
Platform-Dependent Code Generation for Embedded
Real-Time Software

BaekGyu Kim Linh T.X. Phan Oleg Sokolsky Insup Lee
University of Pennsylvania

{baekgyu,linhphan,sokolsky,lee}@cis.upenn.edu

ABSTRACT
Code generation for embedded systems is challenging, since the
generated code (e.g., C code) is expected to run on a heteroge-
neous set of target platforms with different characteristics, such as
hardware/software architectures and programming interfaces. We
propose a code generation framework that provides the flexibility
to generate different source code that is executable on each target
platform. In our framework, the platform-dependent characteris-
tics of a target platform are explicitly specified by an Architectural
Analysis Description Language (AADL) model and a code snippet
repository. The AADL model captures hardware/software archi-
tectural aspects of the platform, such as periodic/aperiodic threads
and their interactions with sensors and actuators. The code snippet
repository contains platform-dependent code snippets that are cate-
gorized according to the functions required to implement the com-
ponents of the AADL model. These two elements of the platform
capability are then used by the code generation algorithm to gen-
erate platform-dependent code for the given platform. We demon-
strate the applicability of our framework using a case study of code
generation for two infusion pump systems.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Programming

General Terms
Design, Reliability

Keywords
Code generation, Embedded software, AADL, Model-based devel-
opment

1. INTRODUCTION
Model-based development has gained attention as an effective me-
thod for creating safety-critical embedded software, such as med-
ical devices. In this approach, the software behavior is abstracted
using a high-level model, such as UPPAAL [5] or Simulink/State-
flow [10], and the correctness of the software is verified by an asso-
ciated analysis tool, such as UPPAAL model checker or Simulink
Design Verifier. Code generation tools, such as TIMES [4] or Real-
Time Workshop, are then used to systematically convert the verified
model to source code, such as C code, that can be executed on tar-
get platforms. This systematic process ensures that the resulting
code preserves the properties that have been verified at the model
level.

This is a post-print version of the paper appearing in CASES 2013, Interna-
tional Conference on Compilers, Architecture, and Synthesis for Embedded
Systems

There exist several semantic gaps between high-level models and
implementation platforms in this methodology, however. A model
typically abstracts information as to how model elements are im-
plemented on a particular target platform; although this abstrac-
tion makes the model easier to understand and reduces verification
complexity, it places additional burden on the code generator. Fur-
ther, modeling languages offer abstract semantics that is not well-
matched to the execution of the model on target platforms. For
instance, UPPAAL provides semantics of state-transition systems
along with channel synchronizations and shared variables, which
can be used to express inputs and outputs of the software system.
Stateflow provides semantics of events and conditions for a simi-
lar purpose. Implementing such semantics on an embedded plat-
form requires platform-dependent information, such as how differ-
ent threads are scheduled to process input data from sensors, and
how results of computation are delivered to actuators through some
communication mechanism provided by the underlying hardware/-
software stack (e.g., real-time operating system). However, this
information is not captured in the code generation.

The above gaps give rise to an integration challenge: the gen-
erated code cannot be easily integrated with diverse hardware/soft-
ware architectures of embedded platforms without violating the be-
havioral compatibility of the code running on the different plat-
forms. Currently, this integration challenge is being solved through
manual effort that is tedious and error-prone, because it involves
low-level platform-specific details. Therefore, it is necessary to
capture the required platform-dependent aspects – in a succinct
manner and at the right level of abstraction – in the code genera-
tion to guarantee the behavioral compatibility of the generated code
when executing on different target platforms.

As the discussion above shows, we need to distinguish two kinds
of platform-dependent information. The first describes the mech-
anisms used by the platform to execute the platform-independent
computation, such as whether threads are executed periodically or
aperiodically, whether sensor data are sampled or buffered, etc. The
second describes a particular platform API offered by a platform for
access to the desired mechanisms, such as what calls the software
needs to make to access buffers, to read timers, etc.

We propose a code generation framework that provides the flex-
ibility to generate different source code that is executable on each
target platform. In our framework, different platform-dependent
aspects are expressed using different platform capabilities. A plat-
form capability captures two aspects of a platform. First, the hard-
ware/software architecture of a target platform is modeled using
Architectural Analysis Description Language (AADL) [1]. In this
process, an AADL model is used to capture interactions between
the hardware (e.g., sensors/actuators) and the software (e.g., peri-
odic/aperiodic threads). Second, the programming interface of a
target platform is captured by a code snippet repository. The repos-
itory provides code snippets that are categorized according to their

functions to implement AADL components. The code generation
algorithm takes different platform capabilities as inputs to generate
the source code that is executable on the corresponding platforms.
In summary, this paper makes the following contributions:

• We propose a way to specify platform capabilities that cap-
ture (1) hardware/software architectural aspects, and (2) pro-
gramming interfaces of target platforms.

• We propose a code generation algorithm that synthesizes dif-
ferent source code executable on different target platforms
from the platform capabilities.

• We demonstrate the flexibility of our code generation frame-
work via a case study that generates source code for two infu-
sion pump systems that have different platform capabilities.

The rest of the paper is organized as follows. We explain the no-
tion of platform-dependent software aspects in Section 2. Section 3
presents our approach for platform-dependent code generation. In
Section 4 and 5, we describe how to capture the platform capability
of a platform using an AADL model and a code snippet reposi-
tory, followed by the code generation algorithm in Section 6. We
demonstrate our approach through a case study in Section 7. We
discuss the related work in Section 8 and conclude in Section 9.

2. PLATFORM-INDEPENDENT VS.
PLATFORM-DEPENDENT ASPECTS

We begin by giving an example of the platform-independent model
for the software of an infusion pump. We first describe the nec-
essary information to execute a platform-independent model on a
target platform. We then explain two platform-dependent aspects
that will be considered in our code generation framework.

2.1 Example: Platform-independent model
An infusion pump is a safety-critical embedded system that injects
drugs into the patient body in a controller manner for various medi-
cal treatment purposes, such as pain-relief or insulin therapy. A typ-
ical infusion pump has a syringe-type drug reservoir whose move-
ment is controlled by hardware/software mechanisms, so that a pre-
cise amount of drug can be delivered to the patients. In addition,
infusion pumps detect several alarming conditions, such as empty
reservoir or occlusion, in order to perform safe infusion therapy.
An example of infusion pump systems is shown in Figure 4.

Idle

Infusion

Alarm

BolusReq?
/BolusStart!

BolusFinish?
/BolusProcessed!

ClearAlarm?
/SilenceAlarm!

LevelTwoAlarm?
/RaiseAlarm!

LevelTwoAlarm?
/RaiseAlarm!

Figure 1: Platform-independent model of an infusion pump.

Figure 1 shows an abstract model of the software behavior of
infusion pumps, specified as a state-transition system. The inputs
and outputs of the software system are specified on the transitions
of the model to express interactions between the system and its en-
vironment. A state is modeled using a circle (a double-circle repre-
sents an initial state); a transition is modeled using an arrow from

one state to another; a question mark (?) indicates an input to the
model; and an exclamation mark (!) indicates an output produced
by the model. Such a transition system is widely used to model and
verify software behavior for many embedded systems (e.g., using
UPPAAL and Stateflow).

In this example, a patient may request a certain amount of drug,
called a bolus, by pressing a patient-controlled button to initiate the
infusion process. This is represented by a transition from the Idle
state to the Infusion state that is associated with BolusReq? and
BolusStart!. When an infusion pump encounters some alarming
conditions when infusion is in progress, such as an empty reservoir
condition, then an alarm should be raised. This is represented as a
transition from the Infusion state to the Alarm state that is associ-
ated with LevelTwoAlarm? and RaiseAlarm!.

The model shown in Figure 1 is a platform-independent model
in a sense that it does not explicitly contain information about how
it should be executed on target platforms. For example, different
target platforms can implement the semantics of BolusReq? dif-
ferently: one target platform may implement a periodic thread that
samples the status of electrical signal level of the patient-controlled
button, whereas another target platform may implement an aperi-
odic thread that is invoked upon interrupt-trigger when it detects the
change of the signal level of the button; these two platforms equally
have a capability to handle the input, but in a different way.

2.2 Platform-dependent software aspects
Our goal is to propose a code generation framework that generates
different source code for running on different target platforms. In
this framework, the following aspects of a platform are specified
separately:

1. the platform-dependent mechanism to execute the platform
independent computation;

2. the platform-dependent API provided by a given platform for
implementing the platform-dependent mechanism.

Different target platforms may have different mechanisms to per-
form the same platform-independent computation. One platform
may execute the platform-independent computation as a periodic
thread, which periodically reads input, computes transitions, and
writes output. However, another platform may execute the same
computation as an aperiodic thread, which performs the computa-
tion only when input arrives. For example, the platform-independent
model in Figure 1 may periodically read inputs for BolusReq?,
BolusFinish?, LevelTwoAlarm?, ClearAlarm?, and then take the
corresponding outgoing transitions and write outputs. However,
the model may also read those inputs aperiodically; that is, the
platform-independent computation is performed only if any of those
events occurs. In our framework, such differences in executing the
platform-independent computation are captured using AADL mod-
els, from which different source code running for the target plat-
forms can be generated.

In addition, different target platforms may have different soft-
ware stacks (e.g., real-time operating system) that provide different
APIs to access to the platform-dependent mechanisms. As an ex-
ample, Listing 1 shows the code snippet that implements a periodic
thread for empty reservoir detection running on FreeRTOS [3]. The
code snippet includes several API calls that are provided by FreeR-
TOS. TaskCreate API (Line 8) is called to register necessary in-
formation to the OS kernel such as thread’s priorities and callback
functions. vTaskDelayUntil API (Line 17) is called to block the
callback function cbEmptyRsv until the next invocation period (in
this example, the period is 500 ms).

Listing 1: Code snippet of a periodic task in FreeRTOS
1 //Declaration part
2 const portTickType periodEmptyRsv=500;
3 const portBASE_TYPE prioirtyEmptyRsv=2;
4 const portBASE_TYPE stacksizeEmptyRsv=500;
5
6 //Initialization part
7 void init_EmptyRsv(void){
8 TaskCreate(cbEmptyRsv,’’EmptyRsv’’,stacksizeEmptyRsv,

NULL,prioirtyEmptyRsv,NULL);
9 }

10
11 //Thread callback function part
12 void cbEmptyRsv (void* pvParameters){
13 portTickType xLastWakeTime;
14 xLastWakeTime = xTaskGetTickCount();
15 for(;;){
16 //Wait for the next cycle
17 vTaskDelayUntil(&xLastWakeTime,periodEmptyRsv);
18 //Perform action here
19 //(1)Read
20 //(2)Compute
21 //(3)Write
22 }
23 }

Our proposed framework provides a way to add code snippets,
categorized according to their functions to implement AADL com-
ponents such as periodic/aperiodic threads and their interaction. In
the next section, we explain our approach to design the platform-
dependent code generation framework by explicitly specifying these
platform-dependent software aspects.

3. PLATFORM-DEPENDENT CODE GEN-
ERATION APPROACH

Figure 2 illustrates our proposed platform-dependent framework
for generating code that is executable on a heterogeneous set of tar-
get platforms. In this framework, the software behavior (which is
common across all target platforms) is abstracted using a platform-
independent model (PI Model). For instance, the generic behavior
of an infusion pump software shown in Figure 1 can be described
using an UPPAAL model. This platform-independent model is then
automatically translated into platform-independent code (PI Code)
using some code generator, such as TIMES [4]. The generated
platform-independent code has a particular code pattern that is im-
posed by the generation algorithm of the code generator.

PI Model

Generation
Pattern

PI Code

PD Code 1

Platform 1

PD Code 2

Platform 2

Implemented System 2

Codegen(PI-Code, PlatformCap1) Codegen(PI-Code, PlatformCap2)

AADL Model 1

(1) HW/SW
architecture

(2)Programming
 interface

Code Generation
Algorithm

Implemented System 1

Code Snippet
Repository 1

AADL Model 2

Code Snippet
Repository 2

(PlatformCap1) (PlatformCap2)

Figure 2: Platform-dependent code generation overview.

The generated platform-independent code is expected to execute
on many different target platforms. To enable this, our frame-
work explicitly specifies the platform-dependent information that
is needed to execute the platform-independent code on a target
platform using a platform capability. The platform capability cap-

tures two aspects of a platform: the hardware/software architec-
ture and the programming interface. The hardware/software archi-
tecture is modeled using an AADL model (Figure 2-(1)), which
captures interactions between the hardware and the software as-
pects. For example, concurrent execution of the software system is
captured using a set of periodic and aperiodic thread components,
whereas sensors and actuators are expressed as device components
that can interact with thread components through different types
of port connections. The programming interface is captured as a
code snippet repository (Figure 2-(2)) that contains code snippets
categorized according to their functions to implement AADL com-
ponents.1 Different platforms may fill these categories with differ-
ent code snippets using their programming interfaces. Such code
snippets should be distributed with the platform, e.g., as a library.

As is shown in Figure 2, the proposed code generation algo-
rithm (denoted by the dotted box) takes the platform-independent
code and the platform capabilities (AADL models and code snippet
repositories) of different target platforms as inputs to generate dif-
ferent source code for the corresponding platforms (e.g., PD Code 1
and PD Code 2 for Platform 1 and Platform 2, respectively). In the
next two sections, we show how platform capabilities can capture
the platform heterogeneity using an infusion pump example.

4. AADL MODEL OF HARDWARE/SOFT-
WARE ARCHITECTURAL ASPECTS

We next explain how to capture architectural aspects of different
target platforms as AADL models (c.f. Figure 2-(1)) using an ex-
ample of two infusion pump systems. The differences in the hard-
ware/software architectures are highlighted from the code genera-
tion perspective.

4.1 AADL components and semantics
AADL is a modeling language for describing real-time embedded
systems from an architectural perspective. It provides an abstrac-
tion of software components (e.g., periodic/aperiodic threads) and
hardware components (e.g., devices and processors). The interac-
tions among such components are abstracted using ports and port
connections. We note that only a subset of AADL components and
their semantics is used to explain the idea underlying our frame-
work; a broader scope of AADL components and their semantics
can be found in [1].

Figure 3: AADL models of two infusion pump platforms

1An example of the code snippet that implements a periodic thread
using the FreeRTOS programming interface is shown in Listing 1.

Figure 3 shows the graphical representations of two AADL mod-
els, M1 (top model) and M2 (bottom model), that specify the hard-
ware/software architectures of two different infusion pump sys-
tems. The big rounded box in the center of each model denotes a
system component, which represents the scope of the software sys-
tem. Each system component contains several thread components,
represented by the dotted rectangles. Some thread components are
connected to device components, represented by the double-lined
rectangles outside the system component. Thread and device com-
ponents are interconnected with each other using port connections,
denoted by the different types of directional lines in the figure. The
informal semantics of each component is as follows.
Threads: A thread is a concurrent schedulable unit of sequential
computation, with one or more assigned properties. There are five
threads in M1 and six threads in M2. Each thread has a property of
dispatch protocols. For instance, the M1.BolusRequestDetection
thread has an aperiodic dispatch protocol: any event that arrives on
its input ports can invoke the thread to perform its execution; upon
completion, the thread becomes idle until the next event occur-
rence on its input ports. In contrast, the M2.BolusRequestDetection
thread has a periodic dispatch protocol: the thread is invoked pe-
riodically (e.g., every 500ms in the example) and independent of
the occurrences of events on its input ports. There are several other
properties that are not shown in the graphical format, which we will
explain as is needed.
Devices: A device, such as a sensor or an actuator, is an abstraction
of the physical device that exposes only its input/output ports to the
external environment. For instance, the M1.BolusRequestButton
and M2.EmptyReservoir-Switch in Figure 3 represent sensor-type
devices that provide output ports. These output ports are connected
to the input ports of the threads, M1.Bolus-RequestDetection and
M2.EmptyReservoirDetection, through the port connections, D1
and D7, respectively.
Port and Port Connections: A port connection represents rela-
tionships among ports that enable the directional exchange of data
and events. The interactions among components can be expressed
using port connections. There are nine and eleven port connections
(with identifiers T1–T9 and D1–D11) in M1 and M2, respectively.
There are three different types of port connections (represented by
different shapes in the figure), as detailed below.

• Data port connections express interactions between compo-
nents without queuing, and a type of data message can be
defined. For instance, M2.D6 is a data port connection be-
tween the device M2.BolusRequestButton and the periodic
thread M2.BolusRequestDetection. The data on this connec-
tion may represent the status of the bolus request button (e.g.,
the button is pressed or released).

• Event port connections are used to deliver events among com-
ponents with queuing. For example, M1.D1 is an event port
connection between the device M1.Bolus-RequestButton and
the aperiodic thread M2.Bolus-Request-Detection. A button-
pressed event may be delivered to the aperiodic thread via
queuing mechanism.

• Event-Data port connections are used for event transmissions
with queuing, and each event may be associated with data.
For example, M2.T7 is an event-data port connection be-
tween the two periodic threads, M2.Low-ReservoirDetection
and M2.PlatformIndependentRoutine. The status of a low
reservoir condition may be delivered via this port connection
through queuing mechanism.

As was for threads, there are several port properties that are not
shown in the graphical format, which we will explain as is needed.

4.2 Effects of architectural differences on the
source code

We will use the two AADL models in Figure 3 to discuss the ar-
chitectural differences that lead to different source code for the cor-
responding platforms. We assume the same platform-independent
code is executed as a PlatformIndependentRoutine thread on both
M1 and M2. Under this assumption, we highlight how different
platforms make different choices of their hardware/software archi-
tectures to support the execution of the platform-independent code:

• Different thread types lead to different source code. For
example, the thread M1.BolusRequestDetection is an ape-
riodic thread that is invoked only if an event is generated
by the thread M1.BolusRequestButton; however, the thread
M2.BolusRequestDetection is a periodic thread that is in-
voked every 500ms, regardless of when such an event occurs.

• Different types of port connection lead to different source
code. For example, M1.T1 is an event-data port connec-
tion between two threads, M1.BolusRequestDetection and
M1.PlatformIndependent-Routine. In contrast, M2.D10 is
a data port connection between the M2.PumpMotorControl
thread and the M2.PumpMotor device.

• Different numbers of AADL components lead to different
source code. For example, M2 has LowReservoirSwitch (de-
vice), LowReservoirDetection (thread), D8 (data port con-
nection), T7 (event-data port connection) that do not appear
in M1. The more information is given in the AADL model,
the more source code needs to be generated.

The above differences result in different APIs or code patterns that
constitute the source code for different target platforms.

5. CAPTURING PROGRAMMING INTER-
FACES USING CODE SNIPPET REPOS-
ITORIES

As was described in Section 3, the code generation algorithm takes
as inputs the AADL models (described in the previous section) and
the code snippet repositories that capture the platforms’ program-
ming interfaces to generate different source code that can execute
on different target platforms. In this section, we explain how to cap-
ture the programming interfaces using code snippet repositories.

5.1 Code Snippet Repositories
Roughly speaking, the code generation algorithm works as follows.
To generate code for a particular target platform, it first finds an
AADL component (in the AADL model of the platform capabil-
ity) to be generated into source code (e.g., the periodic thread of
M1.AlarmControl or the event-data port connection M2.T9 in Fig-
ure 3). Then, it looks up appropriate code snippets in the corre-
sponding code snippet repository that can implement the chosen
component. Finally, it generates the source code for the platform
based on these snippets. The algorithm is detailed in Section 6.

To automate the code generation process, it is necessary to con-
struct a precise mapping between AADL components and code
snippet repositories. Our approach is to construct code snippet
repositories that are categorized according to the functions to im-
plement the AADL components. Then, each category can be filled
with different code snippets that are written using different pro-
gramming interfaces of the target platforms. The code generation
algorithm uses this categorization to find mappings between the
AADL models and the code snippets.

Table 1: Categorization of code snippets
Programming
support

Code snippet category

Dispatch mechanism
Declaration
Initialization
Dispatch invocation function

Periodic thread
Declaration
Initialization
Thread callback function

Aperiodic thread
Declaration
Initialization
Thread callback function

Device-to-Thread
port connection

Data port
Declaration
Initialization
Get primitives

Event and
Event Data
port

Declaration
Initialization
Interrupt callback function

Thread-to-Device
port connection

Declaration
Initialization
Set primitives

Thread-to-Thread
port connection

Data port

Declaration
Initialization (shared variables)
Read primitives
Write primitives

Event and
Event Data
port

Declaration
Initialization (FIFO queues)
Read primitives
Write primitives

Table 1 shows the categorization of code snippet repositories.
The first column provides the code generation algorithm with the
information for checking whether a target platform has the pro-
gramming support to implement AADL components. The second
column provides a more detailed level of categorization that guides
code snippets of each programming support to be written in a par-
ticular format. For example, consider the periodic thread compo-
nent M2.EmptyReservoirDetection in Figure 3. To generate the
code that is mapped to this periodic thread component, the code
generation algorithm refers to the periodic thread category in the
programming support column in Table 1 to check whether code
snippets of each subcategory of the programming support exist, and
if so, it uses the corresponding code snippets to generate the code.

5.2 Case Study: FreeRTOS vs. bare platform
We now demonstrate the applicability of the categorization of code
snippet repositories in Table 1 using a case study of two different
platforms, denoted by FreeRTOS and BarePlatform, which have
different programming interfaces. The FreeRTOS platform runs the
FreeRTOS operating system, which supports a preemptive sched-
uler with which programmers implement periodic/aperiodic threads.
The BarePlatform platform is a bare platform that does not run
any operating system; therefore, one needs to implement a dispatch
mechanism that can invoke periodic/aperiodic threads. We explain
each category of the categorization shown in Table 1 using example
code snippets implemented on these two platforms.

Dispatch mechanism: A programming interface should provide
a dispatch mechanism, i.e., periodic or aperiodic, for threads to
be scheduled. Some platforms may already have such a dispatch
mechanism implemented; for example, FreeRTOS provides the API
vTaskStartScheduler(), and it is sufficient to call this function to
start the dispatch mechanism. However, other platforms (e.g., Bare-
Platform) may not have a dispatch mechanism, in which case the
platforms should add code snippets that implement dispatch mech-
anisms following the Dispatch mechanism category in Table 1.

Listing 2: Code snippets of Dispatch mechanism on the
BarePlatform

1 //Declaration
2 const int Dispatch_Invocation_Interval = 10;
3
4 //Initialization
5 void init_dispatch(void){
6 hardware_timer_init(Dispatch_Invocation_Interval,

cbDispatchInvocation);
7 }
8
9 //Dispatch invocation

10 void cbDispatchInvocation (void* pvParameters){
11 Disable_interrupt;
12 Update_Dispatch_Flag();
13 Dispatch_Aperiodic_Threads();
14 Dispatch_Periodic_Threads();
15 Enable_interrupt;
16 }

Listing 2 gives an example code snippet of the dispatch mech-
anism implemented on BarePlatform, which belongs to the code
snippet category of Dispatch mechanism in Table 1. The operation
of the dispatch mechanism is as follows. In Lines 4–7, the code
snippet initializes a hardware timer of the microprocessor with a
fixed millisecond-basis period (Dispatch_Invocation_Interval) de-
fined in Line 2 of the Declaration part, and a pointer to the callback
function (cbDispatchInvocation) in the Initialization part. This en-
ables cbDispatchInvocation, implemented in the Dispatch invoca-
tion part, to be called every period (i.e., 10 ms in this example).
Upon being activated, the invocation function checks the list of pe-
riodic and aperiodic threads2 that need to be invoked at the cur-
rent invocation period; this is implied in Update_Dispatch_Flag()
in Line 12. Then, the invocation function executes all checked
threads in Lines 13–14, and it completes the current dispatch round.

Periodic/Aperiodic thread implementation: A programming in-
terface should provide a mechanism to implement periodic and ape-
riodic threads that can be scheduled by the dispatch mechanism
explained above. Code snippets that implement such threads vary
across platforms that expose different programming interfaces.

Listings 3 and 4 show the code snippets for aperiodic threads
that can be executed on FreeRTOS and BarePlatform, respectively.
Special functions (e.g., Ftid(ext)) enclosed with two sharp signs
(#) are used to specify parametrized code snippets that need to be
replaced some other codes, which we will explain in the next sub-
section. Both code snippets implement aperiodic threads on each
platform; however, they are different in the following sense.

Listing 3: Parametrized code snippet of Aperiodic thread in
FreeRTOS

1 //Declaration part
2 const portBASE_TYPE prioirty#Ftid(ext)#=#Fpriority(ext)#;
3 const portBASE_TYPE stacksize#Ftid(ext)#=#Fstack(ext)#;
4
5 //Initialization part
6 void init_#Ftid(ext)#(void){
7 TaskCreate(cb#Ftid(ext)#,’’#Ftid(ext)#’’,stacksize#Ftid(

ext)#, NULL,prioirty#Ftid(ext)#,NULL);
8 }
9

10 //Thread callback function part
11 void cb#Ftid(ext)# (void* pvParameters){
12 for(;;){
13 #Finput(ext)# //Wait for the input
14 //Compute
15 #Foutput(ext)# //Write output
16 }
17 }

2This information is implemented in the declaration part, but not
shown here for clarity

Listing 4: Parametrized code snippet of Aperiodic thread in
BarePlatform

1 //Declaration part
2 const int prioirty#Ftid(ext)#=#Fpriority(ext)#;
3
4 //Initialization part
5 void aperiodic_#Ftid(ext)#_init(void){
6 register_aTask(cb#Ftid(ext)#, prioirty#Ftid(ext)#);
7 }
8
9 //Thread callback function part

10 void cb#Ftid(ext)# (void* pvParameters){
11 #Finput(ext)# //Read input
12 //Compute
13 #Foutput(ext)# //Write output
14 }

The two programming interfaces require different information to
initialize aperiodic threads. For example, the FreeRTOS code snip-
pet in Listing 3 specifies the stack size (Line 3) of the maximum
amount of memory that a thread can occupy at run time. This pa-
rameter is passed to the TaskCreate API (Line 7), so that the OS
kernel triggers exceptions in case of stack overflows at run time.
On the contrary, BarePlatform does not require explicit stack sizes
of threads, since the platform is incapable of specifying stack sizes
and capturing stack overflows.

The two programming interfaces provide different ways of im-
plementing interactions between their thread callback functions and
dispatch mechanisms. For example, the FreeRTOS code snippet in
Listing 3 implements the infinite for-loop (Line 12–16), in which
blocking functions are used to interact with the scheduler (the func-
tion #Finput(ext)# in Line 13 will be replaced with such block-
ing functions in our framework). However, the BarePlatform code
snippet in Listing 4 does not have such a for-loop: its dispatch
mechanism is invoked periodically, and the called thread callback
function will be returned in the current dispatch invocation without
looping.

The two programming interfaces provide different names of APIs
to perform similar functions. For instance, to register the thread in-
formation to the kernel, the FreeRTOS uses the TaskCreate API
(Line 7), whereas the BarePlatform uses the register_aTask API
(Line 6).

Note that the code snippet category of aperiodic threads in Ta-
ble 1 is filled with different code snippets of Listing 3 and Listing 4
for FreeRTOS and BarePlatform, respectively.

Port connection implementation: Each programming interface
should provide a mechanism to implement the port connections that
enable thread and device components to interact with one another
(e.g., D1–D11 and T1–T7 in Figure 3). Different types of port
connections (e.g, data or event-data ports) lead to different code
snippets. Moreover, different instances of a port connection can
be implemented by different code snippets, depending on whether
they cut through the software system scope (that need to be gen-
erated into source code) or not. For example, M1 and M2 in Fig-
ure 3 contain system components (big rounded boxes in the middle)
that represent the scope of the software system; therefore, thread
components within the scope are subject to code generation. In
contrast, device components outside the scope are not subject to
code generation. Finally, the port connections of M1.{D1-D5} and
M2.{D6-D11} cut through the scope of software system. In our
code snippet repository, such port connections are separately cat-
egorized from port connections that have both of their source and
destination components residing inside the scope (e.g., M1.{T1-
T4} and M2.{T5-T9})

Based on the above observation, the code snippet repository in
Table 1 distinguishes three different categories of port connections:

• The Device-to-Thread port connection category stores code
snippets that are used to implement directional port connec-
tions from device to thread components. This port connec-
tion is typically used by thread components to read sensor
values. For example, the implementations of M1.{D1, D2},
M2.{D6, D7, D8} use code snippets from this category. This
category includes code snippets that process input only (i.e.,
it does not have a code snippet that writes outputs). Inputs
can be read from devices in two different ways. First, a
thread component may read values from a device component
through data ports (e.g, M1.D2 and M2.{D6, D7, D8}); in
this case, the code snippet provides Get primitives that can
be called by thread components to retrieve data from device
components. Second, a thread component may read values
from device components through event or event-data ports
(e.g., M1.D1); in this case, the code snippet provides the
Interrupt callback function that is called when events from
device components occur.

• The Thread-to-Device port connection category stores code
snippets that are used to implement directional port connec-
tions from thread to device components. This port connec-
tion is typically used by thread components to actuate actu-
ators by writing values. For example, the implementations
of M1.{D3, D4, D5}, M2.{D9, D10, D11} use code snip-
pets from this category. This category includes code snippets
that process output only (i.e., it does not have a code snippet
that reads inputs). Thread components can write outputs to
devices by calling the Set function.

• The Thread-to-Thread port connection category stores code
snippets that are used to implement port connections between
two thread components. For example, the implementations
of T1-T9 in M1 and M2 use code snippets from this cate-
gory. Unlike the above port connection types, this category
includes code snippets that process both inputs and outputs.
Two threads can communicate with each other through either
data port or event-data port. In the former case, a shared vari-
able is used with the associated read/write primitives; in the
latter, a FIFO queue is used with the associated read/write
primitives.

We next give an example of the code snippet for thread-to-thread
port connection implementation on FreeRTOS. (Due to space con-
straints, we cannot show examples of each port connection category
for both platforms.)

Listing 5 shows the code snippet of (event-data port) thread-to-
thread port connection of FreeRTOS. We note that this code snippet
is written following the four categories related to the (event-data
port) thread-to-thread port connection shown in Table 1.
Declaration: Lines 1–6 implement the declaration part, which lists
the necessary variables to implement the port connection using a
FIFO queue: the handler of the FIFO queue (Line 2), the queue
size (Line 3), the dequeue policy (Line 4), the blocking mode (Line
5), and the overflow handling policy (Line 6).
Initialization: Lines 8–11 implement the initialization function that
creates a FIFO queue using FreeRTOS API, xQueueCreate; the
variables in the declaration part is passed to the API call.
Read primitive: Lines 13–28 implement the read primitives that can
be used by threads to read items from the FIFO queue. Note that
two different read primitives are implemented, and which one is
generated depends on the dequeue policy that is specified in Line 4.
This is intended to capture the AADL property Dequeue_Protocol,
whose value can be either OneItem (read a single item from the
queue) or AllItems (read all items from the queue).

xQueueReceive is a FreeRTOS API that dequeues items from the
queue. In case the queue is empty, the blocking mode, specified as
edQBlockMode#Fpid(ext)# in Line 5, decides whether a caller of
this API should be blocked until any item arrives, or it should be
timed-blocked (i.e., blocked for only a certain amount of time), or
non-blocked (i.e., never blocked). The uxQueueMessagesWaiting
API in Line 24 returns the number of items in the queue, which is
needed to read all the items from the queue (Lines 23–25).
Write primitive: Lines 30–49 implement the write primitive that
can be called by threads to insert items to the FIFO queue. The
xQueueSend API is used to insert an item to the FIFO queue in
Line 32. Lines 34–45 show the three different ways for handling
the queue overflow exception, depending on the value of the AADL
property Overflow_Handling_Protocol (i.e., DROP_OLDEST or
DROP_NEWEST or ERROR). The code that handles such an over-
flow handling protocol is not detailed here.

Listing 5: Parametrized code snippet of Thread-to-Thread port
connection in FreeRTOS

1 //Declaration part
2 static xQueueHandle edQHandle#Fpid(ext)#;
3 const portBASE_TYPE edQSize#Fpid(ext)# = #Fqsize(ext)#;
4 const portBASE_TYPE edDQPolicy#Fpid(ext)# = #Frpolicy(ext)

#;
5 const portBASE_TYPE edQBlockMode#Fpid(ext)# = #Fwmode(

ext)#;
6 const portBASE_TYPE edQOverflowHandling#Fpid(ext)# = #

Fwpolicy(ext)#;
7
8 //Initialization part
9 void ed#Fpid(ext)#_Init(void){

10 edQHandle#Fpid(ext)# = xQueueCreate(edQSize#Fpid(ext)#,
sizeof(#Fitemtype(ext)#));

11 }
12
13 //Read primitive
14 #if edDQPolicy#Fpid# == OneItem
15 portBASE_TYPE Read_#Fpid(ext)# (#Fitemtype(ext)#* buf){
16 xQueueReceive(edQHandle#Fpid(ext)#, buf, edQBlockMode#

Fpid(ext)#);
17 return TRUE;
18 }
19 #elif edDQPolicy#Fpid# == AllItem
20 portBASE_TYPE Read_#Fpid# (#Fitemtype(ext)#* buf){
21 portBASE_TYPE item_count = 0;
22 item_count = uxQueueMessagesWaiting(edQHandle#Fpid(ext)#

));
23 for(int i = 0 ; i < item_count ; i++){
24 xQueueReceive(edQHandle#Fpid(ext)#, buf + i*sizeof(#

Fitemtype(ext)#), edQBlockMode#Fpid(ext)#);
25 }
26 return item_count;
27 }
28 #endif
29
30 //Write primitive
31 portBASE_TYPE Write_#Fpid(ext)# (#Fitemtype(ext)#* buf){
32 portBASE_TYPE result = xQueueSend(edQHandle#Fpid(ext)#,

buf, edQBlockMode#Fpid(ext)#);
33 if(result == FALSE){
34 switch(edQOverflowHandling#F_pid(ext)#){
35 case DROP_OLDEST:
36 //Drop oldest and enqueue
37 break;
38 case DROP_NEWEST:
39 //Drop newest and enqueue
40 break;
41 case ERROR:
42 //Raise an exception
43 break;
44 default:
45 }
46 return FALSE;
47 }
48 return TRUE;
49 }

5.3 Parametrized code snippets
As described above, the AADL models and the code snippet repos-
itories are created independently of one another. Hence, it is nec-
essary to inform the code generation algorithm of the scope of the
code that should be related to the information of the AADL model
of the target platform. This is done via parametrized code snip-
pets, which specify the placeholders that later can be filled by the
code generation algorithm based on the AADL model. Therefore,
our framework separates concerns between how the code snippets
are written and how they are actually used in a certain architec-
tural context. For example, the code snippet for aperiodic threads
in Listing 3 is written independently of how it is used to implement
M1.BolusRequestDetection or M2.PlatformIndependentRoutine in
Figure 3.

Parametrized code snippets can be written using functions that
take a set of input parameters and return a piece of code. Such
functions enable a parametrized code snippet to be instantiated into
several different pieces of code; for instance, the code snippets
in Listing 3, 4, 5 use the parametrized code snippets that are en-
closed with two sharp signs(#). These functions also specify the
rules for instantiating the code using external information that is
passed through ext. For example, Ftid(ext) in Line 11 of Listing 3
specifies how a thread identification should be represented in the
aperiodic thread callback function using external information ext.
Suppose the string “BolusRequest” is passed as ext, then one may
define a function Ftid that converts the string into “BolusReq” and
returns it as a piece of code. Then, the code snippet after resolving
the parameter of Line 11 becomes “void cbBolusReq (void* pvPa-
rameters).”

As another example, one may define a function, Fperiod(ext),
to specify the rule to convert ext into a value that represents the
period of a periodic thread in the code snippet. In Figure 3, the
period property of M2.EmptyReservoirDetection is represented as
a string of “500 ms". This string is passed as a parameter of ext.
The internal of Fperiod converts “500 ms" into some appropriate
values. Suppose, we want to get the code in Line 2 of Listing 1.
Then, the function simply removes “ms" from the string, resulting
in the value 500. However, the returned value is not always neces-
sarily 500 to represent "500 ms" of period in the code snippet. Be-
cause different target programming interfaces may require to scale
the numeric value differently to represent “500 ms" of period. For
example, the dispatch mechanism of BarePlatform in Listing 2 in-
vokes the dispatch mechanism every 10 ms as specified in line 2.
The code snippet for periodic threads (not shown here) requires to
specify periods of thread relative to the dispatch invocation interval.
Then, Fperiod(ext) should convert “500 ms" into 50 instead of 500.
This example shows different platforms interpret the same informa-
tion coming from the AADL model in different ways. Therefore,
having parametrized code snippets provides flexibility to deal with
such heterogeneous programming interfaces.

In the next section, we explain the proposed code generation al-
gorithm that co-relates an AADL model (explained in Section 4)
and a code snippet repository (explained in Section 5), in order to
produce the platform-dependent code for different platforms.

6. PLATFORM-DEPENDENT CODE GEN-
ERATION ALGORITHM

The constructed AADL model and the code snippet repository of
a particular target platform are used together with the platform-
independent code as inputs to the code generation algorithm to
generate the platform-dependent code that is executable on the tar-
get platform (c.f. Figure 2). In this section, we highlight how

the algorithm processes and correlates the AADL model and code
snippet repository of the platform; we discuss how the platform-
independent code can be composed in Section 7.

The AADL model is expressed in textual form. Listing 6 shows
a textual representation of M2.EmptyReservoir-Detection in Fig-
ure 3. The scope starting with thread (Line 2) and ending with
end (Line 15) characterizes M2.Empty-ReservoirDetection. Lines
4–9 characterize the input and output ports that are associated with
the thread. Lines 11–14 specify the properties that characterize the
periodic thread.

Listing 6: Textual representation of the periodic thread compo-
nent M2.EmptyReservoirDetection in Figure 3

1 -- Define thread type of EmptyReservoirDetection
2 thread thd_empty_rsv
3 features
4 D7: in data port;
5 T6: out event data port{
6 Overflow_Handling_Protocol => Error;
7 Dequeue_Protocol => AllItems;
8 Queue_Size => 5;
9 };

10 properties
11 Dispatch_Protocol => Periodic;
12 Period => 500 Ms;
13 SEI::Priority => 2;
14 Source_Stack_Size => 500 B;
15 end thd_empty_rsv

We note that the AADL standard provides a rich set of proper-
ties to characterize AADL components. In addition, one may also
define custom properties associated with AADL components. As a
result, it is difficult (and out of scope of this paper) to design a code
generation algorithm that takes into account all possible properties.
Instead, we provide a finite set of AADL properties that are suffi-
cient for our case study; we expect that extensions of this property
set can easily be done as are needed.

Table 2 summarizes the list of AADL properties of thread and
port connection components that are used by our code generation
algorithm in order to find appropriate code snippets in the code
snippet repository.

Table 2: Information extracted from the AADL model
AADL
component

Property Example value

Thread

Thread ID EmptyReservoirDetection
Thread type Periodic/Aperiodc
Thread period 100ms or 10sec
Thread priority 3
Source stack size 500 B
Input port connection
IDs

D1, D2, T1

Output port connec-
tion IDs

D1, D2, T1

Connection ID D1, D2, T1
Interaction type Device-to-Thread,

Thread-to-Thread
Source component ID EmptyReservoirDetection

Port
connection

Destination
component ID

PlatformIndependent-
Routine

Port connection type Data, Event, Event-Data
Queue size 5
Read policy Read one item, Read all item
Write policy Drop oldest, Drop newest,

Error

Listing 7 gives the pseudo code of the code generation algorithm
that generates platform-dependent code from an AADL model and
a code snippet repository. The parameters M and C that are passed

as input to the function CodeGen in Line 16 are the abstracted rep-
resentation of the information obtained from the AADL model in
Table 2 and the code snippet repository in Table 1, respectively.

Listing 7: Pseudo code of the platform-dependent code genera-
tion algorithm

16 function CodeGen(M, C)
17 exp_scope
18 //Generating code for thread components
19 for each thread, Thread[i] ∈ M
20 if M.Thread[i].type == PERIODIC
21 SnippetHandle := C.PeriodicThreadSnippet;
22 else if M.Thread[i].type == APERIODIC
23 SnippetHandle := C.APeriodicThreadSnippet;
24 endif
25 for each parametrized function, Fk ∈ SnippetHandle
26 SnippetHandle.Fk(M.Thread[i]);
27 endfor
28 Generate(SnippetHandle);
29 endfor
30 //Generating code for port connection components
31 for each port connection, PortConn[j] ∈ M
32 if M.PortConn[j].type == Device-to-Thread
33 SnippetHandle := C.Device-to-ThreadSnippet
34 else if M.PortConn[j].type == Thread-to-Device
35 SnippetHandle := C.Thread-to-DeviceSnippet
36 else if M.PortConn[j].type == Thread-to-Thread
37 SnippetHandle := C.Thread-to-ThreadSnippet
38 endif
39 for each parametrized function, Fl ∈ SnippetHandle
40 SnippetHandle.Fl(M.Thread[i]);
41 endfor
42 Generate(SnippetHandle);
43 endfor
44 exception(No matched code snippets)
45 //Exception handling
46 exception(No matched parameters)
47 //Exception handling
48 endexp_scope
49 endfunction

The algorithm generates the platform-dependent code for thread
components of M in Lines 19–29. The for-loop in these lines finds
a match between thread components in M and the code snippets in
C. Using the dispatch protocol property of M, the algorithm finds
different code snippets from C. After such a match is found, the al-
gorithm resolves the parametrized code snippets (explained in Sec-
tion 5.3) of the matched code snippet in Lines 25–27. The prop-
erties of the matched thread in M are passed as a parameter to the
function of the parametrized snippets. This function converts the
parameter into a piece of code using the rules specified in the func-
tion. After resolving all parametrized code snippets, the algorithm
generates the platform-dependent code of the thread components in
M, which is implied in Line 28; here, Generate is a simple func-
tion that copies and pastes the code snippet into some output files.
The code generation for port connection components (Lines 31–43)
is similar to the generation for thread components, except that the
generation algorithm uses the interaction type property of the port
connection to find a match between M and C.

We note that the code generation algorithm deals with two types
of exceptions implied in the exception scope (Lines 17–48). Specif-
ically, the No matched code snippets exception is raised when the
algorithm cannot find a matched code snippet in C to generate a
component in M. For example, the code snippet repository may
not contain code snippets that implement periodic threads, but the
AADL model has periodic thread components to be generated into
code. One should handle such an exception appropriately, e.g., by
registering a code snippet to C that implements periodic threads.
The No matched parameters exception is raised when the algorithm
cannot find a match of a conversion function in any parametrized
code snippets. There are two cases to trigger this exception: (1)
M does not have the information that is needed for C to gener-

ate code; for example, C requires the blocking mode on the FIFO
queue (#Fwmode(ext)#) to be specified, so as to implement read-
/write primitives for port connection components in Line 5 of List-
ing 5, but M does not have such a property in Table 2, and (2) C
does not have the capability to implement the properties of M; for
example, M has a property of source stack size, but C does not have
the code snippet that contains this information. Both exceptions
should be handled by users (e.g., by adding missing information in
M or by using the default value of C).

7. CASE STUDY
This section presents a case study of infusion pump systems. We
first explain our experimental platforms that run the source code
generated from the proposed code generation framework. Then, we
discuss several considerations when the platform-independent code
needs to be integrated as a part of the platform-dependent code.

Experimental platforms: Patient-Controled Analgesia (PCA) in-
fusion pump systems are safety-critical medical devices that are
used to inject drugs to the patients for pain-relief. A special button
is attached to the pump with which patients may request additional
drug, called a bolus, by pressing the button. As a case study, we
have extended the Generic PCA (GPCA) testbed [8] to apply the
proposed framework to generate source code for two different in-
fusion pump systems.

The hardware and software architectures of both PCA pump sys-
tems are captured using different AADL models, M1 and M2, in
Figure 3. M1 and M2 express the hardware and software architec-
ture of Lifecare PCA pump (right) and Baxter PCA pump (left) in
Figure 4 respectively. The differences of the two target platforms
are summarized in Section 4.2.

Infusion Pump Platform 2
•Hardware: Lifecare 4100 PCA
•Operating system: None
•Microcontroller: FreeScale HCS12

Infusion Pump Platform 1
• Hardware: Baxter PCA Syringe
•Operating system: FreeRTOS
•Microcontroller: ARM7

Figure 4: Evaluation platform: PCA infusion pump systems

We connected the sensors and actuators of each PCA infusion
pump to different microcontrollers. The sensors and actuators of
Lifecare pump are interfaced using HCS12 microcontroller, and
those of Baxter pump are interfaced using ARM7 microcontroller.
The software stack that each microcontroller operates is also dif-
ferent. The microcontroller of Lifecare pump does not run a full
software stack, such as a real-time operating system. Therefore,
the generated code needs to include an implementation of dispatch
mechanisms, in addition to using the interface provided by the dis-
patch mechanism within the thread code. An example of such a
dispatch mechanism is shown in Listing 2. On the other hand,
the microcontroller of the Baxter pump is running FreeRTOS. This

means we can rely on the programming interface provided by the
OS kernel to implement periodic/aperiodic threads. In the preced-
ing sections, we have shown how our code generation framework
captures this platform heterogeneity in AADL models and code
snippet repositories.

Composition with Platform-Independent Code: As illustrated in
Figure 2, the platform-independent code (PI Code) generated from
the platform-independent model (PI Model, e.g, Figure 1) should
be composed with different platform capabilities (PlatformCap1
and PlatformCap2) so that the generated platform-dependent codes
(PD Code 1 and PD Code 2) implement the same software behav-
ior expressed as a platform-independent model on different target
platform (Platform 1 and Platform 2).

The composition of the platform-independent code and the plat-
form capability is out of scope in this paper. However, we explain
several places that need to be considered in our framework for the
composition.

Figure 1 is the example of the platform-independent model that
expresses the infusion pump software behavior using a state-transition
system with several inputs and outputs. Such a state-transition sys-
tem can be systematically transformed into source code that repeats
the following sequential operations, which is also used in several
code generators [2][4] :

1. Read inputs from some variables, PIinput, that is updated
by some external piece of code

2. Compute the next state using transition tables (encoded as
switch-case statements or array structures) based on PIinput

3. Write outputs to some variables, PIoutput, that are read by
some external piece of code

In our framework, the AADL model utilizes port connections to
express input/output relationship among different AADL compo-
nents such as threads and devices. On the other hand, the code snip-
pet repository in Table 1 contains code snippets of the port connec-
tion that implement read and write primitives using the target pro-
gramming interfaces. An example of read/write primitives can be
found in Listing 5. In order to compose the platform-independent
code and the platform capability, one needs to resolve (1) read de-
pendencies between PIinput and the read primitives, and (2) write
dependencies between PIoutput and the write primitives. In List-
ing 4, #Finput(ext)# (line 11) and #Foutput (ext)# (line 13) specify
such placeholders in the form of parametrized code snippets (i.e.,
one should provide the implementations of such functions to re-
solve input/output dependencies).

In addition, the semantics of repeated execution of (1), (2), (3) in
the platform-independent code needs to be mapped to the platform
capability. A thread component of the AADL model is an abstrac-
tion of sequential computation in which input is read from input
port connections and output is written to output port connections.
Therefore, one may implement such a mapping using either peri-
odic or aperiodic thread components. In case of periodic threads,
the execution of (1), (2) and (3) can be performed periodically. In
case of aperiodic threads, the execution of (1), (2) and (3) can be
performed only if any input is available from one of the input ports.
Either case equally implements the platform-independent model by
executing (1) (2) (3) repeatedly.

8. RELATED WORK
Some works studied separating concerns between specification and
hardware-dependent details in generating source code. [12] pro-
poses automatic generation of hardware dependent software for

MPSoCs platforms from abstract system specifications. The ap-
proach of this work is similar to ours in the sense that one can write
specifications of embedded systems hiding the details of implemen-
tation, and later mapping to an actual platform to generate code is
done separately. However, this work uses different modeling lan-
guage, Transaction Level Models (TLM), as an input to the process
as opposed to AADL that we use. In addition, they do not consider
dealing with heterogeneous aspects of programming interfaces as
our parametrized code snippets.

There are several works related to code generation from AADL
models. [9] presents the OCARINA tool-suite that allows auto-
matic code generation from AADL models. However, the code
generation algorithm used in this tool targets a single platform,
POLYORB and POLYORB-HI, by hard-wiring the programming
interface and code patterns of the platform inside the generation
algorithm. In contrast, our approach parameterizes the code gener-
ation with the platform description to provide flexibility in choos-
ing different target platforms. [6] raises an open question about
the need of flexibility in code generation through an experimenta-
tion that generate C code (compliant with OSEK/VDX) and OIL
configuration code from the AADL model. Our work can be one
approach to achieve such flexibility in the code generation process.

AADL runtime services defined in the AADL standard provide
primitives that can be used by application source code. For ex-
ample, the Send_Output and Receive_Input runtime services allow
threads to exchange data through ports, which is similar to the read-
/write primitives that our code snippet repository provides. Appli-
cation code running on different platforms may use these services
for communication if those platforms operate the AADL runtime.
However, implementing an AADL runtime that supports a wide
range of embedded platforms is difficult in practice. Moreover,
operating AADL runtime is sometimes overkill for some embed-
ded systems that only require simple communication mechanisms
through shared variables or FIFO queues among threads without
having any network communication. Such mechanisms may be im-
plemented more efficiently if one directly uses the APIs provided
from the underlying software layer, e.g., an RTOS.

Platform heterogeneity has also been considered in existing re-
search on UML. For instance, [7] observed that the underlying zero
execution time semantics of the UML State Machines makes it hard
to achieve semantically correct implementations, and it proposed a
syntactic extension of the UML State Machines and an accompa-
nying semantics that can be used to describe platform-independent
model, as well as an approach for synthesizing PSM (Platform-
Specific Model) and code. This work differs from ours in that it
focused on platform-specific scheduling aspects instead of the pro-
gramming interfaces; at the same time, our work complements the
work in [7], since both address different important issues of the
platform heterogeneity.

Reducing error-prone process during system integration is also
studied from the interface synthesis field. [11] proposed a general
interface synthesis flow that can be applied for different applica-
tions. The proposed framework separates software generation from
interface generation. [13] proposed a model-based framework that
enables to specify software component interaction and the map-
ping between Architecture Description (AD) models and platform-
specific API calls. However, these works do not solve the problem
of programming interface heterogeneity that our work focuses on.

9. CONCLUSION
We proposed a platform-dependent code generation framework that
generates different source code for different target platforms. In our
framework, platform heterogeneity is characterized using platform

capabilities that capture different hardware/software architectures
and programing interfaces. The AADL models are used to ex-
press the hardware/software architectures of target platforms, using
thread, device, and port connection components. The code snippet
repositories contain code snippets that are categorized according
to the functions to implement the AADL components. Our code
generation algorithm generates different source code for different
target platforms from the corresponding AADL models and code
snippet repositories.

We envision the proposed framework as a fully automatic tech-
nology, as was illustrated in our infusion pump case study. To
ensure that the automation can be applied to a wide range of tar-
get platforms, we plan to conduct an extensive set of case studies
to generate platform-dependent code on a broad range of common
embedded platforms. We also plan to study the generation patterns
of existing code generation tools for platform-independent code so
that our code generation algorithm leverages such patterns to auto-
matically integrate the platform independent and dependent code.

10. ACKNOWLEDGMENTS
This research was supported in part by NSF grants CNS-1035715,
CNS-1042829, and CNS-1117185.

11. REFERENCES
[1] Architecture Analysis and Design Language.

http://www.aadl.info.
[2] Simulink Coder: Generate C and C++

code from simulink and stateflow models.
http://www.mathworks.com/products/simulink-coder.

[3] Using the freertos real-time kernel. http://www.freertos.org.
[4] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and

W. Yi. TIMES: a tool for schedulability analysis and code
generation of real-time systems. In FORMATS, 2003.

[5] G. Behrmann, A. David, and K. Larsen. A tutorial on UP-
PAAL. In Formal Methods for the Design of Real-Time Sys-
tems (revised lectures), volume 3185 of LNCS, pages 200–
237, 2004.

[6] M. Brun, J. Delatour, and Y. Trinquet. Code generation from
aadl to a real-time operating system: An experimentation
feedback on the use of model transformation. In ICECCS,
2008.

[7] S. Burmester, H. Giese, and W. Schafer. Model-driven archi-
tecture for hard real-time systems: From platform indepen-
dent models to code. In Model Driven Architecture – Founda-
tions and Applications, volume 3748 of LNCS, pages 25–40.
2005.

[8] B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones, Y. Zhang,
and R. Jetley. Safety-assured development of the gpca infu-
sion pump software. In EMSOFT, 2011.

[9] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues. Ocarina: An
environment for aadl models analysis and automatic code
generation for high integrity applications. In Ada-Europe,
2009.

[10] T. MathWorks. Stateflow: For state diagram modeling.
[11] A. Rajawat, M. Balakrishnan, and A. Kumar. In VLSI Design,

2000.
[12] G. Schirner, A. Gerstlauer, and R. Dömer. Automatic gener-

ation of hardware dependent software for MPSoCs from ab-
stract system specifications. In ASPDAC, 2008.

[13] G. Waignier, P. Sriplakich, A.-F. Meur, and L. Duchien. A
model-based framework for statically and dynamically check-
ing component interactions. In MoDELS, 2008.

