DMP parameters goes back to the complex force profile of a
discontinuous motion given the complexity criteria described
in §III-A. Thus, in order to solve upon the issues that appears
when reconstructing a discontinuous motion with DMP, the
most obvious solution would be to learn multiple simpler
motion with low complexity instead of learning a complex
motion. This solution provides several main issues within
its implementation such as (i) inconsistencies of segments
length, (ii) requiring a large amount of data to learn all
combinations of DMP parameters between all segments, and
(iii) how to decide the final length of segments To address
this issue, we proposed a variable-length motion generation
method by implementing (i) multiple DMP parameters
predicting network architecture, (ii) double stage decoder
network, and (iii) number of segments predictor.

A. Deep Segmented DMP Network (DSDNet)

1) Multiple DMP parameters predicting network archi-
tecture: DSDNet uses latent space within an encoder de-
coder network to predict a fixed M ∈ N sets of DMP
parameters. The first decoder network in DSDNet predicts
{n, {y0m}Mm=1, {gm}Mm=1, {τm}Mm=1, {zm}Mm=1} where n ∈
N is the predicted number of segments, and z ∈ RM is the
latent space representation of w which will goes through the
next decoder network.

2) Double-stage decoder network: Before z goes through
the second decoder network, we vectorize z with the number
of batch b ∈ N as z ∈ Rb,M → z ∈ Rb×M , thereby
training the second decoder network for each latent space
value separately.

Through this implementation of double-stage decoder net-
work, not only similarity in basis function weights that can be
found between different data is learned, similarity between
different segments of the same data could also be learned,
thus allowing the second decoder network to learn the basis
function weights combinations with more data compared to
other DMP parameters. Even though this implementation
only covers basis function weights, it is still an essential part
to our proposed method as basis function weights normally
takes the largest ratio within a set of DMP parameters.



Input Image

𝒚𝟎1..𝑀

𝒈1..𝑀

𝝉1..𝑀

𝑛

𝒛1..𝑀

𝒘1..𝑀

𝒚𝟎1, 𝒈1, 𝜏1, 𝒘1

𝒚𝟎2, 𝒈2, 𝜏2, 𝒘2

𝒚𝟎3, 𝒈3, 𝜏3, 𝒘3

𝒚𝟎𝑀, 𝒈𝑀, 𝜏𝑀, 𝒘𝑀

⋮

𝒚1

𝒚2

𝒚3

𝒚𝑀

⋮

All segments
DMP reconstruction

𝒏

𝒚1

𝒚2

𝒚𝑛

⋮

Limit
𝑛 segments

𝒀

𝜽1..𝑀 𝒚1..𝑀

𝒚1..𝑛

Concatenate
remaining segments

Combine DMP
parameters

Encoder network

1st stage decoder network

2nd stage decoder network

Conv

Conv

Conv

FC
FC

FC

Fig. 4: DSDNet motion reconstruction process. (i) Multiple motion are reconstructed by DMP from sets of DMP parameters predicted through (ii) double-
stage decoder network architecture for data-efficiency. In order to produce the variable-length segments motion, (iii) number of segments predictor predicts
n which is utilized to limit the used segments in the final motion.

3) Number of segments predictor: Sets of DMP parame-
ters Θ can be generated through the combination of values
from y0, g, τ , and the resulting output w ∈ Rb×M×N →
w ∈ Rb,M,N of the second decoder network vectorized
back into its batch form. Through modification of Eq. (1)
to support batch calculation by replacing scalar into vector
calculation, parallel computation of DMP reconstruction is
enabled by treating the segments as a batch producing M
reconstructed motion y ∈ RM,t,d. Finally, a subset of the
reconstructed motion limited by the predicted number of
segments n is concatenated to produce the final motion
Y ∈ Rn×t,d.

A fixed size of dataset with M segments is required for
this implementation, which is not the case for discontinuous
motions with inconsistent number of segments, an issue
which we addressed through segments padding. To reduce
outlier values for the padding, we pad the missing ith ∈ N
DMP parameters segment with the average parameter value
across all data where ith segment is available. The original
number of segments n ∈ N is also taken as label data.
Finally, by defining the maximum number of segments M ,
padding the data with segments less than M , and also
defining the number of segments n for each data, a dataset
with a fixed size is produced.

B. Loss Function

In our proposed method, the length of the final motion is
not only altered by each τ value for each segments, but is also
limited by the number of segments n. Given these limitations,
we chose the comparison between DMP parameters of all
segments while also comparing the number of segments n
as our loss function to optimize our encoder-decoder network
defined as follows,

E =
∑M

i=1

(
∥y0i − ŷ0i∥

2 + ∥gi − ĝi∥2 + (τi − τ̂i)
2+∑N

j=1
∥wi,j − ŵi,j∥2

)
+ ∥n− n̂∥2, (5)

where ŷ0, ĝ, τ̂ , ŵ, and n̂ corresponds to predicted initial
position, predicted goal position, predicted τ value, predicted

basis functions weight, and predicted number of segments
respectively.

V. EVALUATION: ARTIFICIAL DATA

Experiments utilizing artificial data are conducted to eval-
uate the proposed method on several different performance
measures, including: (i) Generalization capability is mea-
sured between the generated motion and the task-solution
of the test data by Root Mean Squared Error (RMSE)
with heuristical sampling to handle difference in vector
length and also Dynamic Time Warping (DTW) which
is a distance measure of spatial information between two
vectors regardless of temporal differences [20]. (ii) Task
achievement evaluation depends on each task definition of
success. (iii) Lastly, data-efficiency is evaluated through
both generalization capability and task achievement when the
model is trained using limited number of data. CIMEDNet is
used as a comparison DMP-based motion generation method.

To ensure the fairness of both models, the amount of basis
functions in the DMP parameters used to train CIMEDNet(=)
is the same as DSDNet’s maximum number of segments
M multiplied by the number of basis functions used for
the DMP parameters of each segment. In addition, another
CIMEDNet model called CIMEDNet(+) trained using DMP
parameters with more basis functions to reconstruct the
motion accurately with a trade-off of having a larger output
layer size is prepared.

For the artificially generated data, 2 types of data are
generated (i) periodic discontinuous motion data from the
object cutting task, and (ii) non-periodic discontinuous mo-
tion data from the randomized pick-and-place task. Note that
even with the task utilizing periodic discontinuous motion,
some adjustment still need to be made on the positions
parameters of each segment made possible by utilizing a deep
learning model. The task evaluation process is also designed
to consider the adjustable position parameter according to
the input image, thus rendering the usage of conventional
periodic DMP to be challenging.



TABLE I: Object cutting task result evaluated through several evaluation
metric. (a) corresponds to the results of models trained using sufficient-data,
while (b) corresponds to the results of models trained using limited-data.

Evaluation metric DSDNet CIMEDNet(=) CIMEDNet(+)

(a)
RMSE 0.037 0.145 0.628
DTW 0.689 1.178 11.934

Success-rate (%) 98.598 21.963 0

(b)
RMSE 0.111 0.161 0.595
DTW 1.900 2.386 9.915

Success-rate (%) 95.540 14.085 0

A. Object cutting

1) Task setting: Given a snapshot of the initial state of an
object with differing shape and size, the motion generation
method is tasked with generating a periodic cutting motion
appropriate for the current object. For this evaluation, degree-
of-freedom (DoF) of the generated motion is limited to 2 axis
which are the up-down movement and right-left movement.
The distance between cuts and the initial position are both
fixed to simplify the task.

To evaluate the task achievement, we counted the total
number of successful cuts for each model on the test data.
A cut is considered successful if it lifts the knife above the
object and cuts through a threshold line on the bottom of
the object. To evaluate the data-efficiency performance of
the proposed method, another set of models trained on a
smaller number of dataset is prepared.

2) Dataset creation: We started with the generation of
randomized-shape polygon which is used for both input
image and cutting motion generation.

For the input image, the polygon is projected into a
viewport as white color on top of the black background,
simulating an image acquired from a depth camera, or an
image passed through a image segmentation process.

A heuristic algorithm is used to place a pre-defined cutting
motion which include a downward motion to the object, and
an up-right curving motion which goes to the next cutting
position. Utilizing the polygon’s coordinates, the pre-defined
cutting motion is scaled vertically to reach a certain constant
distance above the highest horizontally-closest coordinate.
To produce the next cutting segment, we repeat the process
above while continuing from the last segment’s position. The
whole cutting motion is finished with a downward motion as
the up-right curving motion is unnecessary.

With the segments of cutting motion placed by the process
above, we finally generate the DMP parameters for each seg-
ments through locally weighted regression [4] for DSDNet,
while 1 set of DMP parameters is generated for CIMEDNet.
The total number of both downward and up-right curving
segments is also collected to evaluate the network output.

1000 data is generated for sufficient-data evaluation, while
another dataset with 100 data is generated for the limited-
data evaluation. Both are split 70% for training data, 20%
for validation data, and 10% for test data.

3) Result: Projection of the generated motion to the input
image trained on both sufficient-data and limited-data can
be seen in Fig. 5, while the task achievement result can be
seen in Table I. From this result, we could see that DSDNet

Fig. 5: Projection of the cutting motion generated by all model trained on
(a) sufficient-data, and (b) limited-data.

Random initial objects' position

Random target position

Starting position
motion

Pick

Fig. 6: Examples of initial state for randomized pick-and-place task. Objects
are shown by red, yellow, and blue squares and the target is shown by the
purple circle.

has shown the best performance in terms of generalization
capability, task achievement, and data-efficiency compared
to CIMEDNet-generated motion.

Motion generation by CIMEDNet seems to have difficulty
generating an accurate discontinuous motion as it fully
relies on the basis functions weight among all of the DMP
parameters given the ratio of parameters in the network
output layer. By failing to predict the basis functions weight
accurately, especially for a discontinuous motion which
requires high accuracy, the motion generated by CIMEDNet
fails to reconstruct part of the motion which requires high
intensity of acceleration or deceleration accurately as can be
seen with the cutting motion making incomplete cuts.

Failures in DSDNet on the other hand can mostly be
attributed to its misprediction of the number of segments
output rather than mispredicting the DMP parameters as can
be seen in the third row of Fig. 5. DSDNet doesn’t have the
same issues that troubles CIMEDNet as the basis functions
weight predicted in DSDNet is less in quantity with smaller
value interval. DSDNet also relies more on DMP’s position



TABLE II: Pick-and-place task result evaluated through several evaluation
metric. (a) corresponds to the fixed version of the pick-and-place task, while
(b) corresponds to the randomized version of the task.

Evaluation metric DSDNet CIMEDNet(=) CIMEDNet(+)

(a)
RMSE 0.404 85797.703 247151.281
DTW 31.917 8422735.690 15707883.595

Success-rate (%) 100 0 0

(b)
RMSE 1.586 25667.934 344754.573
DTW 93.518 2623380.032 29052772.126

Success-rate (%) 77.778 0 0

parameters as each segment has an initial position and goal
position parameters, reducing the responsibility of the basis
functions weight on shaping the whole motion. This resulted
in a final motion that could reach all short pauses within the
discontinuous motion accurately.

B. Pick-and-place

1) Task setting: Given a snapshot of the initial state of
an environment containing objects and a target position, the
motion generation method is tasked with generating a 4 DoF
motion for a gripper to pick the available objects, and place
it on the target position. 3 DoF are responsible for the X-
axis, Y-axis, and Z axis movement, while the last DoF is
responsible for the gripper distance. In order to measure the
generalization capability of this task, we evaluated the pick-
and-place task on 2 different difficulties. For the fixed version
of the task, the gripper are tasked on picking between 1 to 3
objects on a fixed position, and place them on a fixed target.
On the randomized version, all positions of objects and target
are randomized but does not overlap each other. Visualization
of the task can be seen in Fig. 6. Task achievement for this
task is calculated by the total number of successfully picked
objects placed on or near the target position on the correct
order of red → yellow → blue.

2) Dataset creation: A simple pick-and-place environ-
ment is developed to generate data and later evaluate the task
following the task setting above. 150 data are generated for
the simpler version of the task, while 9000 data are generated
for the randomized version of the task. Both dataset are also
split 70% for training data, 20% for validation data, and 10%
for test data.

3) Result: From the results of both version of the task
shown in Table II, DSDNet model can be seen to achieve
far better results compared to both CIMEDNet models
which completely fails on performing the task. CIMEDNet’s
difficulties in performing this task can be attributed to 2
reasons. For both version of the tasks, CIMEDNet is having
difficulties on predicting the accurate DMP parameters given
the discontinuous nature of the motion, even more for the
randomized version of the task where all solutions will
produce different DMP parameters especially for the basis
functions weight. DSDNet on the other hand, segments the
discontinuous motion into simple primitives which can be
represented using DMP with minimal basis functions, this
resulted in DSDNet only requiring to predict the correct
position parameters of each segments for the main issue of
the task.

Knife and markers Object

Motion capture camera

Web camera

(a) (b)
Fig. 7: The environment for collecting cutting data. (a) The system captures
the shape of the object using a web camera and the position of the knife
through motion capture camera. A kinetic sand is used to simulate the
cutting of an object. (b) The top view of the environment. Human handles
3D-printed knife to collect real cutting data.

Ground truth DSDNet CIMEDNet (=) CIMEDNet (+)

Fig. 8: Projection of the cutting motion generated by all model trained on
data collected through motion capture camera.

CIMEDNet’s problem with this task also comes from
the fact that DMP produces a curve-like motion unless
enough basis functions are used, which resulted in failure
by the gripper not completely grabbing the object. With
the CIMEDNet(+) model which is supposed to be able to
reconstruct the motion for the task properly, it faces the
original issue that we are trying to tackle which is having a
data with a large feature size, making it harder for the model
to fit properly to the dataset.

VI. EVALUATION: REAL DATA

In this evaluation, the data-efficiency performance of both
models and its ability to handle noisy data are evaluated in
a simplified version of the object cutting task. Compared to
the previous object cutting task, the cutting task for the real
data evaluation is more simplified to reduce variations given
the limited number of data.

1) Task setting: Like the artificial object cutting task,
the motion generation method is tasked with generating
the appropriate cutting motion given an object image. To
simplify the task, the length of objects are limited to 3
types which would produce 3, 4, and 5 cuts. Though some
additional difficulty is also added by using 3 DoF motion.

2) Dataset creation: Kinetic sand is used as a reusable
cutting object to be cut by a 3D-printed knife model to
support markers to be captured by a motion capture camera
(OptiTrack: Flex13). Initial image state is captured by an off-
the-shelf web camera. The data collection environment can
be seen in Fig. 7.



TABLE III: Object cutting task result of models trained using real data
evaluated through several evaluation metric.

Evaluation metric DSDNet CIMEDNet(=) CIMEDNet(+)
RMSE (m) 0.016 0.014 0.045

DTW 0.418 0.762 1.827
Success-rate (%) 100 13.636 0

20 data are collected for each number of cuts, resulting in
60 total data. This dataset is also split 70% for training data,
20% for validation data, and 10% for test data.

3) Result: The projection of the generated motion of all
models to the test image and the task achievement perfor-
mance can be seen in Fig. 8 and Table III respectively. From
the result shown in Fig. 8, we can see that DSDNet could
generate the appropriate cutting motion accurately given the
limited number of data. The motion generated by CIMED-
Net(=) on the other hand can be seen to almost resemble
the original motion, but fails to capture the discontinuous
motion properly thus failing to perform the task. Finally the
motion generated by CIMEDNet(+) can be seen to be under-
trained as the total number of data is very lacking to train
all different combinations of basis functions weight.

VII. DISCUSSION

This section describes advantages, disadvantages, and the
future direction of our proposed method.

Based on the evaluation results shown in the previous
section, several confirmed advantages can be found within
our proposed method as following: (i) accurate discontinuous
motion generation which has a high generalization capability
to new states even with minimal amount of data, (ii) a more
task-friendly motion generation method done by segmenting
the whole trajectory into multiple simple primitives which
proves to be easier to reconstruct with DMP, and lastly
(iii) even though the proposed method is also based on deep
learning, modifications proposed in this work resulted in a
more data-efficient model which reduces usage burden.

We have several future directions to address the disad-
vantages found within the method, (i) improving the gen-
eralization capability of the proposed method as currently
it still has difficulty predicting the segments position with
small amount of dataset. The inclusion of existing object de-
tection methods may help with this issue. (ii) improving the
transition of position and velocity between DMP sequences,
which would allow sequencing of continuous motion while
also preserving its velocity profile, and (iii) experimenting
with other methods to represent DMP parameters, especially
the basis function weights, which has proven to be difficult
to learn when a deterministic method such as deep learning
which requires large amount of data is used.

VIII. CONCLUSION

A new DMP-based motion generation method optimized
for discontinuous motion is presented in this paper. The
effectiveness of the proposed method is verified through long
horizon motion generation tests utilizing both artificial and
real data. The proposed method has shown to achieve better

generalization capability and task achievement compared to
previous methods while also reducing the amount of data
required.

REFERENCES

[1] A. Ravankar, A. A. Ravankar, Y. Kobayashi, Y. Hoshino, and C.-C.
Peng, “Path smoothing techniques in robot navigation: State-of-the-
art, current and future challenges,” Sensors, vol. 18, no. 9, p. 3170,
2018.

[2] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion
planning networks,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 2118–2124.

[3] S. Choudhury, M. Bhardwaj, S. Arora, A. Kapoor, G. Ranade,
S. Scherer, and D. Dey, “Data-driven planning via imitation learning,”
The International Journal of Robotics Research, vol. 37, no. 13-14,
pp. 1632–1672, 2018.

[4] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[5] R. Pahič, B. Ridge, A. Gams, J. Morimoto, and A. Ude, “Training
of deep neural networks for the generation of dynamic movement
primitives,” Neural Networks, vol. 127, pp. 121–131, 2020.

[6] S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning to se-
quence movement primitives from demonstrations,” in 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2014, pp. 4414–4421.

[7] N. J. Cho, S. H. Lee, J. B. Kim, and I. H. Suh, “Learning, improving,
and generalizing motor skills for the peg-in-hole tasks based on
imitation learning and self-learning,” Applied Sciences, vol. 10, no. 8,
p. 2719, 2020.

[8] Z. Li, T. Zhao, F. Chen, Y. Hu, C.-Y. Su, and T. Fukuda, “Reinforce-
ment learning of manipulation and grasping using dynamical move-
ment primitives for a humanoidlike mobile manipulator,” IEEE/ASME
Transactions on Mechatronics, vol. 23, no. 1, pp. 121–131, 2017.

[9] T. Kulvicius, K. Ning, M. Tamosiunaite, and F. Worgötter, “Joining
movement sequences: Modified dynamic movement primitives for
robotics applications exemplified on handwriting,” IEEE Transactions
on Robotics, vol. 28, no. 1, pp. 145–157, 2011.

[10] B. Nemec and A. Ude, “Action sequencing using dynamic movement
primitives,” Robotica, vol. 30, no. 5, pp. 837–846, 2012.

[11] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Control, plan-
ning, learning, and imitation with dynamic movement primitives,” in
Workshop on Bilateral Paradigms on Humans and Humanoids: IEEE
International Conference on Intelligent Robots and Systems (IROS
2003), 2003, pp. 1–21.

[12] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters
et al., “An algorithmic perspective on imitation learning,” Foundations
and Trends® in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[14] A. Pervez, Y. Mao, and D. Lee, “Learning deep movement primitives
using convolutional neural networks,” in 2017 IEEE-RAS 17th inter-
national conference on humanoid robotics (Humanoids). IEEE, 2017,
pp. 191–197.

[15] R. Pahič, A. Gams, A. Ude, and J. Morimoto, “Deep encoder-decoder
networks for mapping raw images to dynamic movement primitives,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 5863–5868.

[16] F. Stulp and S. Schaal, “Hierarchical reinforcement learning with
movement primitives,” in 2011 11th IEEE-RAS International Confer-
ence on Humanoid Robots. IEEE, 2011, pp. 231–238.

[17] F. Stulp, E. A. Theodorou, and S. Schaal, “Reinforcement learning
with sequences of motion primitives for robust manipulation,” IEEE
Transactions on robotics, vol. 28, no. 6, pp. 1360–1370, 2012.

[18] F. Meier, E. Theodorou, and S. Schaal, “Movement segmentation
and recognition for imitation learning,” in Artificial Intelligence and
Statistics. PMLR, 2012, pp. 761–769.

[19] R. Lioutikov, O. Kroemer, G. Maeda, and J. Peters, “Learning manip-
ulation by sequencing motor primitives with a two-armed robot,” in
Intelligent Autonomous Systems 13. Springer, 2016, pp. 1601–1611.

[20] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimiza-
tion for spoken word recognition,” IEEE transactions on acoustics,
speech, and signal processing, vol. 26, no. 1, pp. 43–49, 1978.


	INTRODUCTION
	RELATED WORK
	Path Continuity
	Motion Representation through DMP Sequencing
	Deep Learning Implementation of DMP

	PRELIMINARY
	Dynamic Movement Primitives
	Convolutional Image-to-Motion Encoder DecoderNetwork (CIMEDNet)

	PROPOSED METHOD
	Deep Segmented DMP Network (DSDNet)
	Multiple DMP parameters predicting network architecture
	Double-stage decoder network
	Number of segments predictor

	Loss Function

	EVALUATION: ARTIFICIAL DATA
	Object cutting
	Task setting
	Dataset creation
	Result

	Pick-and-place
	Task setting
	Dataset creation
	Result


	EVALUATION: REAL DATA
	Task setting
	Dataset creation
	Result


	DISCUSSION
	CONCLUSION
	References

