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Abstract—Identifying communities in social networks be-
comes an increasingly important research problem. Several
methods for identifying such groups have been developed,
however, qualitative analysis (taking into account the scale of
the problem) still poses serious problems. This paper describes
a tool for facilitating such an analysis, allowing to visualize
the dynamics and supporting localization of different events
(such as creation or merging of groups). In the final part of the
paper, the experimental results performed using the benchmark
data (Enron emails) provide an insight into usefulness of the
proposed tool.

Keywords-social networks analysis; complex networks; group
identification; group evolution; dynamics analysis

I. INTRODUCTION

Current trends in identification of groups in complex
network analysis tend to go beyond static analysis (see, e.g.,
[1], [2]) and take into account the dynamic character of the
environment, mostly concerning the quantitative analysis of
such dynamic groups. Qualitative analysis becomes a very
difficult task, due to huge network sizes, possible number
of groups and time-dependence. In this paper, GEVi (Group
Evolution Visualisation)—a tool for the graphical analysis
of the evolution of groups will be presented.

Real-life networks are characterized by rapid changes
and the groups that may be located are mostly short-lived
and elusive. In order to analyse certain processes or trends
occurring in groups, different time periods should be taken
into account. Observation of changes should lead into stating
the reasons for creation, extension or disappearance of
certain groups. It is to note, that an additional challenge
is the fact, that one user may be a member of many groups.
Correlating of the observation of the network dynamics with
external events may lead to explaining of certain processes
occurring in the structure of groups and to allow prediction
of future events.

In the paper, after presenting the state of the art and
describing the utilized method of groups extraction, the
features of the presented tool are shown and the experimental
results obtained from popular Enron dataset are discussed.

II. RELATED WORK

Initially finding groups (communities) in large social net-
works was made possible by extracting certain features from

the network and analyze them on higher level of abstraction:
the network could be represented in an equivalent, but much
less complex form as groups and the relationships between
them [3]. Nowadays, group finding techniques allow not
only to simplify the network, but moreover, to analyze
certain processes in micro and macro scale. There are many
definitions of a group, but usually it is assumed that the
group is a set of vertices which communicate to each other
more frequently than with vertices outside the group. Many
methods of finding groups (mainly in static graphs) have
been proposed [4]. Nowadays, many results regarding the
the dynamics of the network, taking into account the time
and its impact on the life cycle of the groups are published
[5] [2]. Palla et al. in [1] identified basic events that may
occur in the life cycle of the group: growth, merging,
birth, construction, splitting and death. They did not give
any additional conditions. Asur in [5] introduced formal
definitions of five critical events. Greene in [6] presented a
review of the fundamental events describing group evolution
and formulated these key events in terms of rules.

In [7], a tool for visualization of the evolution for non-
overlapping groups was proposed. With this tool one can
analyse the membership of certain individuals in the group,
rather than the evolution of the group itself.

III. THE METHOD OF GROUPS EXTRACTION IN DYNAMIC
ENVIRONMENT

We have used SGCI (Stable Group Changes Identification)
algorithm and CPM (Clique Percolation Method) [8] as a
group extraction method. The algorithm consists of four
main steps: identification of short-lived groups in each
separated time interval; identification of group continuation
(using modified Jaccard measure), separation of the stable
groups (lasting for a certain time interval) and the identifica-
tion of types of group changes (transition between the states
of the stable group). A detailed description of the algorithm
is in [9].

We used the set of events identified in [9], applying
more general methods for their identification. The algorithm
identifies transitions between groups observed at time t and
the groups observed at the time t+1 (their successors). This
is achieved by comparing the size of the source groups, with
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Figure 1. Illustration of events.

each of their successors, rather than the difference in size
between all successors.

For various reasons, it is interesting to observe lifespan
of communities. How social network is evolving? What
are the reasons for appearance of communities in social
network, how they grow or shrink, what are the causes
of new members joining and abandoning the old? Whether
the community observed in two time periods is the same
community, even though, for example, there is no common
members?

There are many interesting questions, but the available
tools lack possibilities of simple, preferably graphical, anal-
ysis of groups life-cycle. A tool that may be used both
for quantitative and qualitative analysis presenting graphical
visualization of events and changes in the network would be
much desired.

IV. TOOL FOR GRAPHICAL ANALYSIS OF NETWORK
EVOLUTION (GEVI)

The GEVi visualizes groups in timeslots and displays
transitions between them in a form of graph. Each distinct
hierarchy of group evolution is displayed as a separate graph.
To implement visualisation we used JGraph1 Java-based
library.

A. Visualisation technique

The groups and transitions between them are represented
using hierarchical (Sugiyama type) layout. It [10] has several
interesting features: there are few edge crossings, the nodes
are evenly distributed and the edges are as straight as
possible. The Sugiyama layout is a method for visualizing
directed graphs and consists of the following stages:
• cycle removal – some edges are reversed in order to

make the graph acyclic (at the end of algorithm they
are reversed again to initial state),

• layer assignment – assignment of the vertices to layers
(if there are edges that pass not only through adjacent
layers, the dummy vertices are introduced),

• crossing reduction – in each layer the ordering of
vertices is calculated in order to minimize the number
of edge crossing,

• coordinate assignment – positioning of vertices so they
do not overlap each other and that vertices not lie on

1http://www.jgraph.com/jgraph.html

the straight lines between two adjacent vertices from
different layers, placing edges.

In our case, the transitions between groups cannot form
cycles in graph so we omitted first stage. The second stage
was simple in our situation because the groups are assigned
to timeslots where they were extracted. As the layers in the
graph represent the timeslots, so we preassigned nodes in
the graph to their layers. For reduction of crossings and
coordinate assignment, some variants of median method
described by Gansner [11] were used.

B. Features

In GEVi, each group is labelled in a form
timeslotNumber groupNumber which eases the
identification of the groups during their evolution. GEVi
enables not only analysis of transitions between groups
in different time slots (fig. 2) but also shows the size of
groups (in square brackets inside vertices), denoting how
many members get inside the group during each group
transition (label on transition) and how many of them
get outside during each group transitions (in a form of
number close to the green arrow—the green arrow pointing
in the direction of the top-right corner stands for the
number of members that go outside groups connected by
outgoing transitions and the green arrow pointing in the
direction of the bottom-right corner stands for the number
of members that go into given group). For instance, the
group 92 1 from fig. 2 has 2 input edges (96 members
flow from predecessors of that group to the given one) and
additionally 9 members (not belonging to predecessors of
that group) come to this group. The group has 3 outgoing
edges (100 members flow to its successors) and additionally
5 members leave that group.

Some transitions are displayed as dashed arrows—this
indicates that groups between given transition differ signifi-
cantly in size (one of them is at least 10 times bigger than the
second one). Such transitions represent events described as
addition or deletion (depending whether small group attaches
to the larger or small group detaches from the larger one).

In the transition pop-up menu, there is an additional
information about stability during group transition and in
the group pop-up menu (fig. 2) - the members of the group
are listed.

GEVi also gives us information about overlapping of the
members between the groups. After selecting of the group,
all other groups that have in common at least one member



Figure 2. Visualisation with showing context menu for group.

with the selected one are highlighted (fig. 3) and the informa-
tion is displayed, regarding the number of common members
(number between characters < and > inside vertex) and
in the pop-up menu the members of all highlighted groups
common with the selected one are shown.

Figure 3. Visualisation showing common members for group 92 3.

To be more useful, GEVi supports also zooming graphs
and searching for groups by its name in a form of
timeslotNumber groupNumber (after finding the group,
the focus is set and the view is centered).

C. Model

In this section a simple model for describing the analysis
of the network dynamics is proposed.

A complex network or social network may be of course
described using standard definition of a graph:

N = 〈V,E〉 (1)

where: V ⊂ N, stands for a finite set of vertices, that is:

V = {i : i ∈ N ∧ i < imax} (2)

and E =⊂ V × V is a finite set of edges.
Striving to provide means for observation of groups that

are formed in a certain time moment, let us consider the
following space of system states: G = 2V . The elements
of G are any possible subsets of V . Now, observing the

system in a certain time moment, it may be seen that the set
of vertices is decomposed into following subsets:

G 3 gt = {gt,k}, t, k ∈ N. (3)

each subset may be described as:

gt,k = {v1, . . . , vmaxt,k
}. (4)

where maxt,k stands for maximum number of the individ-
uals in the group. Note, that the subsets observed at certain
time t may contain the same elements (they may overlap).

Now, let us define the graph depicting the dynamics of
the complex network. Again, as it is a graph, the definition
is similar to the classical one:

D = 〈VD, ED〉 (5)

where: VD = (t, k) ∈ N × N, and ED = VD × VD so
this graph is composed of labels utilized before, in the
definition of the complex network and the groups. Note,
that this definition spans to the whole observation time of
the network.

The above-presented simple formalism is aimed to ease
the definition of observed events and other primitives.

For example, let us define Modified Jaccard measure

MJ(A,B) =

{
0, if A = ∅ ∨B = ∅,
max( |A∩B||A| , |A∩B||B| ), otherwise.

(6)
and ratio of groups size

ds(A,B) = max(
|A|
|B|

,
|B|
|A|

) (7)

where A 6= ∅ ∧B 6= ∅.
Transition tgi,k,gi+1,l

can be defined as:

tgi,k,gi+1,l
: ∃gi,k ∧ ∃gi+1,l ∧MJ(gi,k, gi+1,l) ≥ th (8)

where th means threshold for creation of transition (in
experiments we set value of th to 0.5).

Due to the limited space in this article we present only
formulation for split merge event (figure 1 shows illustration
for most events):

The event split merge occurs when group gi,k divides into
2 or more groups in next time slot, these groups from next
time slot have similar size to gi,k, the group gi+1,l is created
from 2 or more groups from previous time slot and these
groups from previous time slot have similar size to gi+1,l

tgi,k,gi+1,l
: ds(gi,k, gi+1,l) < sh ∧

[∃tgi,m,gi+1,l
: m 6= k ∧ ds(gi,m, gi+1,l) < sh] ∧

[∃tgi,k,gi+1,n
: n 6= l ∧ ds(gi,k, gi+1,n) < sh] (9)

where sh stands for the threshold for ratio of groups size,
which in experiments was set to 10.



V. GRAPHICAL ANALYSIS OF ENRON DATASET

A. Dataset

We analyzed one of the most popular datasets in complex
network analysis: Enron emails. The dataset was prepared in
the form of MySQL database and described by Shetty and
Adibi[12]. They made it publicly available 2.

The analyzed data contains emails from 151 users and
252 759 messages from the following period of time:
5.01.1998-3.02.2004. Some messages were sent to group of
people, therefore such messages can be expanded into multi-
ple messages between single sender and single recipient. The
database contains 2 064 442 of such expanded messages.
We restricted messages to the ones that were exchanged
only between employees (that were listed in the database
in separate table). After rejection, there were 50 572 left of
the expanded messages.

B. Group extraction and evolution

The analyzed period was divided into time slots, each
lasting 30 days. The neighbouring slots overlap each other
by 50% of their duration and in the examined period of time
there are 149 time slots.

After separation of time slots we extracted the groups
in each time slot. We used CPM method of commu-
nity extraction (CPMd version from CFinder3 tool) for
k=3. For this parameter groups were extracted in slots
between 31 (15.04.1999-15.05.1999) and 108 (13.06.2002-
13.07.2002)—in other time slots there were so few messages
between users that no groups were formed (for higher k
values the range of time slots containing any groups is even
more narrow).

Transitions between groups were assigned using our
method SGCI described earlier. The threshold on modified
Jaccard measure was set on level equals 0.5.

C. Group sizes

Running simple statistic algorithms we determined that
most of the groups are small—groups that have their size
equal 10 or less constitute about 80% of all groups.

Using GEVi, we can observe the size for each group as
it was demonstrated on fig. 4. For instance, the group 92 1
has 103 members and size of group 93 4 equals 3.

D. Number of groups in timeslots

Fig. 4 shows the number of groups and messages in time
slots. The stars on chart represent key events from timeline
of Enron:
• 12.02.2001 - Skilling is named CEO (slots 74, 75),
• 14.08.2001 - Skilling resigns as CEO (slots 86, 87),
• 2.12.2001 - Enron files for bankruptcy (slots 94, 95).

2http://www.isi.edu/ ãdibi/Enron/Enron.htm
3http://www.cfinder.org/

We were inspired by work of Collingsworth, Menezes and
Martins [13], who also analyzed Enron dataset and in the
cited paper, there is presented a chart showing the relation
between the number of emails sent by users and key events
for company (the same as we recalled above). They noticed
that peaks of the exchanged emails happened before key
real events at an average of 2 months earlier. Therefore,
we prepared similar chart as they used in their work—the
chart presenting number of messages (we are showing only
number of messages exchanged between employees) in time.

We can compare these 2 charts in fig. 4 and we can ob-
serve that peaks on chart with number of messages precede
mentioned events but on chart with number of groups in 2
first cases peaks precede events and the last peak is right
after the last event.

Figure 4. Number of groups and messages in time slots.

The number of groups in each time slot can be easily
perceived—the groups from the same time slot in the same
hierarchy are positioned vertically one above the other.

E. Stability of groups in timeslots

In fig. 5, mean stability (with standard deviation) between
groups in slots is presented (e.g., stability in the slot 100
corresponds to stabilities between groups from the slot 100
and the slot 101). We can observe that stability gradually
decreases in time until slot 100 (13.02.2002-15.03.2002)
which happened about 3 months after bankruptcy of Enron.
We can also notice that when the mean stability decreases,
the standard deviation has large values, which is caused by
many deletions and additions.

The stability of each transition between groups can be
observed in GEVi when hovering mouse pointer over a
certain chosen group—see fig. 6, or indirectly: if in a given
time slot there are more dashed transition arrows, the mean
stability is expected to be less than in timeslots when there
are mainly solid arrows, which is presented in fig. 6 (mean
stability between groups in slots 99 and 100 is less than
between groups from slots 100 and 101).



Figure 5. Stability of groups in time slots (mean and standard deviation).

Figure 6. Stability for chosen transition on visualisation.

F. Exchange of members of group in time

Four different hierarchies can be visualised in GEVi. The
most interesting one is shown in fig. 7, where the highlighted
groups are the ones having in common at least one member
with the first group in this hierarchy (group labelled as
31 0). The mentioned group has 3 members and as we can
notice, in each next time slot (every time slot has different
vertical layer in visualization) there is at least one group that
has any common members with that group (what is presented
in fig. 7). In the last time slot for this hierarchy (slot 102)
the only one person from the initial group is present.

This example shows how this tool can be used in ana-
lyzing, how long a given group can exist without complete
exchange of initial members of group.

G. Common members between groups in the same time slot

The maximum number of common members between
each group pair from the same time slot equals 3. It seems
that in about 22% of all pairs from the same time slot there
is at least one common member.

GEVi makes possible checking common elements for each
selected group with the other ones. For instance, in fig. 3 we
can see that group 92 3 has 5 members and with group 92 1
has 2 common members, with 92 2 has 1 common member
and there is no common members with group 92 0.

H. Overlapping groups in the same time slot

Most groups overlap at least with one another group in the
same timeslot. The groups that do not overlap with others
constitute about 30% of all groups.

The presented tool enables possibility to check the group
overlapping in the same time slot. Referring to fig. 3, one
can see that the group 92 3 overlaps with 2 other groups in
the same time slot.

I. Analysis of behavior of group dynamics close to Enron
bankruptcy

Enron bankruptcy took place in 94th and 95th time slots
(slots are overlapping). Fig. 8 shows that right before that
event, there exist several small and one big group in time
slots, but in 95th time slot large group 94 2 splits into some
smaller groups. It could suggest that people were afraid
of their situation and prefer leading communication with
subgroup of people who seemed to be more trustworthy. We
can also observe that after some time the situation changes
and again most people belongs to one large group. Another
interesting remark is that in 96th time slot (just after Enron
bankruptcy), there is a peak of group numbers that could also
imply certain doubtfulness of people about their situation
and interacting with other people (via mail) in small groups.

VI. CONCLUSION

In this paper GEVi’s features were described. The tool
allows to construct higher abstraction level charts and use
them for visualization of certain group events. In the future
we plan to add possibilities of detecting new events and to
employ different benchmark and real-world data to tune-up
the proposed network analysis tool.
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