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Abstract

Much structured data of scientific interest can be rep-
resented as networks, where sets of nodes or vertices are
joined together in pairs by links or edges. Although these
networks may belong to different research areas, there is
one property that many of them do have in common: the
network community structure, which means that there exists
densely connected groups of vertices, with only sparser con-
nections between groups. Identifying community structurein
networks has attracted much research attention. However,
most existing approaches require structure information of
the graph in question to be completely accessible, which
is impractical for some large networks, e.g., the World
Wide Web (WWW). In this paper, we propose a community
discovery algorithm for large networks that iteratively finds
communities based on local information only. We compare
our algorithm with previous global approaches to show its
scalability. Experimental results on real world networks,
such as the co-purchase network from Amazon, verify the
feasibility and effectiveness of our approach.

1. Introduction

Many datasets can be represented as networks composed
of vertices and edges. Examples include the World Wide
Web (WWW) (e.g., the web page hyperlink network [1]),
organization structures [2], academic collaboration records
[3], [4], friendship network [5], biological networks (e.g.,
neural networks [6] and food webs [7]), and even political
elections [8]. There are several definitions for communities
in the network, e.g., a community can be seen as a subgraph
such that the density of edges within the subgraph is greater
than the density of edges between its nodes and nodes
outside it [9]. From that perspective, identifying commu-
nities can be seen as finding node clusters in a graph. In
this paper, we define a community to be a social network
partition such that entities within the same community share
some common trait or proximity, judged by some pre-
defined entity similarity or relationship metric. Identifying
and locating entities in different communities is one of the
main goals of the community mining research.

The ability to identify communities could be of significant
practical importance. For example, groups of web pages that

link to more web pages in the community than to pages
outside might correspond to sets of web pages on related
topics, which could enable search engines to increase the
precision and recall of search results by focusing on narrow
but topically-related subsets of the web [10]; groups within
social networks might correspond to social communities,
which can be used to understand organization structures.
Moreover, the community structure influence may reach
further than these: a number of recent results suggest that
networks can have properties at the community level that are
quite different from their properties at the level of the entire
network, so that analyses that focus on whole networks
and ignore community structure may miss many interesting
features [11]. For example, we may find that individuals
within different community groups have a different mean
number of contacts in some social networks: the individuals
in one group might have many contacts with others while the
others in another group might be more reticent. Examples
of such social networks are reported in [12], [13] as sexual
contact networks. Therefore, characterizing such networks
by only quoting a single figure for the average number
of contacts an individual has, and without considering the
community structure, will definitely miss important features
of the network, which is relevant to questions of scientific
interest such as epidemiological dynamics [14].

The problem of finding communities in social networks
has been studied for decades. Recently, several quality
metrics for community structure have been proposed [15],
[16], [17]. Among them, modularityQ has proved to be
the most accurate [18] and has been pursued by many
researchers [19], [20], [21], [11], [22]. However, most of
those approaches require knowledge of the entire graph
structure. This constraint is problematic for networks which
are either too large or too dynamic to know completely, e.g.,
the WWW. In spite of these limitations, finding local com-
munity structure would still be useful, albeit confined by the
little accessible information of the network in question. For
example, we might like to quantify the local communities
of either a particular webpage given its link structure in the
WWW, or a person given his social network in Facebook.
Existing approaches [16], [19] also assume that each entity
belongs to only one community, however in the real world
one entity usually belongs to multiple communities, e.g., one
researcher could publish in both the data mining community



and the visualization community. (We refer to these as
overlapping communities). In this paper, we propose a new
algorithm to discover overlapping communities in a large
network where global information is not available. Given
one or a set of start nodes, our algorithm starts from a local
community, then iteratively identifies communities while
expanding to the whole graph. We compare our algorithm
with previous global approaches to evaluate its scalability
and apply our approach on large real world networks to
show its capability. In contrast to existing approaches, our
approach is able to discover overlapping communities with
only local information. Additionally it does not require any
arbitrary thresholds or other parameters.

The rest of the paper is organized as follows. We discuss
related works in Section 2. Section 3 defines the problem
and presents the local modularity metric. We describe our
approach in Section 4 and report experimental results in
Section 5, followed by conclusions in Section 6.

2. Related Work

Traditional data mining algorithms, such as association
rule mining, supervised classification and clustering analysis,
commonly attempt to find patterns in a data set characterized
by a collection of independent instances of a single relation.
However, for social networks, where entities are related
to each other in various ways, naı̈vely applying traditional
statistical inference procedures, which assume that instances
are independent, can lead to inappropriate conclusions about
the data [23]. For example, for a search engine, indexing
and clustering web pages based on the text content without
considering their linking structure would definitely lead
to bad results for queries. The relations between objects
should be taken into consideration and can be important for
understanding community structure and knowledge patterns.

Generally speaking, we can divide previous research of
finding communities in networks into two main principle
lines of research:graph partitioningand hierarchical clus-
tering. These two lines of research are really addressing the
same question, albeit by somewhat different means. There
are, however, important differences between the goals of the
two camps that make quite different technical approaches
desirable [24]. For example,graph partitioningapproaches
usually know in advance the number and size of the groups
into which the network is to be split, whilehierarchical
clustering methods normally assume that the network of
interests divide naturally into some subgroups, determined
by the network itself and not by the user.

Graph Partitioning. There is a long tradition of research
by computer scientists on graph partitioning. Generally, find-
ing an exact solution to a partitioning task is believed to be
an NP-complete problem, making it prohibitively difficult to
solve for large graphs. However, a wide variety of heuristic
algorithms have been developed and give good solutions

in many cases, e.g., multilevel partitioning [25], k-partite
graph partitioning [26], relational clustering [27], flow-
based methods [10], information-theoretic methods [28] and
spectral clustering [29]. The main problem for these methods
is that input parameters such as the number of the partitions
and their sizes are usually required, but we do not typically
know how many communities there are, and there is no
reason that they should be roughly the same size. Various
benefit functions have been proposed to avoid the problem,
such as thenormalized cut[30] and themin-max cut[31].
However, these approaches are biased in favour of divisions
into equal-sized parts and thus still suffer from the same
drawbacks that make graph partitioning inappropriate for
community mining.

Hierarchical Clustering. The approaches developed by
sociologists in their study of social networks for find-
ing communities are perhaps better suited for our current
purpose than the aforementioned clustering methods. The
principle popular technique in use ishierarchical clustering
[32]. The main idea of this technique is to discover natural
divisions of social networks into groups, based on various
metrics of similarity (usually represented as similarityxij

between pairs(i, j) of vertices). The hierarchical clustering
method has the advantage that it does not require the size
or number of groups we want to find beforehand, therefore,
it has been applied to various social networks with natural
or predefined similarity metrics, such as the modularity and
betweenness measure [19], [33], [15], [16]. However, they
are usually slow and the performance depends highly on the
corresponding metrics.

Recently, real world networks have been shown to have
an overlapping community structure, which is hard to grasp
with classical clustering methods where every vertex of
the graph belongs to only one community. Based on these
observations, fuzzy methods [9], [34], [35], [36] have been
proposed for overlapping structure. Recent work by Xu et
al. [17] proposed a fast SCAN algorithm to detect not only
clusters, but also hubs and outliers in networks. However,
the performance of these approaches depends on input
parameters, which are very sensitive.

While all these methods successfully find communities,
they implicitly assume that global information is always
available. However, that is usually not the case for large
networks in the real world. Clauset [37] and Luo et al.
[38] proposed similar metrics for community detection with
local information, which are presented in detail in Section
3. Bagrow et al. proposed an alternative method to detect
local communities [39], which spreads anl-shell outward
from the starting noden, where l is the distance from
n to all shell nodes. The performance of their approach
depends on the parameterl and the starting node, because the
result communities could be very different if the algorithm
starts from border nodes instead of cores. The authors
later proposed the “outwardness” metricΩ [40] to measure
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Figure 1. Local Community Definition

local structure, however, their method lacks an appropriate
stopping criteria and thus still relies on arbitrary thresholds.

3. Preliminaries

As mentioned in the introduction, local communities
are densely-connected node sets that are discovered and
evaluated based only on local information, since global
information is impossible to access. In this section, we first
define the research problem of finding local communities in
a network, then present a metric we adopt in our algorithm.

3.1. Problem Definition

Suppose that in an undirected networkG (directed net-
works are usually transformed to undirected ones first), we
start with perfect knowledge of the connectivity of one node
or some set of nodes, i.e., the known local portion of the
graph, which we denote asD. This necessarily implies that
we also have limited information for another shell node
set S, which contains nodes that are adjacent to nodes
in D but do not belong toD (note “limited” means that
the complete connectivity information of any node inS
is unknown). In such circumstances, the only way to gain
additional information about the networkG is to visit some
neighbour nodessi of D (wheresi ∈ S) and obtain a list
of adjacencies ofsi. As a result,si is removed fromS and
becomes a member ofD while additional nodes may be
added toS as neighbours ofsi. This typical one-node-at-
one-step discovery process for local community detection
is analogous to the method that is used by web crawling
systems to explore the WWW. Furthermore, we define two
subsets ofD: the core node setC, where any nodeci ∈ C

has no outward links, i.e., all neighbours ofci belong toD;
and the boundary node setB, where any nodebi ∈ B have at
least one neighbour inS. Figure 1 shows node setsD, S, C

andB in a network. Similar problem settings can be found
in [40], [39], [37], [38], however, the metrics used in these
approaches to discover and evaluate the local community are
different.

3.2. Local Community Discovery Metrics

Clauset has proposed the local modularityR for the
local community evaluation problem [37]. Intuitively, we
hope that a community would have a sharp boundary which
has fewer connections from the boundary to the unknown
portion of the graph, while having a greater number of
connections from the boundary nodes back into the local
community. Therefore, a good measure could be of the
sharpness of the boundary of a community, where boundary
nodes have at least one neighbour outside the community.
In other words,R focuses on the boundary node setB to
evaluate the quality of the discovered local communityD.

R =
Bin edge

Bout edge + Bin edge

(1)

whereBin edge is the number of edges that connect bound-
ary nodes and other nodes inD, while Bout edge is the
number of edges that connect boundary nodes and nodes
in S. Thus, R measures the fraction of those “inside-
community” edges in all edges with one or more endpoints
in B and communityD is measured by the sharpness of
the boundary given byB. By considering the fraction of
internal boundary edges,R lies on the interval0 < R < 1.
Additionally, this measure is independent of the size of the
enclosed local community.

Similarly, Luo et al. later proposed the modularityM
[38] for local community evaluation. Instead of measuring
the internal edge fraction of boundary nodes, they directly
compare the ratio of internal and external edges.

M =
number of internal edges

number of external edges
(2)

where “internal” means two endpoints are both inD and
“external” means only one of them belongs toD. An arbi-
trary threshold is set forM so that only node sets that have
M ≥ 1 are considered to be qualified local communities.
M is strongly related toR and is equivalent in some
situations. Consider a candidate node setD where every
node inD has external neighbours, thus we have|C| = 0
and B = D, which meansBin edge = internal edges

andBout edge = external edges. The thresholdM ≥ 1 is
equivalent toR ≥ 0.5.

The metrics to evaluate local communities are straight-
forward. Several algorithms [37], [38] are proposed based
on them to identify local communities. However, their per-
formance relies on arbitrary parameters, such as the number
of agglomerated nodes or a community threshold of the ratio
of internal and external edges. Moreover, they usually focus
on the first enclosing community and stop further identifi-
cation, leaving other parts of the graph unexplored and the
possibility of discovering other communities uncharted.



4. Our Approach

Existing metrics discussed in Section 3 are simple. How-
ever, an effective local community detection method should
be simple, not only because the accessible information of
the network is restricted to merely a small portion of the
whole graph, but also because the only means to learn
more knowledge about the structure is by expanding the
community, by one node at a time. With all these limitations
in mind, we present our algorithm.

Generally speaking, our algorithm consists of two steps.
Given a node and its local information, our approach first
identifies the local community for this node, and then
iteratively applies the same procedure to cover the whole
graph. In the following, we present these two steps and then
discuss other advantages of our approach.

4.1. Identifying Local Community

We have introduced a metric to evaluate the quality of a
local community in Section 3. The higher theR value is, the
better a group can be considered as a community. Therefore,
given a start node in a community, we could naturally opti-
mize theR value to identify the local community structure.
See Algorithm 1.

Algorithm 1 Local Community Identification Algorithm
Input: A social networkG and a start noden0.
Output: A local community forn0 with its quality score
R.
1. Add n0 to D andB, add alln0’s neighbours toS.
2. do

for eachni ∈ S do
computeR′

i

end for
Findni with the maximumR′

i, breaking ties randomly
Add ni to D

Removeni from S.
UpdateB, S, R

While (R′ > R)
3. ReturnD asn0’s local community.

In Algorithm 1, we place the start node in the community,
and its neighbour in the shell node set. At each step, the
algorithm adds to the community the neighbour node that
gives the largest increase ofR, breaking ties randomly. We
then update the community set, the boundary set, the shell
node set and theR value. We continue this process until
there are no candidate nodes that could give positive value to
the community. HavingR = Bin

Btotal

, we assume by merging
node ni, Bin will increase by∆in, which is the number
of edges that connect from original community nodes toni;
Btotal will increase by∆total, which is the number of edges

that connect fromni to other nodes except ones within the
community;Btotal will also decrease by∆′, since merging
ni might change the boundary status of some community
nodes, their connections will be taken off fromBtotal. Now,
the computation of eachR′

i can be done using the following
expression.

R′

i = R′ − R

=
Bin + ∆in − ∆′

Btotal + ∆total − ∆′
−

Bin

Btotal

=
∆in − ∆total ∗ R − ∆′ ∗ (1 − R)

Btotal + ∆total − ∆′

At each step that mergesni to the community, the
algorithm needs to computeR′ for every node in the shell
node set to find out the one with the maximum increase,
thus the complexity of each step isO(d|S|), where d is
the mean degree of the graph. If the size of the discovered
local community isk, the complexity of the algorithm
becomesO(kd|S|). However, in real world networks for
which local community algorithms are applied, e.g., the
WWW, and where adding a new node toD requires the
algorithm to obtain the link structure, the running time would
be dominated by this time-consuming network information
retrieval. Therefore, for real world problems the running time
of this procedure is linear in the size of the community, i.e.,
O(k).

4.2. Iterative Local Expansion

Algorithm 1 is for identifying a local community for
a specific set of starting nodes, however, we could apply
this algorithm iteratively to cover the whole graph. In other
words, instead of one-node-at-one-step, we expand as one-
community-at-one-step. See Algorithm 2.

Algorithm 2 Iterative Expansion Algorithm
Input: A social networkG and a start noden0.
Output: A list of local communities.
1. Apply algorithm 1 to find a local communityl0 for n0.
2. Insert neighbours ofl0 into the shell node setS
3. While (|S|! = 0)

Randomly pick one nodeni ∈ S.
Apply algorithm 1 to find a local communityli for

ni.
Remove nodes inS that are covered byli.
UpdateS by neighbours ofli that are not covered

yet.
4. m local communitiesl0, l1, l2..., m could be given as
a stop parameter.

In algorithm 2, we recursively apply the local community
identification algorithm to expand the community structure.
Every time we find a local community, we update the shell
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Figure 2. An Example for Overlapping Communities

node set, which is actually a set of nodes whose community
information is still unclear. The shown algorithm stops when
we have learned the whole structure of the network; however,
we could also give parameters as stopping criteria if explor-
ing the whole network is unnecessary or impractical, such as
the number of discovered communities (m), or the number
of nodes that has been visited (k). The algorithm could also
have multiple starting nodes, where several local community
identification procedures start simultaneously from different
locations of the network. Obviously, the complexity of the
Algorithm 2 is still O(kd|S|).

4.3. Detecting Overlapping Communities

As previously noted, in real world network, one entity
usually belongs to multiple communities. However, most of
the existing approaches cannot identify overlapping com-
munities. Fortunately, our approach is able to discover
overlapping communities even though we do not specifically
focus on finding such community property. For example, in
Figure 2 we have a simple network with 13 nodes. It is easy
to identify that nodes 1 to 4, 5 to 8 and 9 to 12 are three
local communities since they are cliques. However, node
13 seems to belong to two communities at the same time,
since it connects to 3 of the 4 nodes in both communities.
While other algorithms might mistakenly classify node 13 to
only one community, our approach could detect this overlap
without requiring any arbitrary parameters. Assume we start
from node 1, the discovered local community is nodes 1
to 4 and node 13. The algorithm then randomly turns to
node 9 and discovers the community for nodes 9 to 12.
Finally, it identifies the community of nodes 5 to 8 and node
13. The fact that node 13 is already classified into another
community does not affect the decision of our algorithm,
which is made based on the available local network structure.

5. Experiment Results

In this section, we apply our iterative local expansion
algorithm to detect communities on various real world social
networks. Danon et al. [18] found that the modularity
method outperformed all other methods for community

detection of which they were aware, in most cases by an
impressive margin, thus maximization of the modularity
to be perhaps the definitive state of the art method of
community detection. Therefore, we compared our approach
with a hierarchical clustering algorithm FastModularity [19],
which uses Newman’s modularity to measure community
structure, to show the scalability on large networks. We
then apply our algorithm on the co-purchase network of
Amazon to show its effectiveness. All the experiments were
conducted on a PC with a 3.0 GHz Xeon processor and 4GB
of RAM.

5.1. Scalability

To evaluate the scalability, we apply our algorithm and
FastModularity on several real world networks. Table 1
shows the source of each network, its statistics and the
execution time. From the table, we can see that our algorithm
runs measurably faster than FastModularity overall. Since
the complexity of our approach isO(kd|S|), our algorithm
performs better in sparser networks. For example, it is
faster for the PGP network and blogs2 network, where the
mean degree is only about 2, and spends more time on
dense networks, such as the word association network and
cond-mat network. Note that while FastModularity requires
complete network structure information, our algorithm starts
with local information only, then expands to the whole
available graph, thus it is more practical for huge networks.
Also note that another community detection algorithm to
possibly compare with is SCAN [17], however, the perfor-
mance of SCAN relies on input parameters, which are very
sensitive and extremely hard to determine for real world
networks, especially when the global network information
is not available.

5.2. Discovering Communities in Amazon Co-
purchase Network

While these networks provide diverse testbeds for scala-
bility evaluation, it is also desirable to interpret the perfor-
mance of our algorithm on large real world networks. How-
ever, since ground truth of such large networks is elusive, we
have to justify the results by common sense. We applied our
algorithm to the recommendation network of Amazon.com,
collected in January 2006 [38]. The nodes in the network are
items such as books, CDs and DVDs sold on the website.
Edges connect items that are frequently purchased together
by customers, as indicated by the “customers who bought
this book also bought these items” feature on Amazon. There
are 585,283 nodes and 3,448,754 undirected edges in this
network with a mean degree of 5.89. Similar datasets have
been used for testing in previous works [37], [38].

Table 2 shows four local community examples of our
result and their start items. The first community only has



Datasets Vertices Edges Mean Degree
Runtime / s

FastModularity [19] Our Algorithm
football [17] 180 787 4.17 < 1 s < 1 s
blogs [41] 3,982 6,803 1.71 9 s 1 s
PGP [42] 10,680 24,316 2.28 28 s 2 s

word association [35] 7,207 31,784 4.41 38 s 35 s
blogs2 [41] 30,557 82,301 2.69 201 s 67 s

cond-mat [43] 27,519 116,181 4.22 226 s 130 s

Table 1. Results on Real World Networks

five nodes, originated at the bookAesop’s Fables. It nat-
urally includes other fairy tale books, such as the book
of The 1001 Nights. The second community includes 197
books, most of them focus on the topic of the great
author William Shakespeare. Similarly, we have another
28-node-community about the legendary German musician
Beethoven. Finally, the fourth community includes 101
books of war, such as Civil War, World War I and II. Note
that many other community detection algorithms, e.g., Fast-
Modularity, become slow for such huge networks. Moreover,
they may not apply if the global network information is
unavailable.

Aside from local communities of books in Amazon, our
approach also finds overlaps between communities. For ex-
ample, the bookThe Musician’s Soul: A Journey Examining
Spirituality for Performers, Teachers, Composers, Conduc-
tors, and Music Educatorsis found in a community origi-
nated from the bookClassical Music in America: A History
of Its Rise and Falland another community originated from
the bookChoral Masterworks: A Listener’s Guide. Another
example is the bookLetters of Wolfgang Amadeus Mozart;
it belongs to the community of the bookBeethovenand the
community of the bookMozart: A Cultural Biography. We
could justify there is indeed some overlap by the book names
and history knowledge.

6. Conclusions

In this paper, we propose an iterative local expansion
approach to detect communities for large networks. While
previous approaches may have problems with huge networks
when the global structure information is unavailable, our
method tackles the problem by evaluating the community
structure by a local metric and then repeats that procedure
to generate communities to cover the whole network, without
requiring any arbitrary parameters. We have tested our
algorithm on the Amazon co-purchase network to evaluate
its accuracy. We have also compared its performance with
previous approaches on real world networks to show its
scalability. Experimental results confirm the effectiveness of
our approach.
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