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Abstract— To make the massive deployment of automated
vehicles possible in complex urban environments, it is essential
to provide them with the ability of making safe and useful
decisions. To that end, it is necessary to improve their capability
to infer the intentions of the surrounding vehicles and their
associated collision risk for the ego-vehicle in complex driving
scenes. This work shows the implementation and validation
in simulation of a probabilistic approach to estimate the risk
of driving under uncertain conditions, combining (i) intention
estimations and (ii) the expected behaviour of vehicles according
to the topology and the subsequent traffic rules of the consid-
ered driving scenario. Promising results in terms of success
rate and prediction horizon have been obtained testing the
proposed approach in driving situations where lateral intention
estimation is relevant, namely in multi-lane roundabouts and
highways.

I. INTRODUCTION
In typical urban driving scenes such as intersections or

roundabouts, a large number of traffic agents can present
a collision risk for an automated vehicle (AV). It may be
extremely difficult to predict individually and accurately the
trajectories of each agent in scenes involving a large number
of them, in which their behaviours have clear interactions.

The most popular paradigm for estimating collision risk
in robotics, and therefor in the AV community, is based
on the idea of ”motion prediction + collision detection”,
composed of two steps: (i) individually predict possible
future trajectories for all moving entities at the scene, (ii)
detect collisions between pairs of trajectories, and derive
a risk estimate based on the total possibility of collision.
However, the interplay among different types of moving
entities cannot be neglected in many urban environments. In
this context, interaction-aware risk assessment is a promising
research field, where different modelling and risk inference
strategies have been proposed. Among them, the use of
Dynamic Bayesian Networks (DBN) allows to efficiently
model the interconnected behaviour of vehicles, while taking
into consideration system and measurement uncertainties.

The work of [11] is a theoretically scalable and generic
DBN approach that can explicitly consider any driving
context and its associated traffic rules. However, it has only
been tested for longitudinal risk assessment and with pairs
of vehicles.

Following this approach, the present work incorporates
a model for the lateral intention of vehicles within the
existing network. The easy-to-compute utility-based model
[1] is introduced and can be used in driving scenarios where
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both longitudinal and lateral dynamics may influence risk
assessment. To showcase its potential, the paper assesses the
strategy performance in different complex driving situations,
such as highways and multi-lane roundabouts, where at least
3 vehicles interact.

The outline of the paper is as follows. A summary of the
most relevant related works are presented in Section II. Sec-
tion III describes how the behaviour of vehicles interactions
are modelled using a DBN. Section IV is specifically devoted
to the lane change modelling and its implication in the lateral
expectation and intention estimation. To infer the outputs of
the DBN, a particle filter is implemented, for which some
basic guidelines are provided in Section V. The applicability
of the proposed approach is validated in different situations
where lateral interactions are relevant, such as highways or
roundabouts.

II. RELATED WORK

Motion prediction techniques, according to [12], can be
classified in 3 basic categories: (i) physical models, where
vehicles motion is estimated using the laws of physics,
without considering the existence of other vehicles, being
the main differences among them their uncertainty manage-
ment -single path simulation [14], Gaussian noise simulation
[18] or Monte Carlo simulations [2]-; (ii) maneuvers-based
models (e.g. [3][19][20]), where vehicles motion depends
on the maneuvers that their drivers intend to perform, us-
ing for that physical variables -speed, position, direction,
road information -geometry, topology, speed limits, traffic
laws- or driver behavior -head movement, driving style;
(iii) interaction-aware models, based on the principle that to
perform a certain maneuver, vehicles recognize their mutual
presence, either with computation-intensive approaches -e.g.
using hidden and coupled Markov[4], or finding solutions to
specific simplified driving situations -e.g. overtaking [24].

Physical models have two main drawbacks: the motion
prediction they provide are too short term, and, as a result
of this, they are not able to foresee any change in the car
motion caused by the execution of a particular maneuver or
by changes due to external factors. Although maneuver-based
models can predict the intention of a driver by adjusting
the trajectories and states, they do not take into account
the dependencies between vehicles. As a result, interaction-
aware seem to be the most appropriate approach for driving
situations with a high number of interacting agents.

Several recent papers have proposed machine learning
techniques to estimate local spatio-temporal interactions
among vehicles as an element of the decision-making archi-
tecture in an automated vehicle (e.g. [22], [13]). However,



exhaustive and well prepared datasets are required to achieve
good results, which, in addition, are often used in end-to-end
solutions, where driving risk assessment is bypassed [10].
The work of [11] is an original proposal for this kind of
applications, since it allows solving the risk inference taking
into account the uncertainty, the topology and the context
of the situation according to traffic regulations. However,
the validation of this promising approach was done only
taking into account 2 vehicles and in a very specific case:
unsignalized T-shaped intersections. The algorithm, being in
principle effective and scalable, needed to be enlarged for
driving situations where lateral intention estimation is key.

Just as longitudinal intention is modelled considering
simple interacting principles, a lane-change model is required
to cope with the vehicles interactions in a cost-efficient
manner. The literature for microscopic simulation [5][17]
has been fed in the last 30 years with different approaches to
efficiently simulate the driver lateral behaviour in presence of
traffic. Thus, lane-changing models can be categorized into
four groups [21]: rule-based models [6], [7], [9], discrete-
choice-based models [1], [25], artificial intelligence models
[28], [23], and incentive-based models [8]. Incentive-based
strategies (whose most relevant representative is the MOBIL
model) have the ability to introduce some driver variability,
but is is unclear its behaviour in busy scenarios, as it only
represents operational lane-changing decisions and do not
describe strategical and tactical aspects. As already men-
tioned, AI-enabled models require exhaustive data for their
deployment, which in addition are sometimes untraceable.
Rule-based and discrete-choice-based models appear to be
the most popular approaches, due to their simplicity. Al-
though rule-based models have a small number of parameters
to tune, their outputs are expressed as binary variables, which
do not fit with the underlying probabilistic framework of
[11]. As a result, one of the better known discrete-choice-
based models [1] has been implemented and integrated to
infer lateral intentions and the resulting risk assessment of
lane-changing driving situations.

III. DYNAMIC BAYESIAN NETWORK

The Dynamic Bayesian Network model used is inspired
from [11] and considers four state variable types: (i) expected
manoeuvre (En

t ), (ii) intended manoeuvre (In
t ), (iii) physical

state (Φn
t ) and (iv) measurements (Zn

t ), where the expected
and intentional manoeuvres are unknown and intangible vari-
ables, unlike the physical state. The generalized distribution
defining the the network in a time interval 0 : T can be
expressed as follows:

P(E0:T,I0:T,Φ0:T,Z0:T) = P(E0,I0,Φ0,Z0)×

×
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t )] (1)

In real driving scenarios the behaviour of each vehicle
is conditioned by the behaviour of the rest vehicles. As a

result, the network is instantiated for each of the n vehicles,
being all these instantiations interrelated. The bold variables
reflect the dependencies of vehicle n with respect to the other
vehicles

The expected manoeuvre represents the expected be-
haviour of every vehicle according to traffic rules. It is
a generic tool to introduce the geometrical and topologi-
cal characteristics of the driving scene and the associated
conventions for safe vehicles interrelation. This variable is
therefore different when facing a roundabout, driving in a
highway, or approaching traffic lights, and it is divided into
two types: longitudinal and lateral. The former model the
probability that the vehicle should stop at some point. The
latter, which is the focus of this paper, interprets when a
vehicle is expected to make a lane change without hindering
traffic.

The intended manoeuvre has a certain similarity to the
expected manoeuvre since it models the same behaviour from
the perspective of the driver himself. However, the main
difference lie in considering the current and previous motion
trend of the vehicle, rather than the most likely evolution
given a certain traffic scenario. In other words, expectation
express what it should normally happens, and intention, what
it seems to be happening (or about to happen). As in the
case of expected manoeuvre, it is divided into longitudinal
and lateral and models the probability to keep going or stop,
in the first case, and remain or change lane, in the second.

Note that the physical state (pose and velocity) of every
involved vehicle is inferred using certain modelling hypoth-
esis from the intention estimation [11], [26]. Unlike these
probabilistically estimated state variables, pose and velocity
measurements are directly extracted from the sensors and
compared with the estimated physical state. Both types of
variables are used in a particle filter (see more details in
Section V) to balance observation and prediction according
to their associated uncertainty. As a result, if measurements
and physical state coincide to a lesser or greater degree, a
lesser or greater probability can be assumed that the estimates
of expectation and intention are valid.

IV. LATERAL EXPECTATION AND INTENTION

The computation details of most of the aforementioned
variables are sufficiently covered in [11] and therefore not
included here. However, the lane change model has been
introduced in this work, and therefore the procedure to
estimate lateral expectation and intention is described below:

1) The closer vehicle ahead the ego-vehicle, as well as
the leader and rear vehicles in the adjacent left and
right are identified.

2) The deceleration caused by the leader vehicle of the
current lane is computed using the expression a= αv∆v

∆x2 ,
where v is the speed of the vehicle n, ∆v is the
difference between the speed of n and that of the
leader, ∆x is the gap between both vehicles and α is
a design coefficient [16].

3) Following the value of a and the context, the most
likely lane to be followed is selected as follows:



a) if a < 0, the ego-vehicle is potentially forced to
change of lane. The probability to turn right or
left lane is determined by Pc( j) = ea j

∑
N
i=1,r eai

, where

i and j can be left or right, and a j is computed as
for the ego-vehicle deceleration, using the values
of the leading vehicle of the corresponding lane.

b) If a < 0 and n is not in the right lane, the
one on the right is chosen as the new lane,
since, if possible, either by traffic regulations
on a highway or by the intention of leaving a
roundabout, it is likely that the driver wishes to
make a change in that direction.

c) If a < 0 and n is in the right lane, ‘STAY’ is
chosen as the new expectation value, finishing
the calculation at this point.

4) Once the most likely lane has been chosen, it is
necessary to ensure that the change is feasible. To that
end, the gap acceptance probability Pa is computed
for both the leader and rear vehicles using Pa(l,r) =
1− e−λ (tl,r−T ), where indexes l,r refer to leader and
rear, respectively, tl,r are the actual time gaps between
the ego-vehicle and the leader/rear vehicles, T is a so-
called critical time gap, and λ is a design coefficient
[16]. The probability that the total gap is sufficient to
change the lane is computed using the product of the
two probabilities Pa(l) and Pa(r).

5) The final expectation of changing lane Ecn
t is obtained

from the comparison of a random variable and the
probability computed in the previous point.

Following the idea presented in [11], the behavior table I
is used to estimate the intended lateral maneuver, taking as
inputs the values of the current expectation and intention of
the previous moment. Note that the expected maneuvre Ecn

t
takes one of the following 2 values:

• STAY: The vehicle should not make a lane change
because traffic conditions do not allow it. This may be
due to the rest of the lanes being congested, there is
not enough space (gap) between adjacent vehicles, the
current lane is the most suitable for the speed that the
vehicle is carrying, etc..

• CHANGE: The vehicle can make a lane change without
hindering traffic or causing an accident. In this case
there are two possible sub-states, which would be the
possibility to change to the right or left.

TABLE I: Lateral Intention behaviour table

Icn
t−1 Ecn

t P([Icn
t = change]|Icn

t−1Ecn
t )

STAY STAY 0.1
STAY CHANGE 0.2

CHANGE STAY 0.5
CHANGE CHANGE 0.9

The values shown in the table are an approximation to
the behavior that could be expected and have been adjusted
experimentally.

V. PARTICLE FILTER

As the exact inference of expression (1) is not tractable,
a Montecarlo-based approximate inference method has been
used. For the detection of risk situations, the manoeuvre ex-
pected to be executed by the driver is compared with his/her
intentions in a given context (e.g. highway, roundabouts, etc).
Each of the possible states of the system is contained in a
particle, which has an associated weight dependent on its
proximity to reality.

Each of the N particles gives a random value to the hidden
variables, difficult to infer directly from externally observable
variables. In our case, the hidden variables are the intention
and expectation of each vehicle. From them, a prediction
of the observable variables is conducted. Once this is done
for all the particles, the next step is to give a weight to
each particle -update. The weight given to each particle is
greater or lesser if its prediction is more or less accurate,
respectively. Thus, it is a measure of the acceptance of the
hidden variables that are estimated by that particle. Weights
can end up being very disparate, as they evolve over the
initial weight. An Importance Resampling procedure is used
to identify the useless or erratic particles (with negligible
weight) and replace them efficiently, thus mitigating sam-
ple degeneracy (and potentially sample deprivation), while
avoiding impoverishment. Finally, to compute the resulting
intentions and expectations, the weights of all the particles
whose intention/expectation values are CHANGE (in case of
lateral estimation) are selected and normalized with respect
to the overall number of particles.

This procedure ends with the final prediction of the hidden
variables for each of the vehicles. This risk is thereafter
obtained by taking the weights of the particles whose ex-
pectation and intention differ. This occurs, for example, if
the intention is to stay in the lane in a roundabout and the
expectation is to change, since this implies that, under current
traffic conditions and rules, the vehicle should remain in the
lane and yet intends to occupy another lane. The result of
this calculation is the indicator of collision risk, which is
considered relevant from a certain threshold εr [11], [26].

VI. SIMULATION RESULTS

To assess the performance of the proposed risk estimation
strategy, two different scenarios where lateral expectation is
relevant have been considered: (i) a highway and (b) a multi-
lane roundabout. The methodology followed to evaluate
the proposed risk assessment algorithm has followed the
following 2 main steps:

1) A series of driving situations are conducted for each
scenario, where both collisions and non-colliding situ-
ations are recreated, collecting logs with the positions
and speeds of ever vehicle over time. SUMO open
source simulator [15] and TraCI interface [27] to
Matlab are used to that end.

2) The algorithm is run with the recorded data to produce
the evolution of intention, expectation and risk values
over time. The parameters used are collected in Table



II. This step is performed several times for each
simulation, since the algorithm is based on a stochastic
approach and the consistency of its behaviour needs to
be checked in different sets of simulations.

Parameter name Value
Deceleration param. for lateral gap acceptance (α) 25
Critical time gap (T) 0.7
Time constant in gap acceptance probabilit (λ ) 0.78
Risk threshold (εr) 0.3

TABLE II: Design parameters

Once the results are obtained, they are classified by suc-
cesses (the algorithm has correctly detected whether vehicles
generate a hazard) or false positives (risk is detected in safe
situations).

A. Highway

With the highway scenario it is intended to test the risk
estimation algorithm in environments where the lane change
of a vehicle could cause a hazardous situation. The conducted
tests focus on three main cases, shown in FIg. 1.

Fig. 1: Three considered cases in the highway scenario

A particular vehicle (ego-vehicle) is asked to change its
lane without taking into account traffic conditions, thus
generating dangerous situations. The rest of vehicles perform
the overtaking manoeuvres simulating the human behaviour.
These vehicles move at higher speeds than the vehicle that
executes the manoeuvre in an unsafe way, so that, when
changing lanes, the ego-vehicle generates danger in the
vehicles that circulate at a higher speed. To illustrate these
movements in the simulations, Fig. 2 presents one of these
cases step by step from top to bottom. As can be seen, this
scenario consists of a one-way road with three parallel lanes.

Each scenario for each situation (either danger situation
for the main vehicle or not) is simulated five times obtaining
a total amount of 30 tests (3 environments × 2 situations
× 5 simulations). In this case, the risk situations have been
correctly detected by the algorithm in the 30 tests: in 15 of
them the risky situation have been detected and in the other
15 tests, no dangerous situation has been noticed.

Regarding the risk prediction time, all risky situations have
been detected between 0.9 and 1.1 s before the lane change
ends, thus providing valuable information for the decision
system to be able to react before a possible collision. Note
that the simulated lane changes last 1.5 s.

Fig. 2: Highway scenario

Figure 3 shows one example of the resulting lateral expec-
tation, intention and risk estimation in one of the scenarios
represented in figure 2. Note that the risk indicator starts
increasing when the intention of the blue vehicle also raises,
as the lateral expectation is that this vehicle stays in the
original lane. In this particular case the algorithm is able to
detect the hazardous situation 1.05 s in advance to a possible
collision.

B. Roundabout

The roundabout scenario includes three lanes and the
manoeuvres to be performed by the vehicles are the same
than those of the highway scenario (see figure 4). However,
a new complexity with respect to the previous scenario is
introduced: the angular speed of the vehicles make difficult to
differentiate whether a vehicle is manoeuvring a lane change
or not, which may eventually cause the indicator to have
generally larger values.

The design of the roundabout scenario in SUMO entails
some limitations of the realism of the simulated environment.
As can be seen in Fig. 4, roundabouts in SUMO are not
modelled with a curvilinear path, but as a concatenation
of straight segments. This representation limitation makes it
difficult to model the position of the vehicle, since it contains
completely straight sections and areas in which the turn is
quite abrupt. After adjusting the modelling of the vehicle
motion as much as possible to reality, risk peaks continue to
occur at points where the direction of the vehicle changes,
due to inability of the algorithm to predict these abrupt
changes.

Despite of this supplementary complexity, the risk estima-
tion algorithm is able to detect risky situations properly in
all the proposed hazardous situations, as shown in table III.
Nevertheless, 3 of the 15 cases in safe situations are detected
as risky. As aforementioned, this false positive cases can be
caused by the way in which roundabouts are modelled in
SUMO.
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Fig. 3: Results of the lateral risk indicator in the highway
scenario

(a) roundabout scenario at t=31s

(b) roundabout scenario at t=38s

Fig. 4: Roundabout scenario sequence

Situation Risk detected Risk no detected Success rate (%)
Hazardous 15 0 100

Safe 3 12 80

TABLE III: Roundabout results

Note that the simulated vehicles perform the lane change
manoeuvre in 1.5 s, as in the highway scenario. The reac-
tion times in the conducted simulations for the roundabout
scenario are between 0.8 and 1.2 s.

The results of one of the simulations performed in this
scenario is shown in figure 5. In this case, it can be noticed
how the risk indicator exceeds the threshold risk value 1.13 s
before the possible collision.
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Fig. 5: Results of the lateral risk indicator in the highway
scenario

Table IV summarizes the data obtained in the 2 con-
sidered driving scenarios, including detection success rate
and different metrics about the time in advance the risk is
identified. Note that although the roundabout scenario entails
an additional degree of complexity, the mean prediction times
are very similar to the ones obtained in the highway.

Success rate Prediction time
min max mean std

Highway 100% 0.9 1.1 1.03 0.04
Roundabout 90% 0.8 1.2 1.02 0.09

TABLE IV: Summary of results



VII. CONCLUDING REMARKS

The results obtained show the feasibility of the proposed
method to assess risk of collision considering lateral inten-
tion. The implemented particle filter was able to predict the
risk situation in 95% of the tested driving environments with
acceptable margins of time.

As it is expected to detect possible collisions at about
1.5 s in advance, further studies will be considered in
two main directions: (i) the number of particles becomes
a key ingredient to enhance the risk detection times, and
therefore a more efficient implementation of the particle
filter and its coupling with motion prediction techniques will
be investigated; (ii) the use of real-word data experiments
will be used to fine-tune model parameters and to test its
behaviour on a more realistic simulation environment (like
ScanerStudio).
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