
Privacy-Preserving Profile Matching Using the
Social Graph

Arjan Jeckmans, Qiang Tang, and Pieter Hartel
Distributed and Embedded Security, University of Twente, the Netherlands

{a.j.p.jeckmans,q.tang,pieter.hartel}@utwente.nl

Abstract

We present a privacy-preserving protocol for users to test a match with
potential new friends in an environment where all users cryptographically
encrypt their private information. The following scenario is considered.
Suppose that user Alice thinks that Bob might be a good new friend. So,
Alice and the Online Social Network (representing Bob) engage in a two-
party matching protocol. In this protocol no work from Bob is required, Bob
can be offline. The matching protocol is designed to give Alice an indication
if Bob is similar to her based on their profiles. We show that the process does
so without revealing the private information of Alice and Bob to one another
and to the Online Social Network.

Keywords

Online Social Network, profile privacy, profile matching, secret distribution

1. Introduction

Online Social Networks (OSNs) provide an important plat-
form for users to make new friends and share their information.
On one hand, OSN users do not fully trust the OSN and users
other than their friends, and do not like to disclose their private
information to these parties. On the other hand, OSNs may
not want the legal responsibility for storing, processing, and
distributing the users’ private data.

Consider a Facebook user, Alice, who likes a certain Face-
book page (for example, a fan page of artist X). On that page,
she finds that Bob also likes the same page. Alice thinks he
might make a nice friend. To learn more about Bob, she clicks
through to his profile. However, Bob’s profile is private and
Alice does not learn anything more about Bob. Alice now
has three options: (1) Give up learning more about Bob. (2)
Invite Bob to become friends and hope that Bob will make a
good friend. (3) Send Bob a private message and hope that he
replies. None of these options both protect Alice’s privacy in
case that Bob is not a suitable friend (as she has given Bob
private information) and allow Alice to learn more about Bob.
Either (1) no information is gained, (2) all privacy is lost, or
(3) privacy is traded for information. A formal description of
the problem can be found in Section 3.

In this paper, we offer a solution that allows Alice to test her
similarity with Bob without loss of their privacy. Our solution
is based on the following general assumptions:
• A friendship between Alice and Bob is more likely when

they have more profile attributes in common (referred to
as profile similarity).

• A (randomly chosen) pair of OSN users is unlikely to be
online at the same time [1]. So a typical secure two-party
computation does not work.

• Users tend to make friends with other users that are in
their extended social graph.

We show the intuition behind our solution in Section 4.
The building blocks and how we combine them to form our
solution can be found in Sections 5 to 7.

Our solution has the following desirable properties:
• It supports offline users by using the OSN as a proxy.
• The profile privacy of Alice is guaranteed by the protocol.
• The profile privacy of Bob relies on the separation of his

data between the OSN and Bob’s (extended) social graph.
Despite the above achievements, the following challenges

remain to be solved.
• Preventing or deterring collusion between the OSN and

an OSN user in Bob’s (extended) social graph.
• Improving the efficiency for the OSN, so that it can

handle a large number of requests simultaneously.
More details of our analysis can be found in Section 8.

2. Related Work

Earlier work attempts to protect user information in
OSNs, while preserving the centralized structure. Lucas and
Borisov [2] propose to use public key encryption to send
messages and profiles between users. Proxy re-encryption is
used for group messages. This results in the user holding many
keys. Guha et al. [3] propose to shuffle user information across
profiles to hide links between information. The OSN is not
involved. However, they leave users with no way to verify
profile correctness, unless some information is already known.
Tootoonchian et al. [4] propose to store profile information at
a trusted place. Access is then controlled using relationship
certificates. However, this approach removes knowledge of
friendship connections. In all these solutions no profile in-
formation is available to non-friends for matching scenarios.

3. The Problem Specification

To present a complete overview of the problem we define
the terms we are working with, detail the matching scenario,
and give the security model for this scenario. With respect
to the structure of the OSN, we consider the following terms.

Fig. 1. The matching process without privacy protection

The OSN facilitates interaction between users. It stores the user
data and acts as a proxy for offline users. The OSN user runs
a client-side program that is capable, among other things, of
performing cryptographic operations. Information pertaining
to user X is denoted by a subscript x, for example the profile of
X is Px. A user’s profile Px consists of several user attributes.
These attributes can be either public or private. For reasons of
simplicity, we assume that all attributes are private. However,
it is trivial to make attributes public (as normally would be
the case for non-sensitive information). The size of the profile
is denoted by nx and is equal to the number of attributes,
nx = |Px|. Within the profile, each attribute can be referenced
by px,i, where 1 ≤ i ≤ nx. Each user also maintains a
list of friends Fx. We assume that friendship connections are
symmetrical. This means that if Alice is a friend of Bob, then
Bob is also a friend of Alice. The profile, list of friends, and
other information are stored on the user’s account, the user’s
personal space on the OSN.

3.1. The Matching Scenario

Alice is looking for a new friend. From public information
in the OSN she learns that Bob is a potential candidate. To be
sure of Bob, Alice runs a matching protocol with the OSN.
The OSN represents Bob, this makes the matching process
work when Bob is offline. This also prevents Bob from being
overloaded with work when there are many users like Alice
who want to match with Bob. Fig. 1 shows an overview of
the basic matching process without any privacy protection. In
the first step, Alice requests the OSN’s help in determining
a match. In the second step, the OSN retrieves Bob’s profile
(Bob’s data is stored on the OSN). In the third step, Alice
and the OSN engage in a two-party matching process. In the
simplest version of this, Alice sends her profile to the OSN
and the OSN tells Alice if she matches with Bob or not.

We denote information pertaining to Alice with a subscript
a, e.g. Pa, and use a subscript b for information pertaining to
Bob. Starting with her profile, Pa, Alice defines a threshold
ta specifying when another user is sufficiently similar. If the
size of the intersection with Bob’s profile, |Pa ∩ Pb|, is not
smaller than this threshold, there is a match.

3.2. Security Model

During the matching process, we distinguish the following
five participant groups: the OSN, Alice, Bob, users connected
to Alice and Bob (friends), other OSN users. We assume

Fig. 2. Simulated trusted third party setting

that all groups except other OSN users are honest-but-curious.
They will adhere to the protocol specifications, do not provide
false information, and do not reveal private information. We
further assume that Alice, Bob, and their friends have run the
global setup (to be defined in Section 7) and do not collude
with the OSN. Everybody is curious about the profiles of Alice
and Bob. They will use information gained from the protocol
to learn more about the profiles of Alice and Bob (Alice
and Bob already know their own profile). For communication
between two parties, such as between Alice and the OSN,
or between Bob and his friend, we assume there is a secure
channel. This means that only the two parties that are involved
in the communication process are able to view the messages.

4. Overview of a Realistic Solution

Ideally, we wish that there is a trusted third party (TTP),
fully trusted by the OSN and all OSN users. The matching
algorithm then is as follows. In the first step Alice and Bob
send their profiles to the TTP. In the second step the TTP
computes the size of the profile intersection and sends the
result to Alice. In the final step Alice compares the intersection
size with the threshold ta to get a result; match when the
intersection is larger than or equal to the threshold, or no match
otherwise. This process can be extended trivially to also inform
Bob, the OSN, or both of the result.

Because there is no TTP available in OSNs, we simulate a
TTP by using several honest-but-curious parties. An overview
of our approach can be found in Fig. 2. The intuition behind
our approach is as follows, we separate the profile into two
pieces in such a way that neither piece reveals any profile
information. Piece 1 will be given to the OSN, piece 2 will be
distributed by a chain of friends using a proxy re-encryption
scheme.

5. Building Blocks

To create our matching algorithm we use a number of
existing techniques. Table 1 explains the used notation. A set
of items is denoted with a superscript *.

TABLE 1. Notation

Notation Explanation Notation Explanation
Acc User Account Param Security Parameter
Bool Boolean RKey Re-encryption Key
Cip Ciphertext Sec Secret
DKey Decryption Key Sig∗ Signature Set
EKey Encryption Key SKey Signing Key
Msg Plaintext Message VKey Verification Key

5.1. Public Key Encryption Scheme

A public key encryption scheme consists of three algorithms
(Gen,Enc,Dec).
• Gen : Param → (DKey ,EKey). The key generation

algorithm takes a security parameter 1k as its input and
outputs the private key SK and the public key PK.

• Enc : EKey × Msg → Cip. The encryption algorithm
takes the public key PK and a message m as input. The
output is the encryption of the message m under this
public key PK, that is the ciphertext c = EncPK(m).

• Dec : DKey × Cip → Msg . The decryption algorithm
takes the private key SK and a ciphertext c as its
input. The output is the message that was encrypted,
m = DecSK(c), or an error message.

The Paillier’s encryption scheme [5] is a homomorphic
public key encryption scheme that supports addition on the
encrypted messages. The algorithms (Gen,Enc,Dec) of Pail-
lier are defined as follows:
• Gen : Param → (DKey ,EKey). The key generation

algorithm takes a security parameter 1k as input and
generates a tuple (n, p, q, g, λ), where p and q are two
primes, n = pq, λ = lcm(p − 1, q − 1), and g is a
generators of Zn2 . The private key is SK = λ, and the
public key is PK = (n, g).

• Enc : EKey × Msg → Cip. The encryption algorithm
takes a message m ∈ Zn and the public key PK as
input. The algorithm outputs the ciphertext c = gmrn

mod n2, where r ∈R Zn.
• Dec : DKey × Cip → Msg . The decryption algorithm

takes a ciphertext c and the private key SK as input, and
outputs the message:

m = L(cλ mod n2)/L(gλ mod n2) mod n,

where L(u) is defined as (u− 1)/n.
The scheme is semantically secure under the decisional

composite residuosity assumption [5], and it has the following
homomorphic property: the result of multiplying two cipher-
texts for m and m′ is a ciphertext for m+m′.

5.2. Proxy Re-Encryption Cryptosystem

When user X and Y each have a key pair for the same
public key encryption scheme (which supports re-encryption),
then user X can delegate his decryption right to user Y. To

facilitate this, the re-encryption process adds two algorithms
(RGen,REnc) to the public key encryption scheme.
• RGen : DKey × EKey → RKey . The re-encryption key

generation algorithm takes the private key SKx and the
public key PKy as its input. It outputs a re-encryption
key Kx→y .

• REnc : RKey × Cip → Cip. The re-encryption algo-
rithm takes a re-encryption key Kx→y and a ciphertext
c = EncPKx(m) as its input. The output is the ciphertext
EncPKy

(m) = REncKx→y
(c) which is the message m

encrypted under the public key PKy , or an error message.
In proxy re-encryption [6], the re-encryption keys are stored
by a proxy who runs the REnc algorithm on behalf of the
users. In the case of a transitive re-encryption scheme, a re-
encryption chain can be formed by applying REnc repeatedly.

5.3. Digital Signature Scheme

A public key signature scheme is used to sign messages and
consists of three algorithms (SGen,Sign,Ver).
• SGen : Param → (SKey ,VKey). The key generation

algorithm takes a security parameter 1k as its input and
outputs the signing key GK and the verification key V K.

• Sign : SKey × Msg → Sig . The encryption algorithm
takes the signing key GK and a message m as input.
The output is the signature of m, s = SignGK(m).

• Ver : VKey × Msg × Sig → Bool . The verification
algorithm takes the verification key V K, a message m,
and a signature s as its input. The output VerV K(m, s) is
true if s is a valid signature on m under the verification
key V K, or false otherwise.

We use these basic cryptographic primitives to construct the
protocols for our solution.

6. A New Secret Distribution Scheme for OSN

According to Mislove et al. [7], OSNs typically have a
large but weakly connected sub-network. This gives a high
probability that there is a path of friends between Alice and
Bob. We adopt direct trust propagation [8]: when Alice trusts
her friend A, who trusts his friend B, then Alice can trust B.
Over multiple friends Alice can eventually trust Bob.

We propose a secret distribution scheme utilizing this type
of trust that exists in OSNs. We utilize a cryptographic hash
function H1 : {0, 1}∗ → {0, 1}k, that maps a secret to a fixed
length output. The secret distribution scheme consists of the
following three algorithms (Setup,Trans,Val).
Setup : Param × Acc∗ × Sec → ((DKey ,EKey), (SKey ,

VKey),RKey∗,Sig∗,Cip). This algorithm is run once by
every user X in the OSN and takes a security parameter 1k,
the friends list Fx, and a secret S to distribute as its input.
The user first runs the key generation algorithm Gen of a re-
encryption cryptosystem to create the key pair (SKx, PKx).
This key pair forms the basis to distributing the secret. The
user then runs the key generation algorithm SGen of a digital

signature scheme to create the key pair (GKx, V Kx). This
key pair will be used for validating the secret. The public
keys PKx and V Kx are made public.

Next, for each friend z in the friends list, z ∈ Fx, the user
does the following:
• The user runs the RGen algorithm of the re-encryption

scheme with inputs the private key SKx and the friend’s
public key PKz and outputs the resulting re-encryption
key Kx→z . This key will be used to distribute the secret.

• The user signs the friend’s verification key V Kz ,
SignGKx

(V Kz). This signature acts as a testimony to
the friendship and trust there in. It is used to verify the
validity of the distributed secret.

• The user stores the re-encryption key Kx→z and the
signed verification key SignGKx

(V Kz) in his account.
Note that these actions require the friend to have already
created the appropriate key pairs using the Setup algo-
rithm. Finally, the user computes the encryption of the secret
S, EncPKx(S), and the signature of the hashed secret S,
SignGKx

(H1(S)). These are stored in the user’s account.
After setup, a user (for example Alice) can ask for the secret

of another user (for example Bob). When such a request takes
place, the OSN runs the transformation algorithm:

Trans : Acc×Acc×Cip×RKey∗×Sig∗ → (Cip,Sig∗). The
transformation algorithm is run by the OSN and takes as its in-
put two user accounts, i.e. the accounts Bob and Alice, the en-
crypted secret S encrypted under the public key of Bob, k1 =
EncPKb

(S), all re-encryption keys held by the OSN, denoted
by K∗ = {Kx→z, x ∈ OSN, z ∈ Fx}, and all signatures
held by the OSN, denoted by U∗ = {SignGKx

(H1(S)), x ∈
OSN} ∪ {SignGKx

(V Kz), x ∈ OSN, z ∈ Fx}. The OSN
takes the following steps:
• Find a path from Bob to Alice. The OSN knows how all

users are connected, as it has key material associated with
each link. Finding a path is then done through traditional
path discovery methods in graph theory [9]. Note that
there are likely to be many paths and the resulting path
is not necessarily the shortest. The length of the path
(including Alice and Bob) is denoted by l.

• Use the REnc algorithm with the first key in the path and
k1 as input. The new output ki is iteratively used with
the i’th key in the path as input for the re-encryption
algorithm REnc (creating a re-encryption chain), until the
end is reached, 1 < i < l. The last ciphertext kl is the
original secret encrypted under the public key of Alice,
kl = EncPKa(S).

• Create a set of signatures V ∗. This set contains the
signature of the secret SignGKb

(H1(S)), as output by the
Distr algorithm, and the signatures of the verification keys
of the users along the path. If the first step in the path is
from Bob to his friend Zara the corresponding signature
would be SignGKz

(V Kb), this signature is created by
Zara in the Setup algorithm.

• Output the encrypted secret kl and the signature set V ∗.
When Alice receives an encrypted secret and a signature set

from the OSN, she proceeds to validate the encrypted secret
using the validation algorithm:

Val : DKey×Cip×VKey∗×Sig∗ → Sec. The key valida-
tion algorithm extracts the distributed secret and validates it.
This algorithm is run by Alice and takes as input the private
key SKa, an encrypted secret kl = EncPKa(S), all public
verification keys, denoted by V K∗ = {V Kx, x ∈ OSN},
and the signature set V ∗ as created by the OSN in the Trans
algorithm. It outputs the secret S or an error. Alice first
decrypts kl using the decryption algorithm and her private key
SKa, S = DecSKa(kl). Alice then checks all the signatures in
the signature set V ∗ (the signed hash SignGKb

(H1(S)) and the
signed verification keys, for example SignGKz

(V Kb)) using
the signature verification algorithm Ver. This creates a chain
of verified verification keys (and thus a chain of trust), that
starts with the verification key of Alice, V Ka. Only when
Alice can decrypt the secret S and all verifications pass will
this algorithm output the secret S.

7. The Proposed Matching Solution

The matching process consists of a global setup and a
matching protocol. The global setup is run only once, during
which each user pre-computes required values. The two-
party matching protocol allows a user (for example Alice)
to determine the existence of a match with another user (for
example Bob) using the OSN as a proxy. This can be done
multiple times.

7.1. The Global Setup

The global setup of the matching process is run by each
user, for example Bob. Bob first hashes his profile, HPb =
{H2(pb,i), 1 ≤ i ≤ nb}, using the cryptographic hash function
H2 : {0, 1}∗ → {0, 1}k that maps profile attributes to a
fixed length output. Bob then runs a polynomial creation
algorithm with this hashed profile HPb as input. This creates
as output the polynomial Qb(x) that has the attributes from
the hashed profile HPb as its roots. Bob then generates a
random polynomial Rb(x) and a polynomial Sb(x) such that
Qb(x) = Rb(x) + Sb(x). Neither Rb(x) nor Sb(x) alone
reveals any information about the profile polynomial Qb(x),
so they can each be revealed to a different semi-trusted party.

Bob then runs the setup algorithm Setup from the key
distribution scheme with as inputs the security parameter 1k,
the friends list Fb, and the polynomial Sb(x) that is to be
distributed.

Bob stores the private keys SKb and GKb outside the
OSN. Finally, as output Bob stores in his account the public
keys PKb, and V Kb, all re-encryption keys, Kb→z and all
signatures of his friends’ verification keys, SignGKb

(V Kz),
where z ∈ Fb, the encrypted polynomial, EncPKb

(Sb(x)), the
signature of the hashed polynomial, SignGKb

(H1(Sb(x))), and
the polynomial Rb(x).

7.2. The Matching Protocol

The proposed matching protocol is an adaptation of the FNP
set intersection cardinality protocol, proposed by Freedman,
Nissim and Pinkas [10]. Instead of one party holding the set
polynomial, now both parties hold a part of the polynomial.
This replacement transforms the FNP protocol from a two-
party interactive protocol to a non-interactive protocol utilizing
a third party. The proposed protocol uses the new key distri-
bution scheme, proposed in Section 6, to securely transfers the
polynomial Sb(x) from Bob to Alice.

The matching protocol consists of two phases. In the first
phase the polynomial Sb(x) is transferred from Bob to Alice.
In the second phase the actual computation takes place.

7.2.1. Phase 1: Distribution of the polynomial Sb(x) from
Bob to Alice. The first phase of the protocol is as follows.

1) Alice tells the OSN that she wants to match with Bob.
2) The OSN uses the transformation algorithm Trans

from the secret distribution scheme with inputs the
accounts of Bob and Alice, Bob’s encrypted poly-
nomial EncPKb

(Sb(x)), the set of re-encryption keys
K∗, and the set of signatures U∗. Both sets are
as detailed in the transformation algorithm Trans.
The outputs of this algorithm are the re-encrypted
polynomial, EncPKa

(Sb(x)), and set of signatures
V ∗. V ∗ contains the signatures on the hashed poly-
nomial, SignGKb

(H1(Sb(x))), and verification keys
from the path between Alice and Bob, for example
SignGKz

(V Kb). The output is sent back to Alice.
3) Alice validates Bob’s polynomial Sb(x) using the secret

validation algorithm Val. This algorithm takes as input
Alice’s private key SKa, the encrypted polynomial
EncPKa(Sb(x)), all verification keys V K∗, and the
signature set V ∗ received from the OSN. As output Alice
receives Bob’s polynomial Sb(x).

7.2.2. Phase 2: Two-party similarity computation. An
overview of phase 2 of the protocol is shown in Fig. 3. In
more details, the proposed protocol is described as follows.

1) The OSN creates a new ephemeral key pair for the
Paillier cryptosystem. This key pair consists of the
private key DKS and the public key EKS . The message
space is ZS . Next the OSN uses the public key to encrypt
the coefficients cj , where 0 ≤ j ≤ nb, of the polynomial
Rb(x). These encryptions will be used to calculate a
result for Rb(x) as in the FNP protocol. For simplicity
we assume that |Rb(x)| = nb. The public key EKS ,
degree of the polynomial nb, and the encryptions qj ,
where 0 ≤ j ≤ nb, are sent to Alice.

2) Alice also creates a new ephemeral key pair for the
Paillier cryptosystem. This key pair consists of the
private key DKa and the public key EKa. The mes-
sage space is Za. For each attribute in her profile,
pa,i, 1 ≤ i ≤ na, she hashes the attribute H2(pa,i) and

Alice (Pa, na, ta, Sb(x)) OSN (Rb(x), nb)

(DKS , EKS) = Gen(1k)
qj = EncEKS

(cj), 0 ≤ j ≤ nb
EKS ,nb,qj ,0≤j≤nb←−−−−−−−−−−−−

(DKa, EKa) = Gen(1k)
∀pa,i, 1 ≤ i ≤ na :
ri, r

′
i ∈r ZS

ti = EncEKS
(Qb(H2(pa,i)) · ri + r′i)

ui = EncEKa(−r′i)
EKa,na,ti,ui,1≤i≤na−−−−−−−−−−−−−−→

∀(ti, ui), 1 ≤ i ≤ na :
r′′i ∈r Za

t′i = EncEKa(DecDKS
(ti))

ei = (t′i · ui)r
′′
i

ei,1≤i≤na←−−−−−−−

di = DecDKa
(ei), 1 ≤ i ≤ na

s = #(di = 0), 1 ≤ i ≤ na
if ta ≤ s then
match else no match

Fig. 3. Phase 2 of the matching algorithm

creates two random values ri and r′i. She then com-
putes Qb(H2(pa,i)) = Rb(H2(pa,i)) + Sb(H2(pa,i)).
This is done by obliviously computing Rb(H2(pa,i)),
computing Sb(H2(pa,i)) in the clear, and adding the two
together. The result is then randomized using ri and r′i
as follows:

ti = EncEKS
(Qb(H2(pa,i)) · ri + r′i) =

((

nb∏
j=1

q
H2(pa,i)

j

j)·EncEKS
(Sb(H2(pa,i))))

ri ·EncEKS
(r′i)

Alice also encrypts the negation of the second random
value r′i under her own public key, ui = EncEKa

(−r′i).
Alice sends to the server her public key EKa, the size of
her profile na, the encrypted and randomized polynomial
results ti, and the encrypted random values ui, where
1 ≤ i ≤ na.

3) For each polynomial result and random value pair the
OSN creates a random value r′′i . The OSN then re-
encrypts and randomizes the result as follows:

ei = (EncEKa
(DecDKS

(ti)) · ui)r
′′
i

The final encrypted values, ei, 1 ≤ i ≤ na, are sent back
to Alice.

4) Alice decrypts the results using her private DKa and
checks for occurrences of ‘0’. A ‘0’ indicates an attribute
that is in the set intersection as in the FNP protocol. If
at least ta elements decrypt to ‘0’, then there is a match.

8. Security of the Solution

In the ideal situation Alice only learns the size of the profile
intersection and as a consequence whether there is a match or
not. However, in our scheme the degree of the polynomials
reveals Bob’s profile size and the number of pairs the OSN
receives from Alice reveals her profile size. Revealing the
profile sizes to the OSN only reveals the potential richness of
the profile (a larger profile is likely more detailed). Revealing
Bob’s profile size to Alice results in her knowing the number
of attributes in Bob’s profile that she does not have in common
with him, nb−|Pa∩Pb|. The profile sizes reveal no information
about the content of the profiles.

8.1. Security of Alice’s Profile

The only information the OSN receives from Alice are
blinded results to a polynomial that the OSN does not know
and an encrypted value to remove the blinding. Clearly the
blinded result does not give the OSN any information about
the input to the polynomial. In order to remove the blinding
the OSN must first encrypt using Alice’s public key EKa.
Because the key pair is fresh and the Paillier cryptosystem
is semantically secure [5], the encryptions (both to unblind
and the polynomial result after unblinding) do not reveal any
information to the OSN. Bob’s only influence on the protocol
is through his profile. He does not receive any messages during
the execution and can thus not learn anything about Alice’s
profile. The same goes for friends and other OSN users, except
they don’t have any influence.

8.2. Security of Bob’s Profile

After the protocol Alice has access to the following items,
the polynomial Sb(x), an encrypted version of the polynomial
Rb(x), and the result values Qb(H2(pa,i)) · r∗i . As in the FNP
protocol, the result values reveal no information about the
polynomial they are based on Qb(x). For each hashed attribute,
xi = H2(pa,i), pa,i ∈ Pa, that Alice uses as input the result of
the polynomial Qb(xi) is computed. The result is either a 0 if
xi is a root of the polynomial (xi is in Bob’s profile), or non 0
otherwise. By multiplying this with a random number r (r can
not be 0) the result remains 0 if xi is a root of the polynomial,
or a random number otherwise. When this result is returned to
Alice she either receives 0, and learns that her input attribute is
also an attribute in Bob’s profile, or a random value, and learns
that her input was not an attribute in Bob’s profile (and nothing
else). Thus the only way to learn the polynomial Qb(x), is
by combining the polynomials Rb(x) and Sb(x). Alice has
the polynomial Sb(x). However, she only has access to the
encrypted version of the polynomial Rb(x). The key used for
the encryption is a fresh one (so it is not compromised) and the
Paillier cryptosystem is semantically secure, so the encryption
leaks no information about it’s contents. Alice cannot retrieve
the polynomial Rb(x).

The OSN has access to the polynomial Rb(x). This poly-
nomial reveals no information to the OSN about Bob’s profile
as long as the OSN does not have Bob’s other polynomial
Sb(x). The OSN has access to the encrypted version of the
polynomial Sb(x) and a large number of re-encryption keys. A
re-encryption scheme hides the message from the proxy (the
OSN), thus the OSN will not learn anything. Because no user
(that is connected through a chain of friends to Bob) colludes
with the OSN, the OSN does not have access to a private
key and a matching public key encryption of Sb(x). Bob’s
polynomial Sb(x) and thus Bob’s profile polynomial Qb(x)
are secure.

Friends and other OSN users have no input to the protocol
and do not receive any messages during the execution. Thus
they can not learn any information about Bob’s profile. The
OSN is responsible for storing both polynomials (one in plain
and one encrypted). Should a user, say Eve (who is an indirect
friend of Bob), collude with the OSN, than together they can
recover Bob’s profile polynomial. Preventing or deterring such
collusion is left to future work.

9. Conclusion

We offer a construction with which users can test their
similarity without a need for lowering privacy protection. This
alternative is accomplished by combining secure multi-party
computation with the social graph, and its implied trust. As a
result we have a matching process that is secure in the honest-
but-curious model, and works in a realistic OSN setting where
a pair of users is unlikely to be online at the same time. It
remains as future work to find a solution in a model where
some friends are malicious.

References

[1] F. Benevenuto, T. Rodrigues, M. Cha, and V. A. F. Almeida, “Character-
izing user behavior in online social networks.” in Internet Measurement
Conference, 2009, pp. 49–62.

[2] M. M. Lucas and N. Borisov, “Flybynight: mitigating the privacy risks
of social networking,” in 7th ACM workshop on Privacy in the electronic
society (WPES), 2008, pp. 1–8.

[3] S. Guha, K. Tang, and P. Francis, “Noyb: privacy in online social
networks,” in First workshop on Online Social Networks (WOSP), 2008,
pp. 49–54.

[4] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman, “Lockr:
better privacy for social networks,” in 5th international conference on
Emerging networking experiments and technologies, 2009, pp. 169–180.

[5] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in EUROCRYPT ’99, 1999, pp. 223–238.

[6] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and
atomic proxy cryptography,” in EUROCRYPT’98, ser. Lecture Notes in
Computer Science, K. Nyberg, Ed., 1998, vol. 1403, pp. 127–144.

[7] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” in 7th ACM
SIGCOMM conference on Internet measurement, 2007, pp. 29–42.

[8] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation of trust
and distrust,” in 13th international conference on World Wide Web, 2004,
pp. 403–412.

[9] D. B. West, Introduction to Graph Theory, 1996.
[10] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching

and set intersection,” in EUROCRYPT ’04, 2004, pp. 1–19.

