

COMPUTING
SCIENCE

Establishing Conformance Between Contracts and Choreographies

Carlos Molina–Jimenez and Santosh Shrivastava

TECHNICAL REPORT SERIES

No. CS-TR-1383 April 2013

TECHNICAL REPORT SERIES

No. CS-TR-1383 April, 2013

Establishing Conformance Between Contracts and
Choreographies

C. Molina–Jimenez and S. Shrivastava

Abstract

In a business-to-business collaborative setting, a choreography and a business contract
(service agreement) are two specifications that describe permissible interactions
between partners from different view points, emphasising different aspects. A
choreography specification is a description, from a global perspective, of all
permissible message exchange sequences between the partners. A business contract
on the other hand specifies what operations the business partners have the rights,
obligations or prohibitions to execute; it also stipulates when the operations are to be
executed and in which order. It is naturally important to make sure that message
exchanges as encoded in a given choreography conform to (are in accordance with)
the contract between the partners. In other words, make sure that any message
interaction permitted in the choreography will not cause a breach of the contract. The
paper develops the concept of conformance between a contract and a choreography
assuming that they can be modelled by Finite Automata. This approach opens the way
for automatically establishing conformance by using model checking techniques.

© 2013 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

MOLINA-JIMENEZ, C., SHRIVASTAVA, S.

Establishing Conformance Between Contracts and Choreographies
[By] C. Molina-Jimenez, S. Shrivastava.

Newcastle upon Tyne: Newcastle University: Computing Science, 2013.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1383)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1383

Abstract

In a business-to-business collaborative setting, a choreography and a business contract (service agreement) are two
specifications that describe permissible interactions between partners from different view points, emphasising
different aspects. A choreography specification is a description, from a global perspective, of all permissible
message exchange sequences between the partners. A business contract on the other hand specifies what
operations the business partners have the rights, obligations or prohibitions to execute; it also stipulates when the
operations are to be executed and in which order. It is naturally important to make sure that message exchanges as
encoded in a given choreography conform to (are in accordance with) the contract between the partners. In other
words, make sure that any message interaction permitted in the choreography will not cause a breach of the
contract. The paper develops the concept of conformance between a contract and a choreography assuming that
they can be modelled by Finite Automata. This approach opens the way for automatically establishing
conformance by using model checking techniques.

About the authors

Carlos Molina-Jimenez received his PhD in the School of Computing Science at the University of Newcastle upon
Tyne in 2000 for work on anonymous interactions in the Internet. He is currently a Research Associate in the
School of Computing Science at the University of Newcastle upon Tyne where he is a member of the Distributed
Systems Research Group. He is working on the EPSRC funded research project on Information Coordination and
Sharing in Virtual Enterprises where he has been responsible for developing the Architectural Concepts of Virtual
Organisations, Trust Management and Electronic Contracting.

Professor Santosh Shrivastava was appointed Professor of Computing Science, University of Newcastle upon
Tyne in 1986. He received his Ph.D. in computer science from Cambridge University in 1975. His research
interests are in the areas of computer networking, middleware and fault tolerant distributed computing. The
emphasis of his work has been on the development of concepts, tools and techniques for constructing distributed
fault-tolerant systems that make use of standard, commodity hardware and software components. Current focus of
his work is on middleware for supporting inter-organization services where issues of trust, security, fault tolerance
and ensuring compliance to service contracts are of great importance as are the problems posed by scalability,
service composition, orchestration and performance evaluation in highly dynamic settings. Professor Shrivastava
sits on programme committees of many international conferences/symposi. He is a member of IFIP WG6.11 on
Electronic commerce - communication systems, and sits on the advisory board of Arjuna technologies Ltd.

Suggested keywords

CONTRACT COMPLIANCE CHECKING
CHOREOGRAPHIES
BUSINESS PROCESSES
SERVICE AGREEMENTS

Establishing Conformance Between Contracts and Choreographies

Carlos Molina–Jimenez
School of Computing Science

Newcastle University, UK
Carlos.Molina@ncl.ac.uk

Santosh Shrivastava
School of Computing Science

Newcastle University, UK
Santosh.Shrivastava@ncl.ac.uk

Abstract—In a business-to-business collaborative setting, a
choreography and a business contract (service agreement)
are two specifications that describe permissible interactions
between partners from different view points, emphasising
different aspects. A choreography specification is a description,
from a global perspective, of all permissible message exchange
sequences between the partners. A business contract on the
other hand specifies what operations the business partners
have the rights, obligations or prohibitions to execute; it also
stipulates when the operations are to be executed and in which
order. It is naturally important to make sure that message
exchanges as encoded in a given choreography conform to (are
in accordance with) the contract between the partners. In other
words, make sure that any message interaction permitted in the
choreography will not cause a breach of the contract. The paper
develops the concept of conformance between a contract and
a choreography assuming that they can be modelled by Finite
Automata. This approach opens the way for automatically
establishing conformance by using model checking techniques.

Keywords-Contract compliance checking, choreographies,
business processes, service agreements.

I. INTRODUCTION

The context of this paper is Business to Business (B2B)
interactions conducted over the Internet between two or
more business partners. As in any commercial undertaking,
partner interactions will be underpinned by a business con-
tract, that we will also refer to here as a service agreement.
A contract/service agreement specifies, among other things,
what business operations the partners are permitted, obliged
and prohibited to execute. Fulfilment of some business func-
tion (e.g., order fulfilment) stated in the clauses of a contract
requires partners to exercise their rights and/or obligations
and this in turn requires them to send business messages to
each other for the exchange of electronic business documents
and to act on them. This activity can be viewed as the
business partners taking part in the execution of a shared
business process (also called public or cross–organizational
business process), where each partner is responsible for per-
forming their part in the process. The design and implemen-
tation of individual business process components and their
coordination that make up the overall cross-organizational
business process is greatly aided by the availability of a
choreography specification that describes, from a global

perspective, of all permissible message exchange sequences
between the partners.

Contract and choreography specifications describe per-
missible interactions between partners from different view
points, emphasising different aspects. This is reflected in
the fact that each has its own set of notations, design,
verification and validation tools. It is important to make sure
that message exchanges as encoded in a given choreography
conform to (are in accordance with) the contract. This will
make sure that the choreography is contract–compliant (so
any message interaction permitted in the choreography will
not cause a breach of the contract). In addition to contract–
compliance, it would be desirable to be able to establish
that the choreography is not restrictive (that is, it does
not exclude certain interactions that are permissible in the
contract). Thus, our aim is to establish automatically whether
all the behaviours permissible in a choreography are also
permissible in the corresponding contract and vice versa,
that all the behaviours permissible in a contract are also
permissible in the corresponding choreography. Establishing
such conformance is clearly important, but has received little
attention in the literature so far.

One of the obstacles to overcome in conformance estab-
lishment is bridging the semantic gap that exists between
the two view points. We elaborate on this observation with
the help of Fig. 1 that depicts a contract monitoring system
capable of observing B2B interactions and determining
whether they are compliant with the contract.

The figure shows a contract monitoring service called
Contract Compliance Checker (CCC) that is deployed by
the contractual parties (a buyer and a seller in this particular
case) to monitor their B2B interactions at run time. The
CCC is provided with an executable contract specifica-
tion (derived from the natural language description of the
business contract, as depicted by the dotted arrowed line)
and instrumented to observe significant messaging events,
referred to here as business events (biz events) produced
from the interaction between the two parties and analyse
them. Strictly speaking a CCC consists of an executable
contract plus ancillary software and data (for example event
logs and authentication mechanisms). Yet for brevity we
will abstract these ancillary parts away and focus on the
executable contract and refer to it as the CCC.

(in process lang.)
choreography

PPB PPS

process domain: focus on

message sequences.

legal domain: focus on

rights, obligations and

prohibitions.

(in English lang.)
business contract

contract compliance
 checker

(in contract lang.)

choreography messages

StoreBuyer

biz events

Figure 1. Business and process domains.

The business contract also forms the basis for deriving a
choreography specification. This specification in turn is used
for deriving public processes of each partner (PPb and PPs

of buyer and seller respectively).
The CCC specification should enable reasoning about the

observance of rights, obligations and prohibitions. Business
contracts are expressed using concepts drawn from the legal
business domain. The focus is on specifying what parties are
involved in the business relationship (role players) and what
business operations (actions) they are (or are not) expected
to execute. These requirements are expressed as normative
statements that include a list of rights, obligations, prohi-
bitions, and contrary–to–duty–obligations, that the business
partners are expected to observe. Consequently, the CCC
specification notation should offer easy to use means for
encoding statements like Obligation to pay is imposed on the
buyer and that The buyer’s right to submit purchase orders
is suspended until he fulfills all his pending obligations and
so forth. In this respect, event–condition–action (ECA) rule
based languages have found wide acceptance.

Turning our attention to a choreography, the focus is on
specifying the business interactions at message level, that is,
on determining the permissible message sequences that the
business partners are expected to exchange to achieve their
business goals. The specification should enable reasoning
about safety and liveness properties of the process it repre-
sents, such as never deliver the goods before payment and for
returned goods, money is eventually refunded, respectively.
In this respect, concepts and notations from the domain
of business process modelling seem most appropriate. A
good example is the Business Process Model and Notation,
BPMN [1] that is widely used for specifying business
processes and choreographies.

In Fig. 1, the horizontal line represents the conceptual sep-
aration between the domain of the CCC and choreography,
where different formalisms are used for expressing them.
This separation represents the semantic gap by which we

mean that concepts that are primary to one of the domains
are not necessarily primary to the other domain.

This semantic gap is reflected in the constructs of the lan-
guages used for specifying CCC and choreography. BPMN
for example, does not offer constructs to explicitly express
that the execution of a given task resulted in the fulfillment
of a pending obligation. Conversely, this statement, can
be expressed elegantly in EROP—a rule based language
specifically designed for CCC [2].

This paper develops the concept of conformance between
a contract and a choreography by assuming that they can be
modelled by Finite Automaton (FA) that accept languages
over the same alphabet. Business events (biz events, Fig. 1)
form the common alphabet (common vocabulary) and enable
us to bridge the gap. We show that by carefully defining
the alphabet and specification approaches, we can reason
about choreographies described using (a restricted but highly
practical subset of) the BPMN notation and CCC described
using event-condition-action rules. A noteworthy feature
is that we are able to cope with failures and exceptions
that any practical specification technique —for contract or
for choreography— must take into account. We show that
our approach can be used for automatically establishing
conformance using model checking techniques (techniques
that are widely used for automatic verification of reactive
systems).

II. MOTIVATING EXAMPLE

For the sake of illustration, we will use parts of a simple
contract between a buyer and store. Although only a hypo-
thetical contract, it contains realistic business statements that
can help elaborate our arguments.

1) The buyer can place a buy request with the store to
buy an item.

2) The store is obliged to respond with either confirma-
tion or rejection within 3 days of receiving the request.

a) No response from the store within 3 days will be
treated as a rejection.

3) The buyer can either pay or cancel the buy request
within 7 days of receiving a confirmation.

a) No response from the buyer within 7 days will
be treated as a cancellation.

Current industrial practice makes use of contracts implic-
itly in designing choreographies. Several researchers have
suggested explicit use of contracts in deriving choreogra-
phies and/or business processes of partners. This is a topic
of ongoing research (see Section VI on related work).
SAVARA is a good example of an industrial framework
for choreography design [3]. It provides graphical tools for
building a choreography in BPMN 2.0 notation [1]. There
are tools for exercising (simulating) the choreography with
message sequences to check whether a given sequence is a
valid execution trace of the choreography. SAVARA also has

2

endEv

Buyer

StoreStore

Buyer

Store
 conf

Buyer

Store

Buyer
 canc

Store

Buyer

Store
 conf

Buyer

Buyer
 req

Store

BuyRq

Store

Buyer

Store
 rej

Rej

Buyer

Store

Buyer
 pay

Pay

Buyer

Buyer
 req

Store

BuyRq

Store

Buyer

Store
 rej

Rej

Buyer

Store

Buyer
 pay

Pay

startEv G3G2

Buyer
 canc

startEv
G1 endEvG2

G3

a)

G1

Conf

Canc

b)

Conf

Canc

Figure 2. Choreography examples.

tools for automatically deriving partner business processes
(expressed in BPEL) from a given choreography.

We show two interpretations of the contract in Fig. 2,
where we use BPMN 2.0 notation. To keep matters simple,
we omit details of coping with expiries of 3 and 7 days
deadlines (clauses 2–a and 3–a) from these diagrams.

We will explain here only the constructs that we use in the
figure. Circles are used for representing events, thus startEv
and endEv represent, respectively, the start and end events of
the process. The executions of activities are represented by
boxes that specify the names of the activities, participants
and messages. The figure includes five activities called Buyer
req, Store rej, Store conf, Buyer pay and Buyer canc. They
represent the activities indicated in bold in the contract.
The names of the participants are specified inside bands
of different colours. The sender’s in a white band and the
receiver in a shaded band. The figure includes five messages,
namely, BuyRq, Rej, Conf, Pay and Canc. Gateways are
represented by diamonds. The figure includes two exclusive
fork gateways (G1 and G2) and a single exclusive merge
one (G3).

Buyer Store

d)

Buyer Store

c)

BuyRq BuyRq

Pay

BuyRq

Buyer Store

a)

BuyRq

Buyer Store

b)

Rej Conf

Pay

Conf

Canc

Conf

Canc

Figure 3. Testing scenarios.

We assume that choreography of Fig. 2–a is considered
correct, whereas that of Fig. 2–b is incorrect. Specifically,
b) allows cancellations (execution of Buyer canc) only after
payments, whereas the intention is that cancellations are
allowed after confirmation (alternative execution of Buy canc
in gateway G2 of a)).

As stated earlier, a framework such as SAVARA will
allow checking of whether a given message sequence is a
valid execution trace of a choreography. This is the principal
means of testing a choreography. Fig. 3 shows four message
sequences that the designers have generated manually for
testing. We assume that the designers regard sequences a)
to c) as representing valid executions with respect to the
contract and therefore should also represent valid execution
traces of a choreography. This is the case for the chore-
ography of Fig. 2–a, but for the choreography of Fig. 2–
b, sequence c) is invalid (message Canc, represented by a
dashed line, is flagged as invalid). In a similar vain, sequence
d) (which is actually invalid with respect to the contract) will
be regarded as valid by the choreography of Fig. 2–b and
invalid by the choreography of Fig. 2–a. This way of testing
a choreography provides a very useful, but nevertheless a
rather informal basis for establishing conformance. We are
seeking a more rigorous approach.

III. CONTRACT AND CHOREOGRAPHY
SPECIFICATIONS

In this section we elaborate how by carefully defining
the alphabet and specification approaches, we can use FA
to model choreographies described using (a restricted but
highly practical subset of) the BPMN notation and CCC
described using event-condition-action rules.

A. Common alphabet

The alphabet is the set of business events representing the
outcome of executing business operations. A business opera-
tion represents a primitive interaction between two partners,
involving exchange of one business message (containing
a business document) for a specific, well defined function
(e.g., buy request, invoice notification, verify that a customer
credit card is valid and can be used as a form of payment for
the amount requested, etc.). In general, an operation could
involve exchange of more than one business message, but
for the sake of simplicity, we restrict ourselves to just one.
RosettaNet [4] is a good example of a widely used industry

3

standard that has standardised a number of partner interface
processes (PIPs). A PIP corresponds to a business operation,
and an ’action message’ of a PIP corresponds to a business
message. Arbitrarily complex multi–party interactions can
be built out of two partner business operations.

Taking the cue from the RosettaNet and other B2B stan-
dards, such as ebXML [5], we note that a business operation
needs to be supported by a fairly sophisticated messaging
protocol, as business messages usually have timing and
validity constraints: a received document is accepted for
processing by the receiver only if the document is received
within the set time-out period (if applicable) and the docu-
ment satisfies syntactic and semantic validity checks. Thus,
once a business operation is initiated it always completes to
produce a business event (outcome event) representing the
outcome of the operation from the set {S, BF, TF} whose
elements represent respectively a Successful conclusion, a
Business Failure or a Technical Failure. BF and TF events
model the (hopefully rare) execution outcomes when, after
initiating an operation, a party is unable to reach the normal
end of the underlying protocol execution due to exceptional
situations. TF models protocol related failures detected at
the middleware level, such as a late, syntactically incorrect
or a missing message. BF models semantic errors in a mes-
sage detected at the business level, e.g., the goods-delivery
address extracted from the message is invalid. In practical
systems, any additional information regarding success or
exceptions can be added (in the form of attributes) to these
generic outcome events in an application specific manner. It
is important to make sure that both the parties involved in a
business operation reach the same conclusion regarding the
outcome; a synchronisation mechanism is therefore required
to make this happen (see for example [6], [7]).

We define the set BO = {bo1, . . . , bon}, n ≥ 1, to
contain all the business operations (bo). We use the following
superscript notation to represent the three potential outcome
events of executing a boi: bos

i , bo
bf
i , botf

i . On this basis, we
define the alphabet (also called the vocabulary) of the inter-
action as the set B = {bos

1, bo
bf
1 , botf

1 , . . . , bos
n, bobf

n , botf
n }

that contains all the potential outcome events of all boi ∈
BO. We note that in certain situations, analysts might
be interested in considering just successful outcomes for
some business operations, in which case B will contain
only s events for these operations. Similarly, in some other
situations, it might be appropriate not to distinguish between
bf and tf events and consider them just as business failure
events, in which case B can be defined to contain just s and
bf events for those operations.

B. Contract compliance checker

Our contact specification technique is based on the con-
cept of contract compliance checker (CCC) explained at
large in [2]. Here we present only a brief summary of basic
concepts to help the reader follow our arguments.

The natural language text of a contract stipulates the
rights (something that a party is allowed to do), obligations
(something that a party is expected to do) and prohibitions
(something that a party is not expected to do unless it is
prepared to be penalised) of the parties. Contract clauses also
stipulate when, in what order and by whom the operations
are to be executed. If a contract is intended for electronic
implementation, as is the case here, then it is important to
ensure that it contains clauses that specify what to do in case
messaging related failures are encountered [8]. For the sake
of illustration, we show a simple modification to the contract
discussed earlier, by adding clause 4 for failure handling that
allows for a finite number of retries if technical or business
failures are encountered (the actual number of retries will
normally be a configuration parameter).

.........
4) Failure handling: if even after repeated attempts, an

operation does not succeed, then the contractual interaction
shall be declared terminated.

Business partners exercise their rights, obligations and
prohibitions by executing their corresponding business oper-
ations. The events are observed by the CCC at the granularity
of outcome events, delivered to the CCC exactly once
in temporal order and logged. Each event contains the
termination status (S, BF or TF), name of the operation,
the timestamp and might contain additional attributes.

As operations are executed, rights, obligations and prohi-
bitions are granted to and revoked from business partners.
In general at a given moment, each party can have several
rights, several obligations and several prohibitions in force.
This idea is at the heart of the functionality of the CCC that
is observing outcome events of business operations. With
each participant (role player), we associate a ROP set, the
set of Rights, Obligations and Prohibitions currently in force.

For the CCC, the execution of a business operation boi

(observed from the outcome event) is said to be contract
compliant if it satisfies the following three requirements and
is said to be non–contract–compliant if it does not:
• C1) boi ∈ BO;
• C2) it matches the ROP set of its role player (meaning,

the role player has a right/obligation/prohibition to
perform that operation);

• C3) it satisfies the constraints stipulated in the contrac-
tual clauses.

An example of a constraint (mentioned in C3 above) is
the seven day deadline in clause 3 of the contract discussed
earlier.

The significance of the ROP sets in our model is that
they allow to abstract the behaviour of the CCC as that of
a reactive system [9], a finite automaton, with m + 1 states
S = {s0, . . . , sm} where each state si represents the current
state of the ROP sets. As a reactive system, the CCC remains
in a given state si awaiting the arrival of events. When such
an event represents the execution of a contract–compliant

4

operation, the CCC executes an action and progresses to
state sj . No state changes occur or actions are executed
when the event represents the execution of a non-contract–
compliant operation. The main action executed consists in
updating the ROP sets: rights, obligations and prohibitions
from state si are disabled and those that determine state
sj are enabled. The salient feature of this state–centric
model is that it is intellectually manageable as there are
well understood formal methods and software tools (such as
model checkers) that can help reason about the correctness
of both the model and its implementation. Furthermore, the
CCC can be directly implemented as a Event Condition
Action (ECA) rule based system [2]. We refer the reader
to [10] that describes an implementation of the CCC and
the associated EROP rule language.

An instance of a complete contractual interaction is in-
dicated by a non empty sequence of outcome events, that
progresses the state of the ROP sets from initial to terminated
final states. Such a sequence will be defined as contract–
compliant execution sequence if all the constituent business
operations are contract–compliant and the ROP sets in the
final state indicate that there are no pending obligations (all
the obligations have been fulfilled, so no contract violation
has occurred). Astute readers will have guessed by now that
our objective is to ascertain that a choreography generates
only contract compliant execution sequences.

C. Choreography

For choreography specification, we have chosen the
RosettaNet Methodology for Creating Choreographies [11],
[12] which is a restricted version of BPMN 2.0 [1], yet it
offers the right abstractions and simplifications (business op-
eration with normal and exceptional outcomes, synchronised
outcomes and so on) for modelling B2B interactions at the
level of the process domain (see Fig. 1). The simplicity of
this notation allows us to build choreographies that can be
modelled as FA with edges labelled with symbols from the
B alphabet.

The choreographies of Fig. 2 depict only the normal exe-
cution paths. We now include failures; consider the specific
case of dealing with the contract with failure handling clause
(section III-B). The new version of the choreography of
Fig. 2–a that takes failures into account is shown in Fig. 4.
Here we assume that a business operation either succeeds or
generates a business failure exception and a failed operation
is retried once.

In the figure, S and TF stands for Success and Technical
Failure, respectively. Similarly, rqTF, rjTF, coTF, paTF and
caTF represent counters that count the number of failed
executions of the operations, BuyRq, Rej, Conf, Pay and
Canc, respectively. In the same order, N > 0 is a bound
on the total number of executions of an operation; for this
particular example we set N = 2 (one retry allowed).

Store

Buyer

Store
 conf

Conf

Store

Buyer

Store
 rej

Rej

Buyer

Store

Buyer
 pays

Pay

Buyer

Store

Buyer
 canc

Canc

Buyer

Buyer
 req

Store

BuyRq

startEv

S

S

endEv

S

S

endEv

T
F

 &
 r

jT
F

=
N

TF & coTF<N

T
F

 &
 c

o
T

F
=

N

TF & caTF<N

T
F

 &
 c

aT
F

=
N

T
F

 &
 p

aT
F

=
N

TF & paTF<NTF & rjTF<N

S

T
F

 &
 r

q
T

F
=

N

endEv

TF & rqTF<N

G2

G3

G4 G5

G6

G7G0 G1

Figure 4. Choreography with failure support.

a−>b−>c

a−>b−>d

a−>e−>f

a−>b−>c

a−>b−>d

a−>e−>f

b−>a−>d

contract

choreography

3)

a−>b−>c

a−>b−>d
a−>b−>d

a−>e−>f

a−>b−>c

contract

choreography

2)

choreography

contract

1)

choreography

b−>a−>d

contract

a−>e−>f
4)

Figure 5. Discrepancies between contracts and their choreographies.

In this diagram, the execution of each activity leads to
a gateway with three outgoing arrows. Let us look at the
execution of activity BuyRq to explain the idea. A successful
(S) execution of BuyRq leads to the normal execution of
the contract, namely to G2. Alternatively, if the execution
completes in TF and the number of failed execution (rqTF)
of the BuyRq operation is less than N, the execution is tried
again. However, if the outcome is TF and it has already
failed N −1 times, the contractual interaction is terminated.
Failure handling with the remaining of the activities is
similar, except that the split gateways G2 and G5 introduce
more additional alternative execution paths.

IV. CONFORMANCE

A. Informal treatment

Let us assume that B = {a, b, c, d, e, f} is the alphabet of
a given contract and choreography. We use the symbol →
to denote the happened before relation, thus a→ b denotes
that a happened before b.

Let us assume that the set contract = {a → b →
c, a → b → d, a → e → f}, contains all the sequences
that are contract compliant. Consequently, the sequence
{b → a → d} is non–contract compliant. Finally, let us
assume that the set choreography contains all the execution
sequences that the choreography can generate. Naturally, dif-
ferent choreographies will generate different choreography
sets. Four sets of choreographies are shown in Fig. 5.
• conformance: Case 1) represents conformance,

contract = choreography, which means that the
choreography generates all the contract compliant
sequences accounted by the contract and nothing else.

5

• weak conformance: Represented by case 2),
choreography ⊂ contract. The corresponding
interpretation is that the choreography fails to generate
one or more of the contract compliant sequences
(a→ b→ d). We call this situation weak conformance
because the contract is never violated but some of
the contract compliant sequences are never generated.
Depending on the particular application, this situation
might be acceptable.

• non–conformance: Represented by cases 3), 4). For
case 3), contract ⊂ choreography; the choreogra-
phy generates absolutely all the contract compliant
sequences accounted by the contract. Regretfully, the
choreography also generates one or more non–contract
compliant sequences like b → a → d. The choreogra-
phy of 4) suffers from a combination of errors of case
2) and 3).

For completeness, it is worth mentioning that we excluded
from this discussion the situation where the contract ∩
choreography = ∅ on the basis that it is an unlikely
situation.

B. Formal treatment

Let Acho and Acon be Finite Automata
that accept languages over the same alphabet
B = {bos

1, bo
bf
1 , botf

1 , . . . , bos
n, bobf

n , botf
n }. Acho represents

a choreography and Acon represents a contract; similarly,
let us define Lcho ⊆ B∗ as the language accepted by Acho

and Lcon ⊆ B∗ as the language accepted by Acon.
We say that a choreography conforms to a contract if and

only if the languages accepted by their FA are equivalent,
that is, Lcon = Lcho. A choreography is weakly conformant
to a contract if Lcho ⊂ Lcon.

Determination of language equivalence is a well under-
stood problem that can be addressed by different approaches.
For instance, if the specification of the two FAs is provided
we can determine equivalence by analysis of their state
space. Alternatively and in the absence of their specifica-
tion one can regard the FA as black boxes and determine
equivalence by analysis of the sequences that they accept.
We take the second alternative.

In this manner, a contract conformant choreography for
our contract example (Section II) would be represented by
an automaton that accepts a language defined as Lcon =
{BuyRq → Rej, BuyRq → Conf → Pay,BuyRq →
Conf → Canc}. Note that, as this example only concerns
normal (successful) executions, we have dropped the s
superscript. An examination of their execution sequences
would reveal that this requirement holds for Fig. 2–a but
not for Fig. 2–b.

As explained at large in Section V, execution sequences
can be generated automatically with the assistance of soft-
ware tools such as model–checkers. Let us assume the

message
sequences

choreography

message
sequences sequence i

accepted?

yes

no
b)

contract

choreographycontract

sequence i
accepted?

yes

no
a)

Figure 6. Contract–choreography conformance checking.

availability of such tools. The general idea behind using
these tools is sketched in Fig. 6.

In a), all the choreography sequences (one at a time) are
fed to the contract which outputs yes if all of the sequences
were accepted; it outputs no if at least one of the sequences
was not accepted. Table I summarises what can be deduced
from such an experiment, referring to the four cases of
Fig. 5. A yes will indicate that the choreography is at least
weakly conformant; a no will indicate non–conformance.

A complementary experiment is conducted in b): all the
contract sequences (one at a time) are fed to the choreogra-
phy which outputs yes if all of the sequences were accepted
and no if at least one of the sequences was not accepted.
Table II summarises what can be deduced from such an
experiment. A yes indicates that the choreography accepts all
the contract compliant sequences, but there is no assurance
that non–contract compliant sequences will be rejected by
the choreography; a no indicates the possibility of either
non–conformance or weak-conformance, but the experiment
cannot ascertain beyond this.

outcome interpretation
yes case 1 or 2
no case 3 or 4

Table I
SEE FIG.6 A)

outcome interpretation
yes case 1 or 3
no case 2 or 4

Table II
SEE FIG.6 B)

To determine categorically if a given choreography con-
forms to its contract, the designer needs tools for generating
all execution sequences for both choreography and contract
and perform set comparison for equality.

V. A TOOL FRAMEWORK

Based on the concepts developed earlier, in this section
we discuss a model checker based framework: our aim is
to verify at the design stage that the behaviour of the two
models conform to each other before proceeding to the
implementation stage. The verification includes two stages:
independent verification and combined verification. Firstly,
the two models are verified independently to guarantee
that they satisfy certain correctness requirements specific
to their domains (e.g., for choreography, verify that it is
realizable, see later). In the second stage, the behaviour of
the previously verified models are contrasted against each
other by means of comparison of their execution sequences.
We use model checkers for generating counter examples
from where we extract execution sequences.

6

Fig. 7 shows the framework that we are constructing based
around the SPIN model checker [13]. Its input language for
model building is PROMELA and the list of correctness
properties that the model is expected to satisfy are expressed
using Linear Temporal Logics (LTL). Tools are represented
by solid squares with sharp corners; squares with smooth
corners represent humans and dashed boxes represent data.
In the figure, parts a) and b) refer to the tool sets for CCC
and choreography, respectively.

At the time of writing (April 2013), we have completed
building model checking tools for the CCC and BPMN
choreographies [14], [15]. For the CCC, we have extended
PROMELA (EPROMELA) with constructs for expressing
the core contractual concepts as embodied in the CCC
described in Section III-B to provide a high level model
checking tool. Once a model is declared correct it can be
used for generating sequences (message sequences). The
sequence generation technique involves in presenting the
model checker with a trap property expressed in LTL (trap
properties in LTL, Fig. 7). As a response, the model checker
produces counter examples from where one can extract the
message sequences. The models can also be used for the
generation of test cases for exercising the constructed system
to validate that the implementation actually satisfies the
correctness requirements that the models do ([16] describes
how CCC is tested). Effort to integrate these tools within the
SAVARA project is also under way. We will explain now the
functionality of the two tool sets included in the framework.

designer
contract

 in LTL

properties
correctness

model−checker

 SPIN

 in LTL

properties
 trap

message
sequences

message
sequences

model−checker

 SPIN

2 PROMELA

 BPMN

PROMELA
 model

choreography
designer

 in LTL

properties
correctness

 in LTL

properties
 trap

choreography
designer

choreography in BPMN

simulator

designer
contract

scenarios

designer
contract

contractual operations
vocabulary of

contractual operations
vocabulary of

 model
EPROMELA

 BPMN

a) b)

Figure 7. Tools for validating logical consistency and conformance.

A. Part a)

The tool shown in part a) of the figure is in effect a
contract–validation tool for reasoning with the help of the
SPIN model checker about contract models written in the
EPROMELA language. Thanks to the additional features
that we have added to EPROMELA, we can include contract

related concepts in validation models. For instance, we can
include SET_O(PAY,1), where O stand for obligation, in
validation models, to impose an obligation to pay (on a buyer
for example). In the same order, to query if the obligation
to pay is still pending, one can say IS_O(PAY,BUYER).

The conversion of the contract in English into
EPROMELA is done manually and involves the conversion
of contract clauses into ECA rules written in EPROMELA
language. The basic approach is quite straightforward: there
is a rule for each outcome event of a business opera-
tion (or equivalently, a rule for each business operation,
with logic for all the outcome events for that operation).
The rule manipulates the ROP set by granting/removing
rights/obligations etc., as implied by the contract clauses.

If a contract compliance system is to be deployed, then
the verified EPROMELA model of the CCC can be used as
the basis for producing the actual implementation for which
a candidate language is the EROP contract language [2],
[10]. As EROP is an ECA language designed according
to the concepts as embodied in the CCC, this process is
relatively straightforward. We show below some relevant
parts of the EPROMELA implementation of the contract
of Section II but with failure support. The complete code
is shown in Appendix A. We assume the same vocabulary
as the choreography of Fig. 4, so we deal with success
and technical failure events for each business operation, and
assume that a failed operation is retried once. Again, for the
sake of simplicity, we omit dealing with the expiries of 3 and
7 days deadlines (clauses 2–a and 3–a). The code consists of
two components. The first one (BuyerStoreContract) defines
the vocabulary of business operations and implements the
generation of the business events from that vocabulary
whereas the second one (Rules) implements the rules that
react to the business events.
1 /* Programme name: BuyerStoreContract */
2
3 #define TRUE 1
4 #define FALSE 0
5 #define AbnContractEnd (abncoend==TRUE)
6
7 /* var for occurrences of executions
8 * with S and TF outcomes
9 */

10 bool abncoend=FALSE;
11 bool ReqFailBefore=FALSE;
12 bool RejFailBefore=FALSE;
13 bool ConfFailBefore=FALSE;
14 bool PayFailBefore=FALSE;
15 bool CancFailBefore=FALSE;
16
17 /* declaration 2 role players involved */
18 RolePlayer(BUYER,STORE);
19
20 /* 5 operations involved in contract */
21 BIS_OP(BUYREQ);
22 BIS_OP(BUYREJ);
23 BIS_OP(BUYCONF);
24 BIS_OP(BUYPAY);
25 BIS_OP(BUYCANC);
26
27 /* Ex. of contract specific correctness
28 * requirements.
29 * p0: "if the buyer has an oblig to pay, he

7

30 * will eventually, pay or cancel unless
31 * the contract terminates abnormally".
32 * Meaning of LTL variables:
33 * AbnContractEnd: Abnormal contract end
34 * IS_O(BUYPAY,BUYER): is buyer’s oblig to pay
35 * pending?
36 * IS_X(BUYPAY,BUYER): has buyer executed buypay
37 * operation?
38 *
39 */
40 /* ltl p0 { [](!IS_O(BUYPAY,BUYER)) ||
41 * <>(IS_O(BUYPAY,BUYER) -> <> (IS_X(BUYPAY,BUYER)
42 * || IS_X(BUYCANC,BUYER) || AbnContractEnd)) }
43 */
44
45 /* Ex of trap LTLs for generating exec sequences */
46 * p1: generates exec seq including successful
47 * executions of BUYREJ
48 * p2: generates exec seq including successful
49 * executions of BUYPAY
50 * p3: generates exec seq including successful
51 * executions of BUYCANC
52 */
53 /* ltl p1 { !<>IS_X(BUYREJ,STORE) } */
54 /* ltl p2 { !<>IS_X(BUYPAY,BUYER) } */
55 /* ltl p3 { !<>IS_X(BUYCANC,BUYER) } */
56
57 /* Business Event Generator */
58 proctype BEG()
59 {
60 BEGIN_INIT:
61 {
62 /* Define the initial state of the rights (R),
63 * obligations (O) and prohibitions (P) of the 2
64 * role players following:
65 * INIT(OperName, RolePlayerName, R,O,P)
66 * 1 means granted, 0 means not granted
67 * In initial state buyer has been granted the
68 * right to execute BUYREQ. No other R,O,P are
69 * granted to buyer or store */
70 INIT(BUYREQ, BUYER, 1,0,0);
71 INIT(BUYREJ, STORE, 0,0,0);
72 INIT(BUYCONF, STORE, 0,0,0);
73 INIT(BUYPAY, BUYER, 0,0,0);
74 INIT(BUYCANC, BUYER, 0,0,0);
75 }
76 END_INIT:
77
78 /* generation of business events.
79 * For each of the 5 operations, 2 possible exec
80 * are modelled: exec with S and exec with TF */
81 end:do
82 :: B_E(BUYER, BUYREQ, S);
83 :: B_E(BUYER, BUYREQ, TF);
84 :: B_E(STORE, BUYREJ, S);
85 :: B_E(STORE, BUYREJ, TF);
86 :: B_E(STORE, BUYCONF, S);
87 :: B_E(STORE, BUYCONF, TF);
88 :: B_E(BUYER, BUYPAY, S);
89 :: B_E(BUYER, BUYPAY, TF);
90 :: B_E(BUYER, BUYCANC, S);
91 :: B_E(BUYER, BUYCANC, TF);
92 od;
93 }
94

1 /* Programme name: Rules */
2
3 /* Rule triggered by buyreq executions
4 * initiated by the buyer and completed
5 * either in success or technical failure.
6 */
7 RULE(BUYREQ)
8 {
9 WHEN::EVENT(BUYREQ,IS_R(BUYREQ,BUYER),SC(BUYREQ))
10 /* handle buyreq with success outcome */
11 ->{ SET_X(BUYREQ,BUYER);/*BUYREQ successfully */
12 /*executed */
13 SET_R(BUYREQ,0); /* remove right */
14 SET_O(BUYREJ,1); /* impose obligation */

15 SET_O(BUYCONF,1); /* impose obligation */
16 RD(BUYREQ,BUYER,CCR,CO); /* rule notifies */
17 }/* S exec of contract compliant BUYREQ */
18
19 /* handle buyreq with technical failure outcome */
20 ::EVENT(BUYREQ,IS_R(BUYREQ,BUYER),TF(BUYREQ))
21 ->{
22 if /* 1st notification of buyreq with TF */
23 :: (ReqFailBefore==FALSE)->ReqFailBefore=TRUE;
24 RD(BUYREQ,BUYER,CCR,CO); /* rule notifies */
25 /* TF exec of contract compliant BUYREQ */
26
27 /* 2nd notification of buyreq with TF */
28 :: (ReqFailBefore==TRUE) -> abncoend=TRUE;
29 SET_R(BUYREQ,0); /* remove right */
30 RD(BUYREQ,BUYER,CCR,CND);/*abnormal cont end */
31 /* rule notifies TF exec of BUYREQ and pre- */
32 /* maturaly terminates contract after 2 TF */
33 fi
34 }
35 END(BUYREQ);
36 }
37

In the program component BuyerStoreContract, five busi-
ness operations are named (lines 21–25). We follow the
convention of using the same names as the action messages
depicted in the choreography (see Fig. 4). Lines 82–91
define the set B of business events.

In the Rules program component, we show the rule that
deals with BUYREQ. Thus, after receiving a notification of
a BUYREQ with a S outcome (line 9), the rule removes
the right of the buyer to execute BUYREQ and assigns an
obligation to execute BUYREJ or BUYCONF (lines 13–15).
In contrast, upon receiving a notification of a BUYREQ
with a TF outcome (line 20), the rule verifies if the
operation has failed before (line 28). If it has, it calls for
an early termination of the contractual interaction (line 30);
otherwise, it registers the occurrence of the technical failure
(line 23) but does not alter the state of the ROP set or
terminates the contract; in this manner, the operation can
be tried one more time.

The EPROMELA model is presented to SPIN together
with a list of correctness properties written in LTL. Correct-
ness properties of interest here are those that include con-
cepts from the business domain such as rights, obligations
and prohibitions expressed in the normative statements of
the contract. Typical correctness properties of this domain
are those that express mutual exclusion of rights, obligations
and prohibitions. For example, a requirements that the
execution of a given operation (for example, payment) is
never simultaneously obliged and prohibited. Thanks to the
contract constructs offered by EPROMELA, this correctness
property can be elegantly and intuitively expressed in LTL
as follows:
[] not(IS_O(BUYPAY, BUYER) &&
IS_P(BUYPAY, BUYER))

Where IS_O(BUYPAY, BUYER) returns true if, for
the buyer, the payment operation is currently obliged and
IS_P(BUYPAY, BUYER) returns true if the payment op-
eration is currently prohibited; [] and && are the always
and and LTL operators. This correctness property is a

8

typical example of a contract independent property that
is expected from all contracts. The EPROMELA model
therefore automatically checks for such a property, therefore
the designer does not need to explicitly specify it.

Contract dependent properties must of course be spec-
ified. Again, the designer is expected to express them
in LTL formulae that include constructs (for example,
IS_X(BUYPAY,BUYER)) offered by EPROMELA. An
example of such LTLs is p0 shown in lines (40–42) of
the BuyerStoreContract code, that can be activated after
removing the comment delimiters. This LTL states that once
an obligation to pay is imposed on the buyer, he either
pays or cancels unless the contract terminates abnormally
(AbnContractEnd) after exhausting the allowed number of
retries due to technical failures.

Once the model is declared correct (it satisfies all the
contract dependent and independent properties), it can be
used for generating sequences (message sequences) to ver-
ify contract to choreography conformance as suggested in
Fig. 6–b. These sequences can also be used for exercising
a BPMN tool, say from SAVARA, as mentioned in Section
II. As discussed in [16], the sequence generation technique
involves in presenting the model checker with a trap property
expressed in LTL (trap properties in LTL, Fig. 7). As a
response, the model checker produces counter examples
from where one can extract the message sequences.

An example of a trap property that can be used for
generating execution sequences that include the successful
execution of the BUYREJ operation is p1 shown in line 53
of the BuyerStoreContract. The smallest execution sequence
produced by p1 is shown next (without its XML tags):
BUY REQS → BUY REJS

This sequence lead to the successful (S) execution of a
BUYREQ followed by a successful execution of BUYREJ.
Similarly, p2 (line 54) and p3 (line 55) trap LTLs can be used
for generating execution sequences that lead, respectively,
to the successful execution of the BUYPAY and BUYCANC
operations. Naturally, one can use a combination of p1,
p2 and p3 to generate all the execution sequences that
lead to the successful executions of BUYREJ, BUYPAY and
BUYCANC in a single run of SPIN. It is worth mentioning
that the use of built–in EPROMELA constructs, makes
p1–p3 intuitive. Significantly more complex are execution
sequences that include both, executions of operations that
complete successfully (S) and in technical failures (TF). We
show one of them next. Recall that the contract stipulates
that a failed execution of an operation can be tried only one
more time.

BUY REQTF → BUY REQS → BUY REJTF →
BUY CONFTF → BUY CONFS → BUY PAY TF →
BUY PAY S .

The execution sequence shows a contractual run where
the buyer executes a buy request operation that completes in
technical failure. Next the buyer executes the operation again

—this time it completes successfully. The third event in the
sequence represents the store’s execution of a buy reject that
completes in technical failure. The fourth event shows that
after failing to execute the buy reject operation, the store
abandons it and executes a buy confirmation operation that
also completes in technical failure. Next the store tries again
the execution of the buy confirmation operation —this times
it completes successfully. The last two events show that the
buyer executes the buy pay operation twice—the first time
it completes in technical failure, but completes successfully
the second time.

B. Part b)

The choreography side of the tool framework (Fig. 7–b)
is similar in spirit to the contract side (Fig. 7–a). The chore-
ography designer uses the vocabulary of contractual oper-
ations for constructing BPMN choreography following the
conventions set in the RosettaNet BPMN specification [11].
In the figure, we suggest that the BPMN2PROMELA tool can
be used by designers for converting the a BPMN choreogra-
phy into an abstract model written in standard PROMELA
(PROMELA model) and augmented with LTL formulae
that express correctness properties. Standard PROMELA
is a convenient abstract language here (as opposite to
EPROMELA) because the core concepts of a choreography
are messages and activities—concepts that can be elegantly
modeled in PROMELA. Correctness properties of interest
here involve messages and activities (as opposite to rights,
obligations and prohibitions). For example, assume that c,
p and n stand respectively, for execution of activities Store
conf, Buyer pay and Buyer canc. Then a correctness property
stating that always a confirmation message is eventually
followed by either payment or cancellation can be expressed
in LTL as:

[](c→<> (p||n))
where || is the conventional or LTL operator. Observe

that this LTL formula expresses constrains on message
sequences which are central parameters to choreographies.
An important property of a choreography is that it should be
realizable: it should be implementable by a set of distributed
peers. Solutions to this problem which can be utilised
within this type of framework have been suggested by other
researchers (see for example [23]). Work on fully developing
the choreography side of the tool framework is currently in
progress.

Like in Fig. 7–a, once the PROMELA model is declared
correct, it can be challenged with trap properties to gener-
ate message sequences to verify contract to choreography
conformance as suggested in Fig. 6–a.

At the time of writing (April 2013), we have com-
pleted version 1.1 of the BPMN2PROMELA tool which
can convert BPMN diagrams into PROMELA and include
LTLs. The current version does not support the execution of
activities that can produce more that one outcome (success,

9

business failure or technical failure). An example of the code
that it produces from the BPMN choreography of Fig. 2–a)
is shown in Appendix B.

VI. RELATED WORK

A review of contract languages based on different for-
malisms ranging from modal logics to ECA rules is pre-
sented in [18]. In parallel, a great variety of choreography
languages have also been suggested [19], [20] with focus
on modelling different aspects of choreography processes.
In [12] the author argues that existing choreography
languages are too general and consequently not entirely
satisfactory for modelling B2B integration (B2Bi). In par-
ticular, the author criticises the excess of constructs offered
by BPMN and its lack of semantics for modelling B2Bi
choreographies. He suggests the use of a restricted version of
BPMN notation [11]. This notation accounts for features that
are within the scope of our interest. For instance, it accounts
for potential exceptional execution outcomes and assumes
the existence of underlying synchronisation mechanisms to
keep the interacting parties aligned during their interactions.

Concerns about the lack of mechanical tools and guide-
lines for checking compatibility between business contracts
and their corresponding business processes are raised in [21].
The authors discuss a methodology for mechanically de-
termining whether a choreography of a business process
expressed in BPMN, conforms to its contract expressed in
FCL (a Deontic Logic based language). Like ours, their
approach is based on the comparison of execution sequences
produced by the choreography and the contract. However,
to produce choreography sequences, they suggest mapping
the BPMN choreography onto an event pattern language; in
contrast, we suggest that the choreography sequences can be
produced by using a model checker like SPIN.

Conformance checking of the behaviour of processes to
their specification is studied in [22]. The goal is to system-
atically verify whether a given service (a node) that interacts
with others to compose a global process sends the expected
messages as dictated by the specification (for example, a
BPEL process). To solve the problem, the BPEL process
is converted into Petri net model and traces of messages
produced by the actual implementation of the BPEL process
are collected in a log. The Petri net is presented with traces
from the log (one at a time) to determine if they correspond
to valid execution paths of the Petri net model. Though the
techniques used in this work are similar to ours, our focus
of attention is at a higher level of abstraction: choreography
to contract conformance rather than conformance of local
processes to their specifications.

Conformance of choreography, but with focus on imple-
mentation, is studied in [23]. In this work the implemen-
tation is produced automatically (by means of projection)
from the choreography; consequently, the goal is to produce
realizable choreographies that by definition will project

conformant implementations. Like in our work, these authors
use software tools (model checkers) for sequence generation
and comparison. However, the focus of our work is on
a higher level of abstraction, namely on conformance of
the choreography to the business contract that it represents.
Consequently, individual validations of the contract and
choreography is not enough to declare each other’s confor-
mance; this is why we suggest cross–verification of message
sequences produced by the contract and choreography.

VII. CONCLUDING REMARKS

We developed the concept of conformance assuming that
contracts and choreographies can be modelled by Finite Au-
tomaton (FA) that accept languages over the same alphabet.
We showed that by carefully selecting the alphabet and
specification approaches, we can consider choreographies
described using (a restricted but highly practical subset of)
the BPMN notation and contract described using event–
condition–action rules. A noteworthy feature is that we are
able to cope with failures and exceptions that any practical
specification technique for contract or for choreography
must take into account. We described a model checker based
tool framework for conformance checking that can form the
basis for building contract compliance checkers as well as
contract compliant business processes.

ACKNOWLEDGMENT

The first author was funded by EPSRC grant KTS-
EP/H500332/1. Discussions with Garry Brown from Red
Hat concerning the tool framework and SAVARA and con-
structive comments from Andreas Schoenberger have been
useful.

REFERENCES

[1] OMG, “Documents associated with business
process model and notation (bpmn) version 2.0,”
http://www.omg.org/spec/BPMN/2.0, Jan 2011.

[2] C. Molina-Jimenez, S. Shrivastava, and M. Strano, “A model
for checking contractual compliance of business interactions,”
IEEE Trans. on Service Computing, vol. PP, no. 99, 2011.

[3] Jboss, “Savara and testable architecture,”
http://www.jboss.org/savara, 2012.

[4] RosettaNet, “Rosettanet member home page,” Nov 2011.
[Online]. Available: http://www.rosettanet.org/

[5] OASIS, “ebxml business process specification schema
technical specification v2.0.4, OASIS standard, 21 dec.”
2006. [Online]. Available: http://docs.oasis-open.org/ebxml-
bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf

[6] C. Molina-Jimenez and S. Shrivastava, “Maintaining Consis-
tency between Loosely Coupled Services in the Presence of
Timing Constraints and Validation Errors,” in Proc. 4th IEEE
European Conf. on Web Services (ECOWS’06). IEEE CS,
2006, pp. 148–160.

10

[7] C. Molina-Jimenez, S. Shrivastava, and N. Cook, “Imple-
menting business conversations with consistency guarantees
using message-oriented middleware,” in Proc. 11th IEEE Int’l
Enterprise Computing Conf. (EDOC’07). IEEE CS, 2007,
pp. 51–62.

[8] C. Molina-Jimenez, S. Shrivastava, and M. Strano, “Exception
handling in electronic contracting,” in Proc. 11th IEEE Conf.
on Commerce and Enterprise Computing (CEC’09). Jul 20–
23, Vienna, Austria: IEEE CS, 2009, pp. 65–73.

[9] D. Harel and A. Pnueli, “On the development of reactive
systems,” Logics and Models of Concurrent Systems, vol.
NATO ASI Series, F13, 1985.

[10] M. Strano, C. Molina-Jimenez, and S. Shrivastava, “Im-
plementing a rule–based contract compliance checker,” in
Proc. 9th IFIP Conf. on e-Business, e-Services, and e-Society
(I3E’2009). Nancy, France: Springer, 2009, pp. 96–111.

[11] RosettaNet, “Rosettanet methodology for creating
choreographies,” 27 July 2011 2012, version Identifier:
R11.00.00A. [Online]. Available: http://www.rosettanet.org/

[12] A. Schönberger, “Visualizing b2bi choreographies,” in Proc.
IEEE Int’l Conf. on Service-Oriented Computing and Appli-
cations (SOCA’11), 2011, pp. 1–8.

[13] G. J. Holzmann, The Spin model checker: primer and refer-
ence manual. Addison–Wesley Professional, 2003.

[14] A. Abdelsadiq, C. Molina-Jimenez, and S. Shrivastava, “A
high–level model–checking tool for verifying service agree-
ments,” in Proc. 6th IEEE Int’l Symposium on Service–
Oriented System Engineering (SOSE’2011), 2011, pp. 297–
304.

[15] C. Molina-Jimenez and W. Sun(Jim), “A tool for automatic
verification of bpmn choreographies,” School of Computing
Science, Newcastle Univ. UK, Tech. Rep. CS-TR-, Feb. 2013.

[16] A. Abdelsadiq, C. Molina-Jimenez, and S. Shrivastava, “On
model checker based testing of electronic contracting sys-
tems,” in 12th IEEE Int’l Conf. on Commerce and Enterprise
Computing(CEC’10), 2010, pp. 88–95.

[17] C. Molina-Jimenez and S. Shrivastava, “Establishing con-
formance between contracts and choreographies,” School of
Computing Science, Newcastle Univ. UK, Tech. Rep. CS-TR-
, Feb. 2013.

[18] T. Hvitved, “A survey of formal languages for contracts,”
in Fourth Workshop on Formal Languages and Analysis of
Contract–Oriented Software (FLACOS’10), 2010, pp. 29–32.

[19] G. Decker, O. Kopp, and A. Barros, “An introduction to
service choreographies,” Information Technology, vol. 50,
no. 2, pp. 122–127, 2008.

[20] A. Schönberger, “Do we need a refined choreography no-
tion?” in Proc. 3rd Central–European Workshop on Services
and their Composition, (ZEUS’11), vol. 705. CEUR-WS.org,
2011.

[21] G. Governatori, Z. Milosevic, and S. Sadiq, “Compliance
checking between business processes and business contracts,”
in Proc. 10th IEEE Int’l Enterprise Distributed Object Com-
puting Conf. (EDOC’06). IEEE computer society, 2006, pp.
221–232.

[22] W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat,
and E. Verbeek, “Conformance checking of service behavior,”
Transactions on Internet Technology, vol. 8, no. 3, pp. 13:1–
13:30, May 2008.

[23] G. Salaün, T. Bultan, and N. Roohi, “Realizability of chore-
ographies using process algebra encodings,” IEEE Trans-
actions on Services Computing, vol. preprint, no. 10.1109
TSC.2011.9, 2011.

APPENDIX A.
EPROMELA CODE OF BUYER–SELLER CONTRACT
1 /*
2 * Carlos Molina-Jimenez, 18 Apr 2013, Ncl Uni, UK
3 * Carlos.Molina@ncl.ac.uk
4 * BuyerStoreContract.pml: EPROMELA code of a
5 * contract between a buyer and store. This model
6 * is meant to correctly implement the English
7 * contract of Fig 4 of this technical report, thus
8 * it accounts for technical failures.
9 *
10 * To run this code you need
11 * 1) Spin Version 6.1.0 or a more recent one.
12 * 2) The macros setting.h and BizOperation.h
13 * vector.lpr and for.h deployed in your
14 * working folder.
15 * 3) rules.h in your working folder.
16 *
17 * 4) Edit BuyerStoreContract.pml to comment
18 * and uncomment the LTL provided
19 * in the code as needed. Keep in mind that
20 * Spin can verify only a single LTL at a time.
21 *
22 * 5) To run the code from Linux type:
23 * % spin -a BuyerStoreContract.pml
24 * % cc -o pan pan.c
25 * % pan -a
26 *
27 * Notation used in this code:
28 * S-success, BF-business failure, TF-technical
29 * failure, TO--timeout, exec--execution
30 */
31
32 #include "setting.h" /* macro definition */
33 #include "BizOperation.h" /* macro definition */
34 #include "rules.h" /* ECA rule code */
35
36 #define TRUE 1
37 #define FALSE 0
38 #define YES 1
39 #define NO 0
40
41 #define AbnContractEnd (abncoend==TRUE)
42
43 /* var for recording occurrences of executions
44 * with S and BF outcomes
45 */
46 bool abncoend=FALSE;
47 bool ReqFailBefore=NO;
50 bool PayFailBefore=NO;
53
54 /* declaration of the 2 role players involved */
55 RolePlayer(BUYER,STORE);
56
57 /* account for S,BF,TF,TO execution outcome,
58 * in this ex, we use only S and BF */
59 RuleMessage(S,BF,TF,TO);
60
61 /* 5 operations are involved in the contract */
62 BIS_OP(BUYREQ);
63 BIS_OP(BUYREJ);

11

64 BIS_OP(BUYCONF);
65 BIS_OP(BUYPAY);
66 BIS_OP(BUYCANC);
67
68
69 /*
70 * LTLs for expressing, mutual exclusion of
71 * obligations and prohibitions which are
72 * checked by default
73 */
74
75 /*
76 * When the buyer is obliged to pay the obligation
77 * remains pending until the buyer pays or cancels
78 * or the contract terminates abnormally.
79 */
80 /* ltl p0 { [](!IS_O(BUYPAY,BUYER)) ||
81 <>(IS_O(BUYPAY,BUYER) -> <> (IS_X(BUYPAY,BUYER)
82 || IS_X(BUYCANC,BUYER) || AbnContractEnd)) } */
83
84
85 /*
86 * trap LTL for generating execution sequences
87 */
88 /*
89 * the following LTL can be used for generation
90 * sequences that include the execution of BUYREJ
91 * including the simplest one: BUYREQ(S)-> BUYREJ(S).
92 */
93 /* ltl p1 { !<>IS_X(BUYREJ,STORE) } */
94
95 /*
96 * The following LTL can be used for generating
97 * exe sequences that include the successful
98 * and bizfail execution of operations that
99 * eventually complete in a successful execution
100 * of BUYPAY
101 */
102 /* ltl p2 { !<>IS_X(BUYPAY,BUYER) } */
103
104 /*
105 * The following LTL can be used for generating
106 * exe sequences that include the successful
107 * and tecfail execution of operations that
108 * eventually complete in a successful execution
109 * of BUYCANC
110 */
111 ltl p3 { !<>IS_X(BUYCANC,BUYER) }
112
113
114
115 /* Business Event Generator */
116 proctype BEG()
117 {
118 BEGIN_INIT:
119 {
120 /* Define the initial state of the rights (R),
121 * obligations (O) and prohibitions (P) of the 2
122 * role players following:
123 * INIT(OperName, RolePlayerName, R,O,P)
124 * 1 means granted, 0 means not granted
125 * In initial state buyer has been granted the
126 * right to execute BUYREQ. No other R,O,P are
127 * granted to buyer or store */
128 DONE(BUYER);
129 DONE(STORE);
130
131 INIT(BUYREQ, BUYER, 1,0,0);
132 INIT(BUYREJ, STORE, 0,0,0);
133 INIT(BUYCONF, STORE, 0,0,0);
134 INIT(BUYPAY, BUYER, 0,0,0);
135 INIT(BUYCANC, BUYER, 0,0,0);
136 }
137 END_INIT:
138
139 /* generation of business events.
140 * For each of the 5 operations, 2 possible exec
141 * are modelled: exec with S and exec with TF */
142 end:do
143 :: B_E(BUYER, BUYREQ, S);

144 :: B_E(BUYER, BUYREQ, TF);
145
146 :: B_E(STORE, BUYREJ, S);
147 :: B_E(STORE, BUYREJ, TF);
148
149 :: B_E(STORE, BUYCONF, S);
150 :: B_E(STORE, BUYCONF, TF);
151
152 :: B_E(BUYER, BUYPAY, S);
153 :: B_E(BUYER, BUYPAY, TF);
154
155 :: B_E(BUYER, BUYCANC, S);
156 :: B_E(BUYER, BUYCANC, TF);
157 od;
158 }
159
160 /* contract rule manager: it uses the rules.h
161 * file declared in the inline definition.
162 * It retrieves and includes the rule (one at a
163 * time) needed to respond to the event under
164 * process
165 */
166 proctype CRM()
167 {
168 printf("CONTRACT RULE MANAGER");
169 end:do
170 :: CONTRACT(BUYREQ); /* include RULE(BUYREQ) */
171 :: CONTRACT(BUYREJ); /* include RULE(BUYREJ) */
172 :: CONTRACT(BUYCONF);
173 :: CONTRACT(BUYPAY);
174 :: CONTRACT(BUYCANC);
175 od;
176 }
177
178 init
179 {
180 atomic /* start exec of BRG and CRM */
181 {
182 run BEG(); run CRM();
183 }
184 }

1 /*
2 * Carlos Molina J., 17 Apr 2013, Ncl Uni, UK
3 *
4 * rules.h: EPROMELA code of the ECA rules that
5 * implement a contract between a buyer and store.
6 * The code prints out messages with xml like
7 * tags which can be used for signaling out
8 * messages when the model is used for generating
9 * execution sequences.
10 *
11 * Notation used in this code: cont-contract,
12 * SC-success, TF-technical failure,
13 * tecfail- technical failure.
14 */
15
16 /* Rule triggered by buyreq executions initiated
17 * by the buyer and completed either in success or
18 * technical failure.
19 */
20 RULE(BUYREQ)
21 {
22 WHEN::EVENT(BUYREQ,IS_R(BUYREQ,BUYER),SC(BUYREQ))
23 /* handle buyreq with success outcome */
24 ->{ SET_X(BUYREQ,BUYER);
25 atomic{
26 printf("\n\n");
27 printf("<originator>buyer</originator>\n");
28 printf("<responder>store</responder>\n");
29 printf("<type>BUYREQ</type>\n");
30 printf("<status>success</status>\n");
31 printf("\n\n")
32 }
33 SET_R(BUYREQ,0);
34 SET_O(BUYREJ,1);
35 SET_O(BUYCONF,1);
36 RD(BUYREQ,BUYER,CCR,CO);
37 }
38 /* handle buyreq with technical failure outcome */
39 ::EVENT(BUYREQ,IS_R(BUYREQ,BUYER),TF(BUYREQ))

12

40 ->{
41 atomic{
42 printf("\n\n");
43 printf("<originator>buyer</originator>\n");
44 printf("<responder>store</responder>\n");
45 printf("<type>BUYREQ</type>\n");
46 printf("<status>tecfail</status>\n");
47 printf("\n\n")
48 }
49 if /* 1st notification of buyreq with TF */
50 :: (ReqFailBefore==NO) ->ReqFailBefore=YES;
51 printf("First BUYREQ-TechnicalFailure");
52 RD(BUYREQ,BUYER,CCR,CO);
53
54 /* 2nd notification of buyreq with TF */
55 :: (ReqFailBefore==YES) -> abncoend=TRUE;
56 printf("Last BUYREQ-TechnicalFailure");
57 SET_R(BUYREQ,0);
58 atomic{
59 printf("\n\n");
60 printf("<originator>reset</originator>\n");
61 printf("<responder>reset</responder>\n");
62 printf("<type>reset</type>\n");
63 printf("<status>reset</status>\n");
64 printf("\n\n")}
65
66 RD(BUYREQ,BUYER,CCR,CND);/*abnormal cont end*/
67 fi
68 }
69 END(BUYREQ);
70 }
71
72
73
74 /* Rule triggered by buyrej executions initiated
75 * by the store and completed either in success or
76 * technical failure.
77 */
78 RULE(BUYREJ)
79 {
80 /* handle buyrej with success outcome */
81 WHEN::EVENT(BUYREJ,IS_O(BUYREJ,STORE),SC(BUYREJ))
82 ->{ SET_X(BUYREJ,STORE);
83 atomic{
84 printf("\n\n");
85 printf("<originator>store</originator>\n");
86 printf("<responder>buyer</responder>\n");
87 printf("<type>BUYREJ</type>\n");
88 printf("<status>success</status>\n");
89 printf("\n\n")
90 }
91 SET_O(BUYREJ,0);
92 SET_O(BUYCONF,0);
93 atomic{
94 printf("\n\n");
95 printf("<originator>reset</originator>\n");
96 printf("<responder>reset</responder>\n");
97 printf("<type>reset</type>\n");
98 printf("<status>reset</status>\n");
99 printf("\n\n")}

100
101 RD(BUYREJ,STORE,CCO,CND);
102 }
103 /* handle buyrej with technical failure outcome */
104 ::EVENT(BUYREJ,IS_O(BUYREJ,STORE),TF(BUYREJ))
105 ->{
106 atomic{
107 printf("\n\n");
108 printf("<originator>store</originator>\n");
109 printf("<responder>buyer</responder>\n");
110 printf("<type>BUYREJ</type>\n");
111 printf("<status>tecfail</status>\n");
112 printf("\n\n")
113 }
114 if /* 1st notification of buyrej with TF */
115 :: (RejFailBefore==NO) ->RejFailBefore=YES;
116 printf("First BUYREJ-TechnicalFailure");
117 RD(BUYREJ,STORE,CCO,CO);
118
119 /* 2nd notification of buyrej with TF */
120 :: (RejFailBefore==YES) -> abncoend=TRUE;

121 printf("Last BUYREJ-TechnicalFailure");
122 SET_O(BUYREJ,0);
123 SET_O(BUYCONF,0);
124 atomic{
125 printf("\n\n");
126 printf("<originator>reset</originator>\n");
127 printf("<responder>reset</responder>\n");
128 printf("<type>reset</type>\n");
129 printf("<status>reset</status>\n");
130 printf("\n\n")}
131
132 RD(BUYREJ,STORE,CCO,CND);/*abnormal cont end*/
133 fi
134 }
135 END(BUYREJ);
136 }
137
138
139
140 /* Rule triggered by buyconf executions initiated
141 * by the store and completed either in success or
142 * technical failure.
143 */
144 RULE(BUYCONF)
145 {
146 /* handle buyconf with success outcome */
147 WHEN::EVENT(BUYCONF,IS_O(BUYCONF,STORE),SC(BUYCONF))
148 ->{ SET_X(BUYCONF,STORE);
149 atomic{
150 printf("\n\n");
151 printf("<originator>store</originator>\n");
152 printf("<responder>buyer</responder>\n");
153 printf("<type>BUYCONF</type>\n");
154 printf("<status>success</status>\n");
155 printf("\n\n")
156 }
157 SET_O(BUYREJ,0);
158 SET_O(BUYCONF,0);
159 SET_O(BUYPAY,1);
160 SET_O(BUYCANC,1);
161 RD(BUYCONF,STORE,CCO,CO);
162 }
163 /* handle buyconf with technical failure outcome */
164 ::EVENT(BUYCONF,IS_O(BUYCONF,STORE),TF(BUYCONF))
165 ->{
166 atomic{
167 printf("\n\n");
168 printf("<originator>store</originator>\n");
169 printf("<responder>buyer</responder>\n");
170 printf("<type>BUYCONF</type>\n");
171 printf("<status>tecfail</status>\n");
172 printf("\n\n")
173 }
174 if /* 1st notification of buyconf with TF */
175 :: (ConfFailBefore==NO) ->ConfFailBefore=YES;
176 printf("First BUYCONF-TechnicalFailure");
177 RD(BUYCONF,STORE,CCO,CO);
178
179 /* 2nd notification of buyconf with TF */
180 :: (ConfFailBefore==YES) -> abncoend=TRUE;
181 printf("Last BUYCONF-TechnicalFailure");
182 SET_O(BUYREJ,0);
183 SET_O(BUYCONF,0);
184 atomic{
185 printf("\n\n");
186 printf("<originator>reset</originator>\n");
187 printf("<responder>reset</responder>\n");
188 printf("<type>reset</type>\n");
189 printf("<status>reset</status>\n");
190 printf("\n\n")}
191
192 RD(BUYCONF,STORE,CCO,CND);/*abnormal cont end*/
193 fi
194 }
195 END(BUYCONF);
196 }
197
198
199
200 /* Rule triggered by buypay executions initiated

13

201 * by the buyer and completed either in success or
202 * technical failure.
203 */
204 RULE(BUYPAY)
205 {
206 printf("BUYPAY rule (first lines) \n");
207 /* handle buypay with success outcome */
208 WHEN::EVENT(BUYPAY,IS_O(BUYPAY,BUYER),SC(BUYPAY))
209 ->{SET_X(BUYPAY,BUYER);
210 atomic{
211 printf("\n\n");
212 printf("<originator>buyer</originator>\n");
213 printf("<responder>store</responder>\n");
214 printf("<type>BUYPAY</type>\n");
215 printf("<status>success</status>\n");
216 printf("\n\n")
217 }
218 SET_O(BUYPAY,0);
219 SET_O(BUYCANC,0);
220
221 atomic{
222 printf("\n\n");
223 printf("<originator>reset</originator>\n");
224 printf("<responder>reset</responder>\n");
225 printf("<type>reset</type>\n");
226 printf("<status>reset</status>\n");
227 printf("\n\n")}
228
229 RD(BUYPAY,BUYER,CCO,CND);/*ideal cont end*/
230 }
231 /* handle buypay with technical failure outcome */
232 ::EVENT(BUYPAY,IS_O(BUYPAY,BUYER),TF(BUYPAY))
233 ->{
234 atomic{
235 printf("\n\n");
236 printf("<originator>buyer</originator>\n");
237 printf("<responder>store</responder>\n");
238 printf("<type>BUYPAY</type>\n");
239 printf("<status>tecfail</status>\n");
240 printf("\n\n")
241 }
242 if /* 1st notification of buypay with TF */
243 :: (PayFailBefore==NO) ->PayFailBefore=YES;
244 printf("First BUYPAY-TechnicalFailure");
245 RD(BUYPAY,BUYER,CCO,CO);
246
247 /* 2nd notification of buypay with TF */
248 :: (PayFailBefore==YES) -> abncoend=TRUE;
249 printf("Last BUYPAY-TechnicalFailure");
250
251 SET_O(BUYPAY,0);
252 SET_O(BUYCANC,0);
253 atomic{
254 printf("\n\n");
255 printf("<originator>reset</originator>\n");
256 printf("<responder>reset</responder>\n");
257 printf("<type>reset</type>\n");
258 printf("<status>reset</status>\n");
259 printf("\n\n")}
260
261 RD(BUYPAY,BUYER,CCO,CND);/*abnormal cont end*/
262 fi
263 }
264 END(BUYPAY);
265 }
266
267
268
269 /* Rule triggered by buycanc executions initiated
270 * by the buyer and completed either in success or
271 * technical failure.
272 */
273 RULE(BUYCANC)
274 {
275 /* handle buycanc with success outcome */
276 WHEN::EVENT(BUYCANC,IS_O(BUYCANC,BUYER),SC(BUYCANC))
277 ->{ SET_X(BUYCANC,BUYER);
278 atomic{
279 printf("\n\n");
280 printf("<originator>buyer</originator>\n");
281 printf("<responder>store</responder>\n");

282 printf("<type>BUYCANC</type>\n");
283 printf("<status>success</status>\n");
284 printf("\n\n")
285 }
286
287 SET_O(BUYPAY,0);
288 SET_O(BUYCANC,0);
289 atomic{
290 printf("\n\n");
291 printf("<originator>reset</originator>\n");
292 printf("<responder>reset</responder>\n");
293 printf("<type>reset</type>\n");
294 printf("<status>reset</status>\n");
295 printf("\n\n")}
296
297 RD(BUYCANC,BUYER,CCO,CND);
298 }
299 /* handle buycanc with technical failure outcome */
300 ::EVENT(BUYCANC,IS_O(BUYCANC,BUYER),TF(BUYCANC))
301 ->{
302 atomic{
303 printf("\n\n");
304 printf("<originator>buyer</originator>\n");
305 printf("<responder>store</responder>\n");
306 printf("<type>BUYCANC</type>\n");
307 printf("<status>tecfail</status>\n");
308 printf("\n\n")
309 }
310 if /* 1st notification of buycanc with TF */
311 :: (CancFailBefore==NO) ->CancFailBefore=YES;
312 printf("First BUYCANC-TechnicalFailure");
313 RD(BUYCANC,BUYER,CCO,CO);
314
315 /* 2nd notification of buycanc with TF */
316 :: (CancFailBefore==YES) -> abncoend=TRUE;
317 printf("Last BUYCANC-TechnicalFailure");
318 SET_O(BUYPAY,0);
319 SET_O(BUYCANC,0);
320 atomic{
321 printf("\n\n");
322 printf("<originator>reset</originator>\n");
323 printf("<responder>reset</responder>\n");
324 printf("<type>reset</type>\n");
325 printf("<status>reset</status>\n");
326 printf("\n\n")}
327
328 RD(BUYCANC,BUYER,CCO,CND);/*abnormal cont end*/
329 fi
330 }
331 END(BUYCANC);
332 }

APPENDIX B.
CODE OF BUYER–SELLER CONTRACT PRODUCED BY

BPMN2PROMELA
1 /*
2 * Carlos Molina-Jimenez, 18 Apr 2013, Ncl Uni, UK
3 * Carlos.Molina@ncl.ac.uk
4 *
5 * PROMELA code with an LTL formula included
6 * of the choreography shown in Fig 2-a.
7 * 1) The code was produced automatically
8 * by the BPMN2PROMELA given the xml description
9 * of the BPMN choreography diagram.

10 * 2) The LTL used in this example can be
11 * classified as a response: "if confirmation
12 * happens, it will be eventually followed by
13 * either payment or cancellation". It was
14 * included mechanically into the PROMELA
15 * code by the BPMN2PROMELA tool from a
16 * template.
17 * 3) The PROMELA code with the LTL included
18 * were presented to Spin (which is integrated
19 * to the BPME2PROMELA tool) for validation.
20 * As expected, the Spin output shows that the
21 * LTL is satisfied by the model.
22 *
23 * It is worth clarifying that apart from the
24 * deletion of some of the lines produced by

14

25 * Spin, the PROMELA code and the never claim
26 * of the LTL are shown as produced by the tool.
27 */
28
29 #define TRUE 1
30 #define FALSE 0
31 bool BuyConfRcv = FALSE;
32 #define a (BuyConfRcv == TRUE)
33 bool BuyPayRcv = FALSE;
34 #define b (BuyPayRcv == TRUE)
35 bool BuyRejRcv = FALSE;
36 #define c (BuyRejRcv == TRUE)
37 bool BuyCancRcv = FALSE;
38 #define d (BuyCancRcv == TRUE)
39 bool BuyReqRcv = FALSE;
40 #define e (BuyReqRcv == TRUE)
41 /*Potential outcomes from each operation*/
42 mtype = {BuyConf, BuyRej, BuyPay, BuyCanc, BuyReq};
43
44
45 /*All channels in the diagram*/
46 chan Buyer2Store = [0] of {mtype, byte};
47 chan Store2Buyer = [0] of {mtype, byte};
48
49
50 /*All processes involved in the choreography*/
51 proctype Buyer() {
52
53 Buyer2Store ! BuyReq(1);
54 if
55 ::
56 atomic {Store2Buyer ? BuyRej(_); BuyRejRcv = TRUE;
57 }
58
59 ::
60 atomic {Store2Buyer ? BuyConf(_); BuyConfRcv = TRUE;
61 }
62 if
62 if
63 ::
64 Buyer2Store ! BuyPay(1);
65
66 ::
67 Buyer2Store ! BuyCanc(1);
68
69 fi;
70
71 fi;
72
73 }
74
75
76
77 proctype Store() {
78
79 atomic {Buyer2Store ? BuyReq(_); BuyReqRcv = TRUE;
80 }
81 if
82 ::
83 Store2Buyer ! BuyRej(1);

84
85 ::
86 Store2Buyer ! BuyConf(1);
87 if
88 ::
89 atomic {Buyer2Store ? BuyPay(_); BuyPayRcv = TRUE;
90 }
91
92 ::
93 atomic {Buyer2Store ? BuyCanc(_); BuyCancRcv = TRUE;
94 }
95
96 fi;
97
98 fi;
99
100 }
101
102
103
104 init {
105 atomic {run Buyer();
106 run Store();
107 }
108 }
109
110
111
112 /*** LTL to satisfy ***/
113 never { /* !([] (a -> <> (b || d))) */
114 T0_init:
115 if
116 :: (! ((b || d)) && (a)) -> goto accept_S4
117 :: (1) -> goto T0_init
118 fi;
119 accept_S4:
120 if
121 :: (! ((b || d))) -> goto accept_S4
122 fi;
123 }
124
125
126 /*
127 * Spin validation outputs
128 */
129 (Spin Version 6.2.3 -- 24 October 2012)
130 + Partial Order Reduction
131
132 Full statespace search for:
133 never claim + (never_0)
134 assertion violations - (disabled by -A flag)
135 cycle checks - (disabled by -DSAFETY)
136 invalid end states - (disabled by -E flag)
137
138 State-vector 60 byte, depth reached 19, errors: 0
139 18 states, stored
140 3 states, matched
141 21 transitions (= stored+matched)
142

15

	TRCover1383
	TRAbstract1383
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1383
	1383withoutcovers

