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Abstract—Object Detection on the mobile system is a chal-
lenge in terms of everything. Nowadays, many object detection
models have been designed, and most of them concentrate on
precision. However, the computation burden of those models on
mobile systems is unacceptable. Researchers have designed some
lightweight networks for mobiles by sacrificing precision. We
present a novel edge-based task scheduling framework for object
detection (termed as ESOD) . In detail, we train a DNN model
(termed as pre-model) to predict which object detection model
to use for the coming task and offloads to which edge servers
by physical characteristics of the image task (e.g., brightness,
saturation). The results show that ESOD can reduce latency
and energy consumption by an average of 22.13% and 29.60%
and improve the mAP to 45.8(with 0.9 mAP better), respectively,
compared with the SOTA DETR model.

Index Terms—Object Detection, Edge Computing,
Scheduling Strategy, Energy Efficiency, Deep Learning

Task

I. INTRODUCTION
A. Background

Object detection has always been a challenge for the mobile
terminal in many aspects. In practical applications such as
unmanned driving, aerospace, virtual reality and other sce-
narios, it is necessary to quickly and accurately locate the
category and location of the object. Since Yann LeCun first
applied LeNet [1]] to the MNIST task in 1994 and achieved
great improvement, a large number of deep neural network-
based models have occupied a dominant position in computer
vision. Although the precision of these models is increasing,
the complexity of computation is also increasing more rapidly
than which. These dramatic increases in computing costs have
made it more and more difficult to deploy those models on
the mobile system. Most of the existing models can complete
the inference in a short time on the PC, but this is based on
the powerful computing power of the graphics processing unit
(GPU). However, there is almost no such computing power
support on the mobile, so there is no way to perform the in-
terference task of object detection on the mobile terminal using
those models. In addition, even if the object detection model is
successfully implemented, the huge energy consumption and
time overhead caused by the calculation is terrible.

In this paper, we present ESOD(Edge-Based Dynamic
Scheduling Strategy for Deep Learning Object Detection Task)
which off-loads various tasks on different edge servers by
using a pre-classify model to model the physical characteristics
of the image and the precision of the prediction model.

With ESOD, better detection precision can be obtained on
mobile devices at a low computing cost. To sum up, our
contributions can be summarized as follows: First, we propose
a task scheduling strategy based on edge computing; secondly,
we propose an index to balance model precision and model
cost. Finally, we consider the limitations of multiple edge
computing platforms.

B. Related Work

a) Object Detection Model: To solve the exhaustive
drawbacks of the sliding window, Alex et al. [2] applied
the convolutional neural network to computer vision first and
proposed AlexNet. To further improve the precision, Simonyan
et al. [3] proposed the VGG network by increasing the
number of convolutional layers and reducing the size of the
convolution kernel, which brought object detection into the
deep models. He et al. [4] proposed ResNet through residual
connection technology, which solves the problem that the
object detection network is difficult to superimpose to the deep
layer, which makes the detection network deeper. Based on
this, Girshick et al. [5] [[6] [[7] [8] proposed the R-CNN series
methods, which first proposed a two-stage object detection
model. However, because of the slow speed of the two-stage
model, one-stage models such as YOLO [9] and SSD [10] are
gradually invented. Aiming to further improve the detection
precision of small objects, FPN [11] technology came into
being, and with FPN the object detection network becomes
deeper. The manual design of the Ancher mechanism of these
object detection models has been a problem that people want
to improve for a long time, Anchor Free models such as
FCOS [12], Center Mask [13]] and other models have also been
gradually designed. In recent years, due to the success of using
the Transformer mechanism to replace the CNN mechanism
model in the natural language processing, Carion et al. [|14]]
has also proposed a Transformer-based object detection model
named DETR for the shortcomings of the CNN-based model
being limited to local information. However, these models
without exception increase the complexity of the model and
the computational requirements of the model, and precision
improvement obtained is relatively slight.

b) Lightweight Network: The heavy computation cost
of CNN-based detection models on mobile hinders the de-
velopment of these models so that Andrew G et al. [[15]]
proposed a deep separable convolution. By improving the
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traditional convolution of VGG into a deep separable convo-
lution, MobileNetV1 achieves the same precision as SSD with
10x fewer computation costs. Aiming at the shortcomings of
MobileV1 training that it is difficult to converge, by com-
bining the connection method of ResNet, Sandler et al.
proposed inverted convolution and improved MobileNetV2.
By proposing the combination of integer quantization acti-
vation function and NAS technology, Andrew G et al.
proposed MobileNetV3 by further reducing the number of
layers of MobileNetV2. Zhang et al. improved the 1x1
convolution in MobileNetV2 to a Shuffle operation, and further
proposed an object detection model ShuffleNet with a smaller
computational complexity. Through research on the different
characteristics of hardware devices, Ma et al. improved
ShuffleNet and proposed ShuffleNetV2, and further designed
a model with a lower computational load on mobile devices.
However, although these models can reduce the computational
overhead on the mobile terminal, they only make the deep
target detection technology possible on the mobile terminal.
In terms of effects, there is a big gap between the network
model designed for the mobile terminal and the traditional
model.

Then, whether the precision of the traditional model can be
obtained, and the energy consumption can be reduced on the
mobile terminal has become a problem studied in this paper.

II. MOTIVATION

As a motivating example, we consider performing object de-
tection on two SOTA models, YoloV4 and MobileNetV3-
Small [1I7]. Our evaluation devices are three representative
embedded platforms, RaspberryPi 3B+ (as the mobile de-
vice), NVIDIA Jetson TX2 (as the edge server), and FPGA-
accelerated Xilinx Zyng-7020 (as the edge server). All these
models are built upon TensorFlow v2.3.0 and have been pre-
trained by using the Microsoft COCO 2017 dataset on the
server.

Figure 2| presents the inference time, energy consumption,
and IoU of two models when performing object detection on
images as shown in Figure [l As we can see that image 1
is quite a straightforward task, both MobileNetV3-Small and
YOLOV4 provide the correct results, and the IoU is above
0.75 (0.75 1is the strict detection metric used in the object

TABLE I
INFERENCE TIME (MS)

Model Raspberry 3B+ TX2  Zynq 7020
YOLOv4 752800 587.1 4107.3
MobileNetV3 1779.2 169.3 154.2
TABLE 11
ENERGY CONSUMPTION (J)

Model Raspberry 3B+ TX2  Zynq 7020
YOLOv4 170.237 2.84 1.45
MobileNetV3 0.395 0.596 0.09

detection task). While MobileNetV3-Small takes, on average,
0.36 J and 700.9 ms on image 1, which reduces 83.18% energy
and 99.72 % inference latency than YoloV4. Clearly, for image
1, MobileNetV3-Small is good enough, and there is no need to
use a more advanced (and costly) model for inference. Besides,
it is worth noting that the performance of the three platforms
is contrasting. YoloV4 achieves the fastest inference speed on
TX2, while MobileNetV3-Small on Zynq 7020 performs best.
In addition, when energy consumption is the priority, we would
like to choose Zynq 7020 to perform object detection, which
gives an average of 0.7715 J on two tasks. This experiment
shows that choosing a suitable model and platform is vital for
object detection task offloading.

III. OUR APPROACH
A. Overview

To solve the various problems mentioned above and obtain
a trade-off between precision and cost, motivated by [@]—
[27], we proposed ESOD, an adaptive scheme to determine
which deep model to use for a given task. ESOD provides a
local response with low latency and low cost by deploying a
lightweight object detection model on mobile devices while
deploying a high-precision but high-cost deep learning model
for detection tasks in complex scenarios on the edge server
to ensure the precision of tasks. This process not only offers
detection precision but also reduces the overhead (such as
time and energy consumption) caused by inference as much
as possible. Taking the object detection task as an example,
the workflow of ESOD is shown in the figure [3}

1) Mobile application input image as a object detection task;

2) The typical features representing the complexity of the
image are extracted and normalized;

3) Feed the processed features into the pre-classification
model to predict the object detection model suitable for
the current task;

TABLE III

MEAN IoU
Model Easy Task  Complex Task
YOLOv4 0.979 0.763
MobileNetV3 0.963 0.172
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4) The selected model is used to decide whether to offload
tasks to the edge server;

5) Execute the prediction and return the result.

B. Formulation

Let Modeli, Models, ..., Model;, ..., Model,, be differ-
ent models; BBox/ (Model;) represents the detection re-
sult of the Model; on the sample. Loss] is the differ-
ence between the predicted result and the Ground Truth,
E(Model;, Plat formy,) represents the inference energy for
this task using model i on platform k. 7T;j represents the
reasoning time of model i on platform k. T represents the
threshold of inference time, E represents the threshold of
energy consumption, and Loss represents the threshold of
the loss value. Let (Model;, picture;, platformy) be the
precision of a certain task picture; under different platform
k and model i. Therefore, for a given task j, it is necessary
to find a suitable target detection model on a suitable edge
server according to the complexity of the task while meeting
the minimum requirements of time, energy consumption, and
precision. Based on this, the optimization problem abstracted
in this paper is shown in (formula [T).

max;g”,’jzén (Model;, picturej, plat formy,),
LosszA<L0Ass (1)
s.t. Ek <T

E(Model;, Plat formy)<FE

Motivated by the successful use of bipartite graph Loss in
DETR, we use a similar Loss to that of DERT. However,

unlike DETR, it is uncertain that the model used in this
paper produces the prediction box that matches exactly like
DETR is generated. Therefore, we add the miscalculated bbox
confidence loss Losscon s and the uncalculated bbox area loss
LosSqareq t0 the Loss in this paper. Moreover, we use the Lo
loss to replace the L; loss used by Lossp,, in DETR.With the
new loss, the Loss used in this paper is shown in (formula [2)
, So the Loss in this paper is composed of the matching box
loss Losspos (bi, I;Z) generated by bipartite graph matching, and
the area loss of the unmatched real frame Lossyeq (s, bAl), the
confidence loss of the unmatched error box Lossconf (bs, b})
consists of these three parts.

Loss(b;, l;z) = L08Spos (bs, b})—!—Lossconf (b, bAi)—|—Lossm~ea (bs, l;,)

2
The three parts of the loss of the formula [2] are calculated
by the formula 3] the formula [d] and the formula [5]

L055bow (bi, bi) = NiowLiow(bis bi) + AL, ||bi — bl (3)

The formula[3]is used to calculate the loss between matching
boxes, Aiou, AL, € R, and the Hungarian algorithm is used to
generate b; and hatb; match between,

LosScony (bi, bi) = 2° — 1 4)

The formula B is used to calculate the confidence loss of
the unmatched prediction box, and c is the confidence of the
unmatched bbox box.

116

LOSSarea(bial;z - T A~
[Imean(b;)||

®)
The formula [ is used to calculate the area loss of the
unmatched real frame, ||mean(b;)|| is the average of the size
of all real target frames, ||b;]| is the size of the unmatched real
frame.

In order to facilitate us to solve this complex optimization
problem, we further simplifies the optimization problem ab-
stracted above.

Score; i = fH(e, Tiw) + 2B, Eix) + f3(7, Loss!)

st a,B,7>0
Tl a+p+y=1

(6)



As shown in formula [6] in this paper, the total time of
inference and transmission, the total energy consumption of
inference and transmission, and the difference value of the
inference result are processed by the fusion processing of
formula [6] and the i-th picture is obtained on the j-th model
under the k-th platform through the formula[6] The total score
of, where «, 3,7 represents the cost factor that the current
user expects to optimize. The closer the factor is to 1, the
user overtime optimizes the consumption corresponding to this
factor.

C. model selection

TABLE IV
MODEL SELECTION
Name backbone mAP
DETR ResNet+Transformer  44.9
EfficientDet [4] EfficientNet 40.2
ShuffleNet ResNet-D 25.4
MobileNet ResNet-D 23.5
YOLOV4 [22] DarkNet 435
CenterMask VoVNetV2 43.1
SparseRCNN [23]  ResNet 42.8
FCOS ResNet 42.1
MaskRCNN ResNet 39.8
RetinaNet [21] ResNet 35.1

1) model deployment: Based on the issues mentioned
above, we propose a dynamic scheduling method for high-
energy-efficiency target detection tasks based on task complex-
ity by combining the respective advantages of the lightweight
target detection model and the complex target detection model.
By deploying efficient models on the mobile system to provide
low-overhead services and deploying complex models on the
edge server to provide high-quality services, the scheduling
method proposed in this paper can reduce energy consumption
and inference time caused by calculations while maintaining
precision.

We use the model deployment algorithm to determine
the deployment plan of the object detection model in this
paper. The model deployment algorithm needs to balance
the relationship between the overall prediction performance
mAP, prediction time, and prediction energy consumption
of different models according to the weight list of different
preferences set by the user o S ~. First, get the mAP of
each model on a data set, inference time, and inference energy
consumption of each model on different platforms. Then use
the formula[6] and calculate the score of the model on different
platforms according to « 3 . Finally, for each model, the
platform with the highest score of this model is selected as
the deployment platform of the model.

After measuring the object detection effect mAP and infer-
ence time on public data set MS COCO validation set, the
object detection model selected in this paper is as described
in table In addition, to further consider the local inference
situation, we additionally select object detection algorithms
MobileNetV3 and ShuffleNetV2 designed for mobile are used
as alternatives for local inference. The backbone network,

mAP, and theoretical calculations of these models are shown
in table [V]

Algorithm 1: Model selection algorithm

Input: pair-list, Task,pre-classification model
Output: model,platform
1 let X < features of Task;
2 out <= label predicted by X using pre-classification
model;
3 select model and corresponding platform;

2) scheduling strategy: Firstly, the feature set of the data
Xand the Label set corresponding to each piece of data Label
are first constructed. The features of data are composed of the
image features described in table[V] In this paper, the OpenCV
tool is used to extract all the image features described. By
comparing the average IOU of all the models selected in this
paper in the picture, the model with the largest average IOU
is selected as the corresponding label of this data. Secondly,
after the feature set and label set are obtained, data sets
are divided randomly by using Scikit-Learn to divide the
data into a training set and test set, in which the test set
takes up 10%. Finally, the model is built on all the model
parameters, the training is carried out on the training set, and
the corresponding precision is evaluated on the test set, and
the model with the highest precision is selected as the final
pre-classification model.

Then, we need to train the pre-classification model by using
the features shown in the table to construct the features and
use the calculation method shown in the formula [6] to obtain
the model with the highest score as the label. After the pre-
classification model is trained, the scheduling algorithm in this
article is shown in the algorithm[I] Then we can use it to make
predictions.

After training, it is necessary to deploy the pre-classification
model on the mobile platform, and deploy various object
detection algorithms determined by the equation [6] on the
edge server. Secondly, for the incoming task on the mobile
system, the characteristics of the task are extracted and sent
to the pre-classification algorithm for prediction. Finally, select
the model output by the pre-classification algorithm and the
corresponding edge server platform. According to this process,
we construct a target detection scheduling algorithm based on
task complexity.

IV. EXPIREMENT
A. features

To evaluate the complexity of the picture task as reasonably
and comprehensively as possible, we select the 30 image
features described in the table|V|as the reference for describing
image complexity information. The specific meanings of the
image features selected in this article are described in the table
[Vl which respectively includes statistical information of the
image (such as the mean value of the color channel, etc.)
and basic information about the object (such as the number



TABLE V

FEATURES
Feature Description
kpNum Number of SIFT key points
brightnessMean Mean value of brightness
brightnessRMS Root mean square of brightness
size The amount of memory occupied
cornerNum Number of Harris corner points
edgeNum Number of Canny edge points
contoursNum The number of contours in the picture
maxPointNum The number of points in the longest contour
area The area enclosed by the longest contour
arcLength Arc length enclosed by the longest contour
redMean The color mean of the red channel
greenMean The color mean of the green channel
blueMean The color mean of the blue channel

contrast{1 ~ 4}

homogeneity{1 ~ 4}

energy{1 ~ 4}

Contrast in four directions
Homogeneity in four directions
Energy in four directions

correlation{1 ~ 4} Correlation in four directions

of corners, edge points, etc.) and texture information of the
image (such as contrast and uniformity in different directions).
After selecting the features, we use these features as the
input features of the pre-classification model. Through these
features, we can construct a relationship between the image
and a suitable model.

B. Details

MLP pre-classification model: We use a multi-layer percep-
tron based on TensorFlow as the pre-classification model. The
network structure of the MLP pre-classification model is a 9-
layer fully connected layer (1 input layer, 7 hidden layers, 1
output layer). The activation function of the 1st to 8th layer is
selected as the ReLu function, and the activation function of
the 9th layer is selected as the softmax function. The training
set and the test set use randomly divided data sets, the ratio of
the test set is 0.2, and random scrambling is performed. Batch
size is selected as 8, Adam with default parameters is selected
as the optimizer, the learning rate is selected as 0.001, the loss
function is used CategoricalCrossentropy is calculated, and the
label is processed with one hot, and label smoothing with a
parameter of 0.05 is performed, and the epoch is selected as
300. In the end, the pre-classification model in this paper can
reach an accuracy of 84.06% on the test set.

V. RESULTS
A. precision

Compared with DETR, the mAP after scheduling through
the pre-classification model increased by 0.9, AP;5 increased
by 4.0, and APy, increased by 2.7. Compared with YOLOV4,
the pre-classified and scheduled model A Ps5q Increased by 0.3,
APs increased by 29.6, but compared to DETR’s effect on the
Large target is much weaker, but compared with YOLOV4,
APy, increased by 3.9. The reason why the effect on the large
object is weaker than DERT is that this article guesses that
compared to the loss of DETR, the improved loss of this
article adds L2 loss and area error, which limits the size of
the prediction frame. , Resulting in the model may be more
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Fig. 4. The precision of different preclassification models (a) and different
optimization strategies (b)

inclined to those medium-scale prediction boxes. In the case
where the improvement of APy, is low, this also increases the
detection effect of APg and APy, which can be considered
as a relatively powerful size limit.

In addition, the prediction results after pre-classification
have been improved to a certain extent. We hypothesize that
the calculation of confidence loss and matching loss added to
the loss can penalize mismatches and mismatches to a greater
extent than directly using IOU for loss calculations.

TABLE VI
RESULTS
Model mAP AP50 AP75 APS AP]M APL
DETR 44.9 64.7 47.7 23.7 49.5 62.3
YOLOV4 435 65.7 47.3 26.7 46.7 53.3
ESOD 45.8 66.0 51.7 29.6 52.2 57.2
B. costs

The mAP, average inference energy consumption, and av-
erage inference time when only using the pre-classification
model for scheduling on the local mobile platform are shown
in the picture At this time, compared to when only
using DETR on the local platform for target detection tasks,
mAP increases by 0.9, the average inference time is reduced
by 22.13%, and the average inference energy consumption is
reduced by 29.6%.

The average inference energy consumption and average
inference time when the edge server is added to offload
computationally intensive tasks are shown in the table
When time is used as the optimization criterion, that is,
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Fig. 5. Lower overhead and higher MAP with ESOD compared with the
SOTA model

when the weight of time is increased to the maximum, the
average inference time is reduced by 99.87%, and average
inference energy consumption by 95.5%; when the weight of
energy consumption is increased to the maximum, the average
inference time is reduced by 99.22%, and the average inference
energy consumption is reduced by 98.04%; set the weight
of energy consumption and time When equal, the average
inference time is reduced by 96.95%, and the average inference
energy consumption is reduced by 99.6%.

TABLE VII

STRATEGY
Model Infer Energy(J) Infer Time(s)
Balance Natively 136.263 818.165
Time-Oriented 6.197 1.025
Energy-Oriented 2.672 6.389
Balance with Serve  4.156 3.232

VI. CONCLUSION

Aiming at the problem of the high computational cost
of target detection algorithms on mobile devices, this paper
proposes a target detection scheduling scheme based on edge
devices, which improves the precision of target detection by
using pre-classification steps with minimal cost. After the task
is offloaded in conjunction with the edge server, compared to
directly performing the target detection task on the mobile
device, the energy consumption and time of the calculation
can be significantly reduced. At the same time, the scheduling
algorithm in this paper can switch between different indicators
to achieve a balance between time and energy consumption.
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