
Solving Maximum Clique Problem in Stochastic Graphs Using Learning Automata

Mohammad Soleimani-Pouri
Department of Electrical, Computer
& Biomedical Engineering, Qazvin
branch, Islamic Azad University,

Qazvin, Iran
m.soleimani@qiau.ac.ir

Alireza Rezvanian

Computer Engineering &
Information Technology

Department, Amirkabir University
of Technology, Tehran, Iran

a.rezvanian@aut.ac.ir

Mohammad Reza Meybodi
Computer Engineering &
Information Technology

Department, Amirkabir University
of Technology, Tehran, Iran

mmeybodi@aut.ac.ir

Abstract—The maximum clique of a given graph G is the sub-
graph C of G such that two vertices in C are adjacent in G with
maximum cardinality. Finding the maximum clique in an
arbitrary graph is an NP-Hard problem, motivated by the
social networks analysis. In the real world applications, the
nature of interaction between nodes is stochastic and the
probability distribution function of the vertex weight is
unknown. In this paper a learning automata-based algorithm
is proposed for solving maximum clique problem in the
stochastic graph. The simulation results on stochastic graph
demonstrate that the proposed algorithm outperforms
standard sampling method in terms of the number of
samplings taken by algorithm.

Keywords- maximum clique problem; NP-Hard; stochastic
graph; learning automata; social networks.

I. INTRODUCTION
Let G=(V,E) be an undirected graph with vertex set

V={1, 2, …, n} and edge set E⊆V×V, A clique [1-4] of G is
the set of vertices C⊆V, such that i,j∈E for all i,j∈C. A
maximum clique is a clique with maximum cardinality
among all cliques of G. Due to its numerous applications, the
maximum clique problem is one of the most important NP-
hard problems [5] and it has been extensively studied in the
literature such as clustering in social networks [6-7]. One of
the most interests in the networks applications is finding
dense subsets of vertices such as clique, which represents a
group of entities or people, any two of which have a certain
type of relationship with each other in social networks [8-9].

In all existing methods for solving maximum clique, it is
assumed that the graph is deterministic and thus the weight of
its vertices fixed. But in the real world application, this
assumption does not hold true, for example availability of
users as nodes in the social networks or activities of routers in
communication networks is varying over time. So, in this
paper, the maximum clique problem in stochastic graphs is
introduced, and then a learning automata-based algorithm is
proposed for solving this problem, when the probability
distribution function of the weight of the vertices is
unknown. To evaluate the performance of the proposed
algorithm, the number of samples needs to be taken by it
from the vertices of the stochastic graph is compared to that of
the standard sampling method. According to the simulation
results the proposed algorithm in terms of the number of
samples taken from stochastic graph is acceptable. The rest
of this paper is organized as follows. In the section II,

learning automata is introduced. Stochastic graph is described
in section III. In section IV, the proposed algorithm based on
learning automata for solving maximum clique in stochastic
graph is presented. The performance of the proposed
algorithm is evaluated through the simulation in section V.
Finally section VI concludes the paper.

II. LEARNING AUTOMATA
A learning automaton [10-13] is an adaptive decision

making unit that improves its performance by learning how
choose the optimal action from a finite set of allowed
actions through repeated interactions with a random
environment. The action is chosen at random based on a
probability distribution kept over the action-set and at each
instant the given action is served as the input to the random
environment. The environment responds the taken action in
turn with a reinforcement signal. The action probability
vector is updated based on the reinforcement feedback from
the environment. The objective of a learning automaton is
to find the optimal action from the action-set so that the
average penalty received from the environment is
minimized.

The environment can be described by a triple E≡{α, β,
c}, where α≡{α1, α2 , ..., αr} represents the finite set of the
inputs, β≡{β1, β2, ..., βm} denotes the set of the values can be
taken by the reinforcement signal, and c≡{c1, c2, ... , cr}
denotes the set of the penalty probabilities, where the
element ci is associated with the given action αi. If the
penalty probabilities are constant, the random environment is
said to be a stationary random environment, and if they vary
with time, the environment is called a non-stationary
environment. The environments depending on the nature of
the reinforcement signal β can be classified into P-model, Q-
model, and S-model. The environments in which the
reinforcement signal can only take two binary values 0 and 1
are referred to as P-model environments. Another class of
the environment allows a finite number of the values in the
interval [0, 1] can be taken by the reinforcement signal. Such
an environment is referred to as Q-model environment. In S-
model environments, the reinforcement signal lies in the
interval [a, b].

Learning automata can be classified into two main
families: fixed structure learning automata and variable
structure learning automata. Variable structure learning
automata are represented by a triple <β, α, T>, where β is the

115978-1-4673-4794-5/12/$31.00 c©2012 IEEE

set of inputs, Q is the set of actions, and T is learning
algorithm. The learning algorithm is a recurrence relation
which is used to modify the action probability vector. Let
a(k) and p(k) denote the action chosen at instant k and the
action probability vector on which the chosen action is
based, respectively. The recurrence equation shown by (1)
and (2) is a linear learning algorithm by which the action
probability vector p is updated. Let αi(k) be the action
chosen by the automaton at instant k.

ijjnpanp
npanpnp

jj

iii

≠∀−=+
−+=+

 ,)()1()1(
)](1[)()1(

 (1)

When the taken action is rewarded by the environment (i.e.
β(n)=0) and

ijjnpb
r

b
np

npbnp

jj

ii

≠∀−+
−

=+

−=+

 ,)()1(
1

)1(

)()1()1(
 (2)

When the taken action is penalized by the environment
(i.e. β(n)=1). r is the number of actions which can be chosen
by the automaton, a and b denote the reward and penalty
parameters and determine the amount of increases and
decreases of the action probabilities, respectively. If a=b, the
recurrence equations (1) and (2) are called linear reward-
penalty (LR-P) algorithm, if a>>b the given equations are
called linear reward-ε-penalty (LR-εP), and finally if b=0 they
are called linear reward-inaction (LR-I). In the latter case, the
action probability vectors remain unchanged when the taken
action is penalized by the environment. In the multicast
routing algorithm presented in this paper, each learning
automaton uses a linear reward-inaction learning algorithm
to update its action probability vector.

III. STOCHASTIC GRAPH
As mentioned, in the most scenarios of network

applications, the weight of the vertices/edges of graph is
assumed to be fixed, but in real world applications this is
not always true and it varies with time. So, we introduce
stochastic graph [14-16] for modeling the real networks
applications.

A stochastic graph G can be defined by a triple G = V,
E, F , where V = {v1, v2, ...,vn} denotes the set of vertices, E
⊂ V×V = {e1, e2, ..., em} is the edge set, and F={f1, f2, ..., fn}
is the probability distribution describing the statistics of
vertex weights. In particular, weight wi of vertex vi is
assumed to be positive random variable with fi as its
probability density function, which is supposed to be
unknown for the proposed algorithm. In stochastic graph G,
an maximum clique φi⊂V with weight of W(vi) vertices and
expected weight of iW()φ defined as Φ={φ1, φ2, ..., φr} the
set of all its maximum clique such that for all arbitrary
vertices of vi,vj∈γi, vi and vj are adjacent. The maximum
clique is defined as a clique with maximum expected weight.
In other word, stochastic maximum clique φ*

 specifies as
follows:

{ }
i

*
iarg max W()

φ
φ φ

∀ ∈Φ
=

(3)

Where iW()φ is the expected weight of the clique φi and
the defined as below

i i

i
v

i
i

W(v)
W() ∈= φφ

φ
 (4)

Where iW(v) denotes the expected weight of vertex vi
and |φi| is the clique size. Therefore, the stochastic maximum
clique of a given stochastic graph G is defined as the
stochastic clique with the maximum expected weight.

IV. PROPOSED ALGORITHM
In this section, the proposed algorithm based on learning

automata is described for solving the maximum clique
problem in stochastic graphs. In this paper, weight of the
vertices of graph is assumed to be positive random variable
and the parameters of the underlying probability distribution
of the vertex weight are unknown. Therefore it is required to
estimate the parameters by a statistical method. In the
proposed algorithm, each vertices of graph, equipped with a
learning automaton, indeed, a network of learning automata
isomorphic to the stochastic graph. In this case, the network
of automata can be formulated by a triple <A, α, C>, where
A denotes the set of the learning automata, α is the set of
actions in which αi specifies the set of actions can be taken
by learning automata Ai, for each αi∈α, and W={w1,...,wn} is
the set of weights such that wi (∀i∈{1, 2, …, n}) is the random
weight associated with automata Ai. The action set of each
learning automata vi equals to its adjacent vertices of vi. So,
the learning automaton assigned to each vertex vi of the
stochastic graph, referred to as αi, has ni=(di-1) actions such
that αi={α1, …, αi-1, αi+1, …, αni}. At each step of the
algorithm, after sampling from some vertices and compute
the expected weight of vertices, the candidate maximum
clique is constructed by cooperation of learning automata.
The learning automata iteratively construct the candidate
maximum clique and update the action probability vectors
until they find a near optimal solution to the maximum
clique problem. The detail of the proposed algorithm is
depicted as follow.
In the initialization, a learning automaton Ai is assigned to
each vertices vi of graph G and action probability vector of
them are initialized equal by 1/di. Moreover, the candidate
maximum clique consider as empty set.
In the proposed algorithm, the following steps repeated until
the stopping criteria are met. In this algorithm, the stopping
criteria are considered as predefined total number of
iterations and exceed the predefined threshold value of
probability vector of the maximum clique as follows:

t
i

t
i

v

P() p(v)
φ

φ
∈

= ∏

(5)

Where φt denotes the set of vertices in the candidate
maximum clique in the step t, p(vi) is the probability vector
of the vi.

1. All automata are activated and an automaton was
selected randomly as Ai, and added into candidate

116 2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)

maximum clique set afterward, all automata nonadjacent
of Ai is deactivated. Now, automaton Ai chooses one of its
actions according to its action probability vector, and
deactivates nonadjacent automaton of Aj. Then, the new
selected vertex (j) inserted in the candidate maximum
clique set as φt. This process repeated iteratively until
there is no any active automaton.
2. Weight of the candidate maximum clique (φt) which
constructed in the step of t is computed according to
equation (6).

()
t

i

i
vt

t

w v
w() φφ

φ
∈= (6)

Where
iw(v) and

tw()φ are the expected weight of vertex
vi and the expected weight of clique φt respectively. φt
specifies the vertex set of candidate maximum clique in
the step of t and tφ denotes the cardinality of candidate

maximum clique φt.
3. The candidate maximum clique, which obtained in the
step of t in comparison with the best candidate maximum
clique up to now is evaluated. If the cardinality of current
candidate maximum clique is greater than the cardinality
of the all candidate maximum clique that found until now,
then all chosen learning automata are rewarded and
candidate maximum clique was replaced by current
maximum clique, otherwise the chosen learning automata
are penalized.

The Best result for maximum clique in the stochastic
graph obtained in the end of the algorithm.

V. SIMULATION RESULTS

A. Experimental Study
To evaluate the performance of the proposed algorithm,

experiments are accomplished on the following stochastic
graphs [15-17], which details of them are listed in table 1 to
2, and are demonstrated in figure 2 to 3. These graph model a
real communication networks, which the weight of
activity/availability of vertices to be random variables.

TABLE I. PROBABILITY DISTRIBUTION OF GRAPH I

Vertex Weight Probability
v1 {2, 8, 12} {0.9, 0.08, 0.02}
v2 {10, 24, 35} {0.85, 0.12, 0.03}
v3 {6, 18, 24} {0.88, 0.1, 0.02}
v4 {12, 22, 30} {0.85, 0.11, 0.04}
v5 {17, 35, 50} {0.75, 0.2, 0.05}
v6 {3, 7, 10} {0.68, 0.25, 0.07}
v7 {4, 19, 15} {0.75, 0.14, 0.11}
v8 {5, 10, 12} {0.65, 0.23, 0.12}

TABLE II. PROBABILITY DISTRIBUTION OF GRAPH II

Vertex weight Probability
v1 {2, 8, 12} {0.9, 0.08, 0.02}
v2 {10, 24, 35} {0.85, 0.12, 0.03}
v3 {6, 18, 24} {0.88, 0.1, 0.02}
v4 {12, 22, 30} {0.85, 0.11, 0.04}
v5 {17, 35, 50} {0.75, 0.2, 0.05}
v6 {3, 7, 10} {0.68, 0.25, 0.07}
v7 {4, 19, 15} {0.75, 0.14, 0.11}
v8 {5, 10, 12} {0.65, 0.23, 0.12}
v9 {10, 19, 24} {0.80, 0.14, 0.06}
v10 {18, 27, 36} {0.94, 0.05, 0.01}

V1

V2

V3

V4

V5

V6

V7

V8

Figure 1. Stochastic graph I

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

Figure 2. Stochastic graph II

2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN) 117

B. Experimental Results
In all simulation presented in this paper, the number of

samples taken by the proposed algorithm from the stochastic
graph to construct the maximum clique is compared with that
of the standard sampling method. The updating scheme for
action probability vectors of learning automata is linear
reward-inaction (LR-I). The stopping criteria are set to pre-
defined number of steps (50000) and threshold value of
function on probability vector. The number of samples need
to take by standard sampling method with difference
confidence level are listed in table 3 to 4 for graph I and II.
The proposed algorithm is performed on graphs I and II, and
the obtained results in terms of the number of samples taken
from the graph are compared with those of the standard
sampling method given in tables 5 to 6.

Based on the standard sampling method, to attain a
confidence level 1-ε for the maximum clique in stochastic
graph, it require to make a confidence level 1-εi for each
vertex vi such that Σεi=ε. It is supposed that the vertices of
the stochastic graph have the same confidence level 1-ε0. So,
selecting ε0=ε/k, where k is the cardinality of the maximum
clique, guarantees a confidence level 1-ε for the maximum
clique [15]. The results of the standard sampling method for
graphs I and II are listed in the tables 3 and 4, respectively.

TABLE III. AVERAGE SAMPLES TAKEN FROM GRAPH I FOR STANDARD
SAMPLING

Vertex Confidence level
0.5 0.6 0.7 0.8 0.9

v1 317 286 259 243 269
v2 521 518 541 474 501
v3 353 337 373 381 353
v4 406 395 345 418 448
v5 590 697 642 630 753
v6 340 265 304 314 315
v7 311 320 277 315 377
v8 333 369 377 377 388

Total 3171 3187 3118 3152 3404

TABLE IV. TABLE 4. AVERAGE SAMPLES TAKEN FROM GRAPH II
STANDARD SAMPLING

Vertex
Confidence level

0.5 0.6 0.7 0.8 0.9
v1 317 286 259 243 269
v2 521 518 541 474 501
v3 353 337 373 381 353
v4 406 395 345 418 448
v5 590 697 642 630 753
v6 340 265 304 314 315
v7 311 320 277 315 377
v8 333 369 377 377 388
v9 242 250 300 312 339
v10 386 425 465 485 454

Total 3802 3867 3887 3953 4201

The results of proposed algorithm for averaged over 30

independent runs in comparison with standard sampling are in
terms of the number of samples taken from the stochastic
graph are summarized in the table 5 and 6 for graph I and II
respectively.

Figure 3. Total number of samples of proposed algorithm and standard

sampling for graph I

Figure 4. Total number of samples of proposed algorithm and standard

sampling for graph II

The simulation results in the figures of 3 and 4 have

demonstrated the total number of the total number of samples
taken from the stochastic graph for the maximum clique by
the proposed algorithm is less than the values obtained by
standard sampling method.

In the another experiment, the effect of varying learning
parameter for learning automata is evaluated, which listed in
the table 5 and 6 for graph I and II respectively.

118 2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)

TABLE V. EFFECT OF LEARNING PARAMETER FOR GRAPH I

Learning
parameter

Average
clique
weight

Average
number of

samples

Average
iterations of
algorithm

0.01 9.57 619.69 1062.62
0.02 9.57 432.12 581.13
0.03 9.58 369.15 375.15
0.04 9.59 338.09 266.37
0.05 9.53 318.01 205.85
0.06 9.57 306.76 176.00
0.07 9.57 297.34 163.58
0.08 9.61 289.68 121.78
0.09 9.64 284.87 105.86
0.10 9.56 281.05 86.91

TABLE VI. TABLE 6. EFFECT OF LEARNING PARAMETER FOR GRAPH II

Learning
parameter

Average
clique
weight

Average
number of

samples

Average
iterations of
algorithm

0.01 16.05 852.82 3027.98
0.02 16.02 575.73 1491.88
0.03 16.06 483.82 997.59
0.04 16.11 437.18 708.25
0.05 16.05 409.64 562.34
0.06 16.07 390.55 475.36
0.07 16.08 377.86 394.06
0.08 16.05 367.64 332.19
0.09 16.04 360.55 293.01
0.10 16.05 354.27 262.72

The effect of different values of learning parameter in the

table 5 and 6 specifies the accuracy of algorithm with
increasing the learning parameter in terms of average clique
weight, average number of samples, and average iterations of
algorithm.

VI. CONCLUSION
In this paper, an algorithm based on learning automata

algorithm is proposed to solve the maximum clique in a
stochastic graph. Based on the application of real networks, it
is assumed that the probability distribution of the vertex
weight is unknown. Moreover, in this paper, the stochastic
maximum clique was introduced. According to the simulation
results, the number of samples taken by the proposed
algorithm is less than the standard sampling method for
constructing the maximum clique in stochastic graph.

REFERENCES
[1] P. Martins, “Cliques with maximum/minimum edge neighborhood

and neighborhood density,” Computers & Operations Research, vol.
39, no. 3, pp. 594–608, 2012.

[2] Q. Wu, J.-K. Hao, and F. Glover, “Multi-neighborhood tabu search
for the maximum weight clique problem,” Annals of Operations
Research, vol. 196, no. 1, pp. 611–634, 2012.

[3] D. Manrique, A. Rodríguez-Patón, and P. Sosík, “On the scalability
of biocomputing algorithms: The case of the maximum clique
problem,” Theoretical Computer Science, vol. 412, no. 51, pp. 7075–
7086, 2011.

[4] M. Brunato and R. Battiti, “R-EVO: A Reactive Evolutionary
Algorithm for the Maximum Clique Problem,” IEEE Transactions on
Evolutionary Computation, vol. 15, no. 6, pp. 770 –782, 2011.

[5] R. M. Karp, “Reducibility among combinatorial problems,”
Complexity of Computer Computations, vol. 40, no. 4, pp. 85–103,
1972.

[6] D. Duan, Y. Li, R. Li, and Z. Lu, “Incremental K-clique clustering in
dynamic social networks,” Artificial Intelligence Review, vol. 38, no.
2, pp. 129–147, 2012.

[7] S. Mimaroglu and M. Yagci, “CLICOM: Cliques for combining
multiple clusterings,” Expert Systems With Applications, vol. 39, no.
2, pp. 1889–1901, 2011.

[8] S. Wasserman, Social Network Analysis: Methods and Applications.
Cambridge University Press, 1994.

[9] F. Amiri, N. Yazdani, H. Faili, and A. Rezvanian, “A Novel
Community Detection Algorithm for Privacy Preservation in Social
Networks,” in Intelligent Informatics, vol. 18, A. Abraham, Ed.
Springer Berlin Heidelberg, 2013, pp. 443–450.

[10] K. S. Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction. Printice-Hall, 1989.

[11] A. Rezvanian and M. R. Meybodi, “LACAIS: Learning Automata
based Cooperative Artificial Immune System for Function
Optimization,” in Contemporary Computing, vol. 94, S. Ranka, Ed.
Springer Berlin Heidelberg, 2010, pp. 64–75.

[12] A. Rezvanian and M. R. Meybodi, “Tracking Extrema in Dynamic
Environments Using a Learning Automata-Based Immune
Algorithm,” in Grid and Distributed Computing, Control and
Automation, vol. 121, T. Kim, Ed. Springer Berlin Heidelberg, 2010,
pp. 216–225.

[13] A. Rezvanian and M. R. Meybodi, “An adaptive mutation operator
for artificial immune network using learning automata in dynamic
environments,” in In: Proceedings of 2010 Second World Congress
on Nature and Biologically Inspired Computing (NaBIC),, Fukuoka,
Japan, 2010, pp. 479–483.

[14] J. Akbari Torkestani and M. R. Meybodi, “A learning automata-
based heuristic algorithm for solving the minimum spanning tree
problem in stochastic graphs,” The Journal of Supercomputing, vol.
59, no. 2, pp. 1035–1054, 2012.

[15] J. Akbari Torkestani and M. R. Meybodi, “Finding minimum weight
connected dominating set in stochastic graph based on learning
automata,” Information Sciences, vol. 200, no. 1, pp. 57–77, 2012.

[16] J. A. Torkestani and M. R. Meybodi, “Learning automata-based
algorithms for solving stochastic minimum spanning tree problem,”
Applied Soft Computing, vol. 11, no. 6, pp. 4064–4077, 2011.

[17] H. Beigy and M. R. Meybodi, “Utilizing distributed learning
automata to solve stochastic shortest path problems,” International
Journal of Uncertainty Fuzziness And Knowledge Based Systems, vol.
14, no. 5, p. 591, 2006.

2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN) 119

