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Abstract—The maximum clique of a given graph G is the sub-
graph C of G such that two vertices in C are adjacent in G with 
maximum cardinality. Finding the maximum clique in an 
arbitrary graph is an NP-Hard problem, motivated by the 
social networks analysis. In the real world applications, the 
nature of interaction between nodes is stochastic and the 
probability distribution function of the vertex weight is 
unknown. In this paper a learning automata-based algorithm 
is proposed for solving maximum clique problem in the 
stochastic graph. The simulation results on stochastic graph 
demonstrate that the proposed algorithm outperforms 
standard sampling method in terms of the number of 
samplings taken by algorithm. 

Keywords- maximum clique problem; NP-Hard; stochastic 
graph; learning automata; social networks. 

I.  INTRODUCTION 
Let G=(V,E) be an undirected graph with vertex set 

V={1, 2, …, n} and edge set E⊆V×V, A clique [1-4]  of G is 
the set of vertices C⊆V, such that i,j∈E for all i,j∈C. A 
maximum clique is a clique with maximum cardinality 
among all cliques of G. Due to its numerous applications, the 
maximum clique problem is one of the most important NP-
hard problems [5] and it has been extensively studied in the 
literature such as clustering in social networks [6-7]. One of 
the most interests in the networks applications is finding 
dense subsets of vertices such as clique, which represents a 
group of entities or people, any two of which have a certain 
type of relationship with each other in social networks [8-9].  

In all existing methods for solving maximum clique, it is 
assumed that the graph is deterministic and thus the weight of 
its vertices fixed. But in the real world application, this 
assumption does not hold true, for example availability of 
users as nodes in the social networks or activities of routers in 
communication networks is varying over time. So, in this 
paper, the maximum clique problem in stochastic graphs is 
introduced, and then a learning automata-based algorithm is 
proposed for solving this problem, when the probability 
distribution function of the weight of the vertices is 
unknown. To evaluate the performance of the proposed 
algorithm, the number of samples needs to be taken by it 
from the vertices of the stochastic graph is compared to that of 
the standard sampling method. According to the simulation 
results the proposed algorithm in terms of the number of 
samples taken from stochastic graph is acceptable. The rest 
of this paper is organized as follows. In the section II, 

learning automata is introduced. Stochastic graph is described 
in section III. In section IV, the proposed algorithm based on 
learning automata for solving maximum clique in stochastic 
graph is presented. The performance of the proposed 
algorithm is evaluated through the simulation in section V. 
Finally section VI concludes the paper. 

II. LEARNING AUTOMATA 
A learning automaton [10-13] is an adaptive decision 

making unit that improves its performance by learning how 
choose the optimal action from a finite set of allowed 
actions through repeated interactions with a random 
environment. The action is chosen at random based on a 
probability distribution kept over the action-set and at each 
instant the given action is served as the input to the random 
environment. The environment responds the taken action in 
turn with a reinforcement signal. The action probability 
vector is updated based on the reinforcement feedback from 
the environment. The objective of a learning automaton is 
to find the optimal action from the action-set so that the 
average penalty received from the environment is 
minimized. 

The environment can be described by a triple E≡{α, β, 
c}, where α≡{α1, α2 , ..., αr} represents the finite set of the 
inputs, β≡{β1, β2, ..., βm} denotes the set of the values can be 
taken by the reinforcement signal, and c≡{c1, c2, ... , cr} 
denotes the set of the penalty probabilities, where the 
element ci is associated with the given action αi. If the 
penalty probabilities are constant, the random environment is 
said to be a stationary random environment, and if they vary 
with time, the environment is called a non-stationary 
environment. The environments depending on the nature of 
the reinforcement signal β can be classified into P-model, Q-
model, and S-model. The environments in which the 
reinforcement signal can only take two binary values 0 and 1 
are referred to as P-model environments. Another class of 
the environment allows a finite number of the values in the 
interval [0, 1] can be taken by the reinforcement signal. Such 
an environment is referred to as Q-model environment. In S-
model environments, the reinforcement signal lies in the 
interval [a, b].  

Learning automata can be classified into two main 
families: fixed structure learning automata and variable 
structure learning automata. Variable structure learning 
automata are represented by a triple <β, α, T>, where β is the 
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set of inputs, Q is the set of actions, and T is learning 
algorithm. The learning algorithm is a recurrence relation 
which is used to modify the action probability vector. Let 
a(k) and p(k) denote the action chosen at instant k and the 
action probability vector on which the chosen action is 
based, respectively. The recurrence equation shown by (1) 
and (2) is a linear learning algorithm by which the action 
probability vector p  is updated. Let αi(k) be the action 
chosen by the automaton at instant k. 
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When the taken action is rewarded by the environment (i.e. 
β(n)=0) and 

ijjnpb
r

b
np

npbnp

jj

ii

≠∀−+
−

=+

−=+

   ,       )()1(
1

)1(

                                  )()1()1(
 (2) 

When the taken action is penalized by the environment 
(i.e. β(n)=1). r is the number of actions which can be chosen 
by the automaton, a and b denote the reward and penalty 
parameters and determine the amount of increases and 
decreases of the action probabilities, respectively. If a=b, the 
recurrence equations (1) and (2) are called linear reward-
penalty (LR-P) algorithm, if a>>b the given equations are 
called linear reward-ε-penalty (LR-εP), and finally if b=0 they 
are called linear reward-inaction (LR-I). In the latter case, the 
action probability vectors remain unchanged when the taken 
action is penalized by the environment. In the multicast 
routing algorithm presented in this paper, each learning 
automaton uses a linear reward-inaction learning algorithm 
to update its action probability vector. 

III. STOCHASTIC GRAPH 
As mentioned, in the most scenarios of network 

applications, the weight of the vertices/edges of graph is 
assumed to be fixed, but in real world applications this is 
not always true and it varies with time. So, we introduce 
stochastic graph [14-16] for modeling the real networks 
applications. 

A stochastic graph G can be defined by a triple G = V, 
E, F , where V = {v1, v2, ...,vn} denotes the set of vertices, E 
⊂ V×V = {e1, e2, ..., em} is the edge set, and F={f1, f2, ..., fn} 
is the probability distribution describing the statistics of 
vertex weights. In particular, weight wi of vertex vi is 
assumed to be positive random variable with fi as its 
probability density function, which is supposed to be 
unknown for the proposed algorithm. In stochastic graph G, 
an maximum clique φi⊂V with weight of W(vi) vertices and 
expected weight of iW( )φ defined as Φ={φ1, φ2, ..., φr} the 
set of all its maximum clique such that for all arbitrary 
vertices of vi,vj∈γi, vi and vj are adjacent. The maximum 
clique is defined as a clique with maximum expected weight. 
In other word, stochastic maximum clique φ*

 specifies as 
follows: 

{ }
i

*
iarg max W( )

φ
φ φ
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Where iW( )φ  is the expected weight of the clique φi and 
the defined as below 
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Where iW(v )  denotes the expected weight of vertex vi 
and |φi| is the clique size. Therefore, the stochastic maximum 
clique of a given stochastic graph G is defined as the 
stochastic clique with the maximum expected weight. 

 

IV. PROPOSED ALGORITHM 
In this section, the proposed algorithm based on learning 

automata is described for solving the maximum clique 
problem in stochastic graphs. In this paper, weight of the 
vertices of graph is assumed to be positive random variable 
and the parameters of the underlying probability distribution 
of the vertex weight are unknown. Therefore it is required to 
estimate the parameters by a statistical method. In the 
proposed algorithm, each vertices of graph, equipped with a 
learning automaton, indeed, a network of learning automata 
isomorphic to the stochastic graph. In this case, the network 
of automata can be formulated by a triple <A, α, C>, where 
A denotes the set of the learning automata, α is the set of 
actions in which αi specifies the set of actions can be taken 
by learning automata Ai, for each αi∈α, and W={w1,...,wn} is 
the set of weights such that wi (∀i∈{1, 2, …, n}) is the random 
weight associated with automata Ai. The action set of each 
learning automata vi equals to its adjacent vertices of vi. So, 
the learning automaton assigned to each vertex vi of the 
stochastic graph, referred to as αi, has ni=(di-1) actions such 
that αi={α1, …, αi-1, αi+1, …, αni}. At each step of the 
algorithm, after sampling from some vertices and compute 
the expected weight of vertices, the candidate maximum 
clique is constructed by cooperation of learning automata. 
The learning automata iteratively construct the candidate 
maximum clique and update the action probability vectors 
until they find a near optimal solution to the maximum 
clique problem. The detail of the proposed algorithm is 
depicted as follow. 
In the initialization, a learning automaton Ai is assigned to 
each vertices vi of graph G and action probability vector of 
them are initialized equal by 1/di. Moreover, the candidate 
maximum clique consider as empty set. 
In the proposed algorithm, the following steps repeated until 
the stopping criteria are met. In this algorithm, the stopping 
criteria are considered as predefined total number of 
iterations and exceed the predefined threshold value of 
probability vector of the maximum clique as follows: 

t
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v

P( ) p(v )
φ

φ
∈

= ∏  

(5) 

Where φt denotes the set of vertices in the candidate 
maximum clique in the step t, p(vi) is the probability vector 
of the vi. 

1. All automata are activated and an automaton was 
selected randomly as Ai, and added into candidate 
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maximum clique set afterward, all automata nonadjacent 
of Ai is deactivated. Now, automaton Ai chooses one of its 
actions according to its action probability vector, and 
deactivates nonadjacent automaton of Aj. Then, the new 
selected vertex (j) inserted in the candidate maximum 
clique set as φt. This process repeated iteratively until 
there is no any active automaton. 
2. Weight of the candidate maximum clique (φt) which 
constructed in the step of t is computed according to 
equation (6).  

( )
t

i

i
vt

t

w v
w( ) φφ

φ
∈=  (6) 

Where
iw(v ) and

 

tw( )φ  are the expected weight of vertex 
vi and the expected weight of clique φt respectively. φt 
specifies the vertex set of candidate maximum clique in 
the step of t and tφ denotes the cardinality of candidate 

maximum clique φt. 
3. The candidate maximum clique, which obtained in the 
step of t in comparison with the best candidate maximum 
clique up to now is evaluated. If the cardinality of current 
candidate maximum clique is greater than the cardinality 
of the all candidate maximum clique that found until now, 
then all chosen learning automata are rewarded and 
candidate maximum clique was replaced by current 
maximum clique, otherwise the chosen learning automata 
are penalized. 

The Best result for maximum clique in the stochastic 
graph obtained in the end of the algorithm. 

 

V. SIMULATION RESULTS 

A. Experimental Study 
To evaluate the performance of the proposed algorithm, 

experiments are accomplished on the following stochastic 
graphs [15-17], which details of them are listed in table 1 to 
2, and are demonstrated in figure 2 to 3. These graph model a 
real communication networks, which the weight of 
activity/availability of vertices to be random variables.  

TABLE I.  PROBABILITY DISTRIBUTION OF GRAPH I 

Vertex Weight Probability
v1 {2, 8, 12} {0.9, 0.08, 0.02} 
v2 {10, 24, 35} {0.85, 0.12, 0.03} 
v3 {6, 18, 24} {0.88, 0.1, 0.02} 
v4 {12, 22, 30} {0.85, 0.11, 0.04} 
v5 {17, 35, 50} {0.75, 0.2, 0.05} 
v6 {3, 7, 10} {0.68, 0.25, 0.07} 
v7 {4, 19, 15} {0.75, 0.14, 0.11} 
v8 {5, 10, 12} {0.65, 0.23, 0.12} 

 
 

TABLE II.  PROBABILITY DISTRIBUTION OF GRAPH II 

Vertex weight Probability 
v1 {2, 8, 12} {0.9, 0.08, 0.02} 
v2 {10, 24, 35} {0.85, 0.12, 0.03} 
v3 {6, 18, 24} {0.88, 0.1, 0.02} 
v4 {12, 22, 30} {0.85, 0.11, 0.04} 
v5 {17, 35, 50} {0.75, 0.2, 0.05} 
v6 {3, 7, 10} {0.68, 0.25, 0.07} 
v7 {4, 19, 15} {0.75, 0.14, 0.11} 
v8 {5, 10, 12} {0.65, 0.23, 0.12} 
v9 {10, 19, 24} {0.80, 0.14, 0.06} 
v10 {18, 27, 36} {0.94, 0.05, 0.01} 
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Figure 1.  Stochastic graph I 
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Figure 2.  Stochastic graph II 
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B. Experimental Results 
In all simulation presented in this paper, the number of 

samples taken by the proposed algorithm from the stochastic 
graph to construct the maximum clique is compared with that 
of the standard sampling method. The updating scheme for 
action probability vectors of learning automata is linear 
reward-inaction (LR-I). The stopping criteria are set to pre-
defined number of steps (50000) and threshold value of 
function on probability vector. The number of samples need 
to take by standard sampling method with difference 
confidence level are listed in table 3 to 4 for graph I and II. 
The proposed algorithm is performed on graphs I and II, and 
the obtained results in terms of the number of samples taken 
from the graph are compared with those of the standard 
sampling method given in tables 5 to 6.  

Based on the standard sampling method, to attain a 
confidence level 1-ε for the maximum clique in stochastic 
graph, it require to make a confidence level 1-εi for each 
vertex vi such that Σεi=ε. It is supposed that the vertices of 
the stochastic graph have the same confidence level 1-ε0. So, 
selecting ε0=ε/k, where k is the cardinality of the maximum 
clique, guarantees a confidence level 1-ε for the maximum 
clique [15]. The results of the standard sampling method for 
graphs I and II are listed in the tables 3 and 4, respectively. 

 

TABLE III.  AVERAGE SAMPLES TAKEN FROM GRAPH I FOR STANDARD 
SAMPLING 

Vertex Confidence level 
0.5 0.6 0.7 0.8 0.9 

v1 317 286 259 243 269 
v2 521 518 541 474 501 
v3 353 337 373 381 353 
v4 406 395 345 418 448 
v5 590 697 642 630 753 
v6 340 265 304 314 315 
v7 311 320 277 315 377 
v8 333 369 377 377 388 

Total 3171 3187 3118 3152 3404 
 

TABLE IV.  TABLE 4. AVERAGE SAMPLES TAKEN FROM GRAPH II 
STANDARD SAMPLING 

Vertex 
Confidence level 

0.5 0.6 0.7 0.8 0.9 
v1 317 286 259 243 269 
v2 521 518 541 474 501 
v3 353 337 373 381 353 
v4 406 395 345 418 448 
v5 590 697 642 630 753 
v6 340 265 304 314 315 
v7 311 320 277 315 377 
v8 333 369 377 377 388 
v9 242 250 300 312 339 
v10 386 425 465 485 454 

Total 3802 3867 3887 3953 4201 

 
The results of proposed algorithm for averaged over 30 

independent runs in comparison with standard sampling are in 
terms of the number of samples taken from the stochastic 
graph are summarized in the table 5 and 6 for graph I and II 
respectively. 

 

 
Figure 3.  Total number of samples of proposed algorithm and standard 

sampling for graph I 

 

 
Figure 4.  Total number of samples of proposed algorithm and standard 

sampling for graph II 

 
The simulation results in the figures of 3 and 4 have 

demonstrated the total number of the total number of samples 
taken from the stochastic graph for the maximum clique by 
the proposed algorithm is less than the values obtained by 
standard sampling method. 

In the another experiment, the effect of varying learning 
parameter for learning automata is evaluated, which listed in 
the table 5 and 6 for graph I and II respectively. 
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TABLE V.  EFFECT OF LEARNING PARAMETER FOR GRAPH I  

Learning 
parameter 

Average 
clique 
weight 

Average 
number of 

samples 

Average 
iterations of 
algorithm 

0.01 9.57 619.69 1062.62 
0.02 9.57 432.12 581.13 
0.03 9.58 369.15 375.15 
0.04 9.59 338.09 266.37 
0.05 9.53 318.01 205.85 
0.06 9.57 306.76 176.00 
0.07 9.57 297.34 163.58 
0.08 9.61 289.68 121.78 
0.09 9.64 284.87 105.86 
0.10 9.56 281.05 86.91 

 

TABLE VI.  TABLE 6. EFFECT OF LEARNING PARAMETER FOR GRAPH II 

Learning 
parameter 

Average 
clique 
weight 

Average 
number of 

samples 

Average 
iterations of 
algorithm 

0.01 16.05 852.82 3027.98 
0.02 16.02 575.73 1491.88 
0.03 16.06 483.82 997.59 
0.04 16.11 437.18 708.25 
0.05 16.05 409.64 562.34 
0.06 16.07 390.55 475.36 
0.07 16.08 377.86 394.06 
0.08 16.05 367.64 332.19 
0.09 16.04 360.55 293.01 
0.10 16.05 354.27 262.72 

 
 
The effect of different values of learning parameter in the 

table 5 and 6 specifies the accuracy of algorithm with 
increasing the learning parameter in terms of average clique 
weight, average number of samples, and average iterations of 
algorithm. 

 
 

VI. CONCLUSION 
In this paper, an algorithm based on learning automata 

algorithm is proposed to solve the maximum clique in a 
stochastic graph. Based on the application of real networks, it 
is assumed that the probability distribution of the vertex 
weight is unknown. Moreover, in this paper, the stochastic 
maximum clique was introduced. According to the simulation 
results, the number of samples taken by the proposed 
algorithm is less than the standard sampling method for 
constructing the maximum clique in stochastic graph.  
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