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Abstract—High frequency trading (HFT) environments 
provide technologies that enable algorithmic trading within 
automated marketplaces. The most prominent example of an 
HFT environment is within equity trading, where many millions 
of trades are achieved at a high volume to gain a reasonable 
cumulative profit. Such environments rely on low latency/high 
performance technologies to allow trades to react in a timely 
manner to market volatility. However, sometimes the volatility of 
the market goes beyond what supporting infrastructure can 
allow, resulting in erroneous behaviour of the marketplace. In 
this paper we tackle the problem of managing market volatility 
to limit erroneous market behaviour. Our approach is unique in 
that it is non-dependent on the trading environment itself and 
self-regulates based only on trading frequency and contention. 
We demonstrate our results and show that by managing trade 
injection rates and contention of shared state the volatility of 
HFT environments can be managed appropriately and in an 
automated manner. 
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I.  INTRODUCTION 
In distributed systems research there are few application 

domains as sensitive to timeliness as high frequency trading 
(HFT) environments. The requirement to trade at intervals 
measured in a fraction of a second need to be satisfied to attain 
a fractional profit. Over time the accumulation of such trades 
can afford a substantial profit. The equation is simple; increase 
the frequency of trades increases profits. 

Issues arise in all equity markets when contention for 
equities rises. We use the term contention to refer to the degree 
to which simultaneous trades are requested on the same equity. 
Such scenarios in human driven trades reflect volatility in the 
market and could lead to undesirable outcomes (significant 
drops, possibly economically unwarranted).  In a HFT scenario 
the result could be disastrous due to the lack of human 
intervention coupled with the trading frequency. Research into 
algorithmic trading expends great effort in integrating safety 
measures into algorithms to avoid such scenarios.  

In this paper we consider an alternative approach to 
managing volatility in HFT environments. We propose pushing 
responsibility for managing volatility to the supporting 
software infrastructure on which HFT algorithms execute. We 

use contention management techniques that exploit the 
semantics of HFT trading (patterns) combined with forcibly 
varying the trading rates of clients. This removes volatility and 
provides a safety net for algorithmic trading, alleviating such 
algorithms from having to encode their own, sometimes very 
complex, solutions to avoid unchecked volatility. 

Our solution at first glance appears unintuitive (back off 
trades and lower the trading frequency). However, we show 
that a supporting platform that is semantically aware of its 
application domain can actually improve successful trade 
throughput for HFT environments. We achieve this by utilizing 
techniques often associated with high performance, scalable 
replication schemes used in cloud computing and server side 
technology (e.g., search engines, cloud resource management). 
With appropriate client side extensions and increased reach of 
state replication, our scheme provides an eventually consistent 
solution for HFT deployment. 

As we are combining two distinct areas of research (HFT 
environments and scalable replication schemes) we afford a 
generous background and related work section. This is to 
provide the reader with all required terminology and 
understanding for the remainder of the paper. Section 3 
presents our approach in general terms. Section 4 presents a 
reproducible description of our approach for experimental 
purposes. We also show, via simulation, how successful our 
approach is in achieving high trading success rates. Section 5 
presents our concluding remarks and discusses our future work 
in this area. 

II. BACKGROUND AND RELATED WORK 
In this section we describe how existing scalable 

replication schemes in modern day data retrieval systems may 
be adaptable for use within HFT environments. To do this we 
first describe HFT environments in terms of their 
computational requirements and technological shortcomings. 
We then describe scalable data replication schemes and the 
benefits they bring to a number of different application 
domains. We finish this section with our argument suggesting 
how scalable replication schemes may be tailored to bring a 
cost efficient, yet improved, solution to the technical demands 
of HFT environments.  



A. High Frequency Trading 
Equity markets are traditionally the domains of human 

directed trading. However, with the advent of computers, 
attempts were made to encode human style trading within 
automated procedures. From the 1970s the introduction of 
computerization has increasingly provided the opportunity for 
algorithmic trading to occur with ever reducing dependence on 
human-in-the-loop intervention [1].  

In the 1980s there were a number of advances in 
computerization that provided the first recognizable fully 
automated trading environments (e.g., pair trading utilizing 
statistical arbitrage and convergence trading strategy [2]). Such 
devices were considered low-risk, yet yielded profits [1]. 
However, there is debate, academically, as to how much such 
systems contribute to undesirable market conditions (e.g., 
bubbles, crashes, flash crashes). Although an interesting 
academic discussion, it is beyond the scope of this paper to 
consider the appropriateness of algorithmic trading. We are 
only interested in the fact that such systems exist and require 
software support. 

Algorithmic trading software can be constructed based on 
pattern recognition technology and may utilise modern day 
artificial intelligence techniques (e.g., genetic algorithms, 
neural networks). The basic premise is that patterns of trading, 
possibly quite complex, can inform future trades in a 
positive/profitable manner. Trends can be predicted (with a 
degree of probability) for a period of time into the future. Such 
prediction models have higher probabilities of success if their 
time horizon is shorter. However, the shorter the time horizon 
between trades (buy an equity then sell) the lower the profits 
per trade. Other trading mechanisms may also be employed 
(e.g., short selling), but the principals related to profits remains 
the same. 

Recently the low latency high performance capabilities of 
modern computer systems have allowed algorithmic trading 
systems to trade at high frequencies (HFT). HFT allows 
fractional profits to be made on trades occurring many times a 
second. This suits algorithmic trading as time horizons are low 
while the volume of trades is high enough to generate a 
suitable profit over a reasonable time. Reports suggest that 
HFT is widespread; accounting for approximately 35% of UK 
and 70% of US equity trades [3]. 

There are a number of techniques used to construct 
algorithmic trading solutions. However, all solutions are 
embodied within the algorithms employed to determine trading 
bounds on equity value. That is, the supporting technology 
simply affords the high frequency required to allow different 
styles of algorithms to succeed in an HFT environment. In this 
respect, a detrition of the underlying technology in terms of 
performance would hinder the success of the algorithms 
themselves.  

There are numerous articles published with respect to the 
algorithmic nature of automated trading of equities. However, 
such literature stands alone from the supporting technology 
itself. The only assumption made by the literature in terms of 
software/hardware platform is an ability to attain so many 
trades per-second at the platform level. When technology 

deteriorates in performance the supported algorithms may 
underperform as latency of trades increase. As such, HFT 
environments are expensive as the latest technology is 
employed to provide robust high performance solutions to 
ensure a minimum latency is guaranteed. 

B. Scalable Networked Replication Schemes 
Scalability in data retrieval systems implemented across 

computer networks primarily depends on replication strategies. 
In essence, data is replicated and it is these replicas with which 
clients interact. In many instances, such data is co-located with 
the clients themselves. This lowers access times for such data 
as no or little network latency is involved. Even if the data is 
not geographically close to a client overall performance will 
improve as replicas afford many more opportunities for data 
access (there are more of them) than a single, non-replicated 
data item. This is because to maintain correctness (in terms of 
consistency) of a data item concurrent accesses need to be 
regulated in some way [4]. As concurrency control has no 
scalable solution for general data access strategies then 
minimising its usage is a necessity if a scalable system is 
desired. 

The replication of data brings about higher availability of a 
system; as replicas fail or are taken down for maintenance 
other replicas may continue to satisfy the demands of clients. 
Flexibility may also be introduced by allowing replicas to be 
added to the system or taken away depending on the load of the 
system. This makes economic sense as when load is light (e.g., 
low client numbers or infrequent client requests) power 
consumption can be saved as machines are removed. This is 
similar to the commodity cost model found in cloud 
computing. Most data retrieval systems for cloud-based 
applications are based on data replication policies for increased 
performance [5]. 

The problem with data replication schemes is the degree of 
consistency they exhibit. If replicas were required to be always 
viewed the same by all clients (mutually consistent views) then 
we would have a pessimistic approach. Unfortunately, 
pessimistic approaches are non-scalable, as all replicas would 
need to agree what their state is (to make sure that if two 
clients simultaneously request state from replicas representing 
the same data item that they get the same value). Therefore, in 
all scalable solutions to data replication the optimistic approach 
is favoured. 

Optimistic replication schemes allow parts of a distributed 
application to progress in the presence of transient 
unreachability of one or more geographically separated sub-
systems. This property also ensures that optimistic replication 
may scale to a large number of replicas due to the lightweight 
synchronisation requirement compared to that found in their 
pessimistic counterparts.  

Optimistic replication suits those applications where 
inconsistencies occur rarely. This may be due to the static 
nature of data (i.e., elements of data do not change – reads are 
much more common than writes) or the compartmented nature 
of the data itself (e.g., interference across replicas is low). As 
such, optimistic replication has become a popular solution in 



many well known distributed applications that share these traits 
(e.g., search engines, resource discovery). 

Eventual consistency [6, 7] is the term used to describe the 
property that guarantees the convergence of replicated states 
within an optimistic replication scheme. In principal, all 
replicas will converge, as past inconsistencies will be 
reconciled at some point during future execution. It follows 
that an absence of writes coupled with a window of full 
connectivity across replicas is required to ensure all replicas 
become mutually consistent. This is a version of the consensus 
problem with well-understood provable properties, providing a 
solid theoretical basis for optimistic replication schemes based 
on eventually consistent protocols. 

An early example of a practical solution using a basic 
optimistic replication strategy over the Internet can be found in 
DNS [7]. However, it was the popularity of mobile networks 
(transient connectivity) and the need to access unreliable data 
repositories with low latencies (availability, scalability) that 
brought about increased research activity in optimistic 
replication schemes.  

Two of the most popular, and well-known, optimistic 
replication techniques were developed to satisfy industry 
demands. Dynamo [8] was developed to provide Amazon with 
availability support for its server infrastructure. As Amazon 
consists of many thousands of components, failures occur 
continuously and therefore consistency is sacrificed to achieve 
availability. Cassandra [9] was developed to allow scalable 
management of user messages on facebook. Similar to 
Dynamo, Cassandra is expected to run on thousands of nodes 
where consistency can be sacrificed to aid availability. These 
recent works find their foundations in earlier academic 
research. We now describe two of these earlier systems to 
highlight the requirements tackled that led to modern day 
server-side optimistic replication solutions. 

Bayou [10] is an optimistic replication scheme designed 
with the goal of satisfying consistency requirements of shared 
state that resides across mobile devices. In essence, devices can 
access and update their local copy of shared state with 
synchronisation occurring once connectivity between other 
devices has been re-established. During synchronisation there 
is a chance that some of the local actions enacted on shared 
state cannot be honoured. In such circumstances devices 
attempt an alternate request (determined by the application 
programmer). The challenging aspect of Bayou is the ability to 
propagate synchronisation across peer-to-peer mobile networks 
epidemically (no central server).  

The IceCube system [11, 12] goes beyond Bayou in 
creating a framework within which an optimal reconciliation of 
replica states may occur in the context of application 
dependencies. That is, minimise those local actions that cannot 
be honoured. In essence, the application developer identifies 
constraints between actions that act upon shared state that in 
turn are used to create a single re-playable schedule of actions. 
By using constraints the developer has the ability to inform 
what type of reconciliation would be most appropriate before 
reconciliation occurs (the optimal schedule). Such a schedule 
may be replayed at replicas to not only arrive at a consistent 
state, but a state that best satisfies the intent of the actions 

occurring in the overall system. This reduces the number of 
those actions that could not be honoured. Irreconcilable actions 
are dropped from the schedule and the system must handle 
these exceptions in an application dependent manner. 

C. Dsicussion 
In the literature the supporting software/hardware of HFT 

environments is not considered nor described. Articles within 
this domain concentrate on the algorithms themselves. 
However, we do know they reside on propriety, expensive 
platforms providing latency guarantees. Therefore, one 
assumes consistency of state is achieved via dedicated shared 
access mechanisms operating strict concurrency control. We 
can assume this as the published algorithms rely on accuracy 
of achieving trades as indicated by the underlying technology. 

A low cost solution to provisioning a HFT environment 
could be derived using optimistic replication techniques. The 
performance would be adequate (given current cloud based 
techniques that scale to millions of simultaneous users). 
Unfortunately, the system would suffer, as inconsistency 
would result in past trades not honored due to out-of-date 
quotes on equities. This is compounded because a brief 
amount of time will pass where such trades would be assumed 
honored by a client. Only when the underlying system informs 
that the trade was unsuccessful would a client realize that 
there is a problem.  

Existing scalable optimistic replication schemes providing 
eventually consistent data retrieval systems are not suitable for 
HFT support. For example, Bayou, IceCube, would require 
compensation; Dynamo and Cassandra would not care. 
However, if we extend such systems with two additional 
properties there may be a practical solution: 

• Semantic contention management – utilize the patterns of 
trading exhibited by HFT environments to minimize 
number of inconsistencies present in the system. 

• Client injection rate balancing – alter the rate at which 
clients enact trades. 

We can exploit the prediction properties within HFT 
environments to limit inconsistencies in the replicated state. If 
we know which equities a client may access in the near future 
we can supply a client with updated state before they may 
need them. In addition, if we have preemptively provided a 
client with such state we can prevent others from accessing 
that state in a manner that will result in inconsistency. This 
process of determining who should and should not access 
shared state is termed contention management and is 
commonly found when a shared resource is oversubscribed 
(e.g., network protocols, process scheduling, transactional 
memory – [13, 14, 15]). The ability to exploit application 
behavior in such a decision brings us the term semantic 
contention management. 

Providing semantic contention management alone would 
not provide an adequate solution. Clients in modern day HFT 
environments base their frequency of trades on available 



resources of the platform and the latency of the network. As 
the contention manager actively resolves heightened 
contention for shared resources the overall system will 
decrease in performance, resulting in higher failed trades. If 
clients continue to proceed at too high a frequency then the 
overall system will continue to deteriorate to a level of 
unacceptable failure in terms of the number of lost trades. 
Therefore, clients need to slow their trading frequency to 
achieve an equilibrium that allows contention to be resolved 
adequately. 

Varying client injection rates will, at first thought, reduce 
overall performance. However, this is not the case as the 
successfulness of the overall system in terms of successful 
trades per-second should rise (less failure).  

D. Contribution 
This paper proposes a semantically aware approach for 

managing the volatility commonly found in HFT 
environments. We achieve this by varying client-trading 
frequencies while exploiting the semantic properties inherent 
in algorithmic trading. We summaries our contribution as 
follows in terms of novelty and usefulness: 

• Self-balancing technologies for HFTs – In the literature 
there are no publications relating to HFT software 
support techniques. We propose a supporting technology 
that can balance the required success rate of trades 
against available resources during run-time. Even 
existing systems may benefit, as there appears to be little 
or no consideration of what happens if the resource 
allocation is dynamic during runtime. 

• Client promotion of eventually consistent systems – We 
balance, for the first time, client injection rates against 
inconsistencies in optimistic replication schemes. Thus, 
we provide an avenue for a system to determine injection 
rates to lower inconsistencies. 

• HFT technological requirements – The considerations of 
HFT technological support is a topic yet to be described 
in detail. Here we describe HFT requirements in the 
context of distributed systems research. For the first time 
we identify such requirements and determine how they 
require specialist consideration in terms of existing 
technology (i.e., optimistic replication schemes). 

III. APPROACH 
In this section we present a description of our approach in 

terms of client side and server side responsibilities. A detailed 
description of our initial implementation of semantic 
contention management is provided in [16]. However, [16] 
lacks the variability of client side injection and does not 
account for changing trends within the application domain (two 
key features required for HFT support). We present the 
description in general terms, as there are numerous options for 
specific implementations. The purpose here is to describe the 
combination of techniques to achieve the supporting 

infrastructure. The section on evaluation details the 
implementation details chosen by us. 

A. Architectural Overview 
We assume network clients represent traders and are 

measured in the hundreds. Clients are geographically distinct 
from a server that maintains the correct and consistent state of 
a trading market. Each client maintains a local replica of the 
trading market. A client enacts trades on their local trading 
market copy; this affords a highly responsive environment for 
clients. Trades enacted locally at client replicas are propagated 
to the server. On receiving such trades the server either updates 
the server side trading market based on a client’s trade or 
informs the client that the trade was not possible due to 
inconsistencies. An inconsistency occurs if a client enacted a 
trade on an equity in their local database that was out-of-date 
compared to that of the same equity in the server replica.  

Clients enact trades on their local replica without waiting 
for server notifications. Clients may enact many trades on a 
local replica before been informed by the server that one of its 
past trades was invalid. When such a scenario occurs the client 
rolls back to the failed trade and voids all subsequent trades 
enacted after the failed trade. The client then continues trading 
from this point. The reason for voiding trades is because 
successful trades inform the algorithmic process. If the 
assumption was incorrect (trade was good when it actually 
failed) one can assume subsequent trades should have been 
different in nature. By rolling back we avoid this scenario and 
do not negate the benefits of the algorithm governing client 
trading.  

We assume that all client replicas are duplicates of the 
server before any trades occur within the system. This is an 
initialization issue and can be achieved trivially in existing 
software systems. The server replica represents the 
authoritative state of the trading market and trades successfully 
enacted at the server side cannot be undone.  

Client replicas are updated as and when a failed trade is 
recognized at the server. When a server informs a client that a 
trade was unsuccessful the server also informs the client of 
what parameters are associated to an equity’s valuation status. 
This allows a client to update its own replica and then proceed 
with a more up-to-date view of an equity’s state after rollback 
has occurred. 

An assumption made in the overall progression of the 
system is that clients are only informed of failed trades. 
Consequently, this has the same effect as indicating that all 
proceeding trades to the failed trade were successful. This 
allows clients to realize that such trades will never be rolled 
back, allowing resources reserved for accommodating such an 
event to be released. 

B. Semantic Contention Management 
The system is extended at the server side to handle 

semantic contention management and exploit the patterns 
associated with algorithmic trading. Clients play no role in 
such contention management; they simply receive notification 
of failed trades. 



We assume a basic model of patterns inherent within a 
series of trades. We don’t actually tune the system to best 
reflect the advanced prediction mechanisms in any one specific 
algorithm. We do this to separate our system from a particular 
implementation (as there are many).  

The server maintains a directed graph representing trade 
progression over time. The graph contains a vertex per-equity. 
Edges between vertices represent the likelihood of a client 
trading a series of equities. In figure 1 we represent a world 
with only 5 equities and show the likelihood of progression 
between successful trades. For example, a client has a higher 
rating of progressing from B to E than from B to D. The 
exclusion of an arc does not mean one trade can’t be traded 
after another (e.g., C following A), it simply means that the 
patterns modeled rarely allow it. 

A" B"

C"
D"

E"

9"

2" 7"
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Figure 1 – Directed graph with probabilities 

For clarity we only consider single trades, however, the 
model can be extended to multiple trades. Multiple graphs can 
be aggregated or a single graph may represent trading patterns 
of block trades. Although maintaining a graph in this manner 
may appear expensive in terms of resources, the size of trading 
markets in terms of equities is small compared to data 
repositories common in modern day computing environments 
(e.g., search engines, cloud computing). 

When notifying a client of a failed trade the server not only 
reports back to the client the up-to-date value of the failed 
trade, but the neighboring values of the failed trade in the 
graph. This allows the pre-emptive updating of the client 
replica in the hope that the client will act predictably. The 
detailed algorithm for achieving this is presented in [16]. 

In addition to maintaining such a graph the server also 
maintains a volatility measure for each vertex. This indicates 
how many times per second a particular equity is traded (its 
popularity). When a server recognizes a failed trade it waits to 
inform the client for a period of time based on the popularity of 
the equity. The more popular the equity is, the longer the wait. 
This prevents multiple clients from simultaneously attempting 
the same trade in quick repetition and is a classic back-off 
approach common in shared resource access strategies. 

The graph can be dynamic or static in nature. That is, a 
static graph will remain unchanged over time whereas the 
weightings of edges may change over time in a dynamic graph 
to represent the changing popularities of trading progressions. 
As trading patterns do change subtly over time then the graph 
should represent this. Therefore, we advocate a dynamic graph 
that recognizes changes in patterns and adapts to them. This 
will be based on threshold values and require periodic 
evaluation of historical data to determine which edges and 
vertices are popular over recent trades. 

C. Client Injection Rate Variation  
The server side contention management scheme ensures 

equilibrium of update rates for popular equities by utilizing a 
back-off strategy. However, if clients are left to continue 
trading at the same frequency their rollbacks will increase as 
their trades are backed-off. Therefore, to balance the 
equilibrium of updates achieved at the server side we need to 
adjust the injection rates of trades across clients. In essence, we 
wish to slow down or speed up trading frequencies on a per-
client basis to match the ability of the server to achieve 
successful trades. If this is not achieved the ability of the 
prediction present within algorithmic trading will be wasted as 
all those trades rolled-back would have to be ignored. 

To vary injection rates on a per-client basis a scheme 
relating to rollback threshold may be employed. Given that a 
client knows the degree of rollback, this can be used when 
calculating injection rate. As rollback is relative to the original 
injection rate (too high and rollback will be high, too low and 
rollback will be low), then the new injection rate must be 
relative to the previous inject rate.  

Calculating client back off is not a new paradigm and has 
been researched extensively and showed to work effectively 
for different application domains (e.g., [17]). In our scenario, 
any exponential back-off scheme may be employed with a 
degree of success. As the model of execution occurs primarily 
in a single application domain we propose the adoption of a 
simple back-off approach. However, it may be that algorithmic 
trading properties do lend themselves to particular back-off 
strategies. Unfortunately, it is not possible to explore such 
scenarios within the scope of this paper. 

D. Balancing act 
Successful implementation of our approach should result in 

a scenario where client injection rates and server side back-off 
balance over time (become fairly static). The expectation is that 
the overall system automatically tunes itself to achieve the 
injection rate that best reflects the ability of the underlying 
technology to achieve the optimum number of successful 
trades (manage contention). The semantic nature of the 
contention manager should provide an opportunity to exploit 
patterns of trading to ensure successful trades are higher than 
simply providing a static platform or variable injection rates 
alone.  

IV. EVALUATION 
In this section we describe the evaluation of our approach. 

We first describe the actual techniques we used to 
accommodate semantic contention management and client 
injection rate back-off. We then describe the parameters 
associated to the experiments. Results are then presented with 
explanatory text. 

A. Techniques 
The techniques used in our approach are relatively 

straightforward. We present here an overview to enable 
reproducibility of our results. 

1) Server side back-off 



Each equity (vertex in the graph) has a FIFO queue 
associated to it within which failed trades are placed. Items are 
removed from the queue based on the volatility of the equity. 
Volatility is measured as the number of failed trades over a 
period of time (e.g., second). The higher the volatility value 
the lower the frequency items are taken from the queue. Items 
taken from the queue represent a failed message, with such 
information returned back to a client to inform them that their 
trade was unsuccessful. Hence, when volatility is high the 
frequency of informing clients of failed trades lowers, 
reducing the rate of reattempted trades providing a reduction 
in contention. 

2) Client injection rates 
 When clients receive a message informing them of a 

failed trade they rollback all trades they have carried out since 
the failed trade, resetting the appropriate values in their local 
replica of the trading market. A threshold for rollback 
indicates at which point injection rates are lowered. For 
example, we may deem rollbacks of over 20 trades to require 
lowering of the injection rate (rollback threshold of 20). 
Lowering of a client’s injection rate is via some pre-
determined algorithm. Rollback threshold and the pre-
determined algorithm may vary depending on market 
circumstances and the supporting technology capabilities. In 
our approach we halved the injection rate when rollback 
threshold was breached.  

We expect failed trades to exist, even in a balanced 
system. We increment the injection rate whenever a failed 
trade is reported that does not breach the rollback threshold. 
This is important as we acknowledge that inconsistency will 
persist to some extent within the system. There is a need to 
raise the injection rate to ensure the injection rate can achieve 
balance with the semantic contention management scheme. 
Backing off then slowly increasing the threshold is one way of 
achieving this.  

3) Dynamic graphs 
To satisfy the changing trading patterns of clients over 

time the graph representing the probabilistic progression of 
client trades may alter during runtime. Therefore, the graph is 
modified as and when trades occur. 

A client trading two equities in succession will create an 
edge between such equities in the graph. Unfortunately, if we 
were to continue in this manner we may well end up with a 
fully connected graph, unnecessarily increasing the load in the 
overall system and not allowing distinguishable patterns to be 
observed. Therefore, to allow for the deletion of edges as well 
as the creation of edges we associate a popularity value to an 
edge. If clients progress along an edge they increase its 
popularity value by one.  

Identifying the popularity of an edge provides a scheme 
within which the most popular edges will maintain the highest 
values. Over time this will reflect edge popularity within the 
graph. Unfortunately, we actually want to reflect the current 
popularity of an edge, not the complete historic view. 
Therefore, the graph must be pruned as and when required. 

Periodically, the graph is searched for values below a certain 
threshold. This results in the removal of their edges. After 
pruning the graph all remaining edges are reset to the value 0. 

Periodic pruning and resetting of popularity values 
provides our scheme with a basic reconfiguration process to 
more appropriately reflect current trading patterns. We 
acknowledge that this process of reconfiguration will incur a 
performance cost relative to the number of data items 
(vertices) and edges present in the graph. The decision on the 
time between periodic reconfiguration will be based on a 
number of factors: (i) the relative performance cost of the 
reconfiguration; (ii) the number of client requests within the 
period. If the number of requests is low but reconfiguration 
too frequent then edges may be removed that are still popular. 
Therefore, we dynamically base our reconfiguration timings 
on changes in load. 

An interesting observation of reconfiguration is it also 
presents a window of opportunity to alter the data items 
present. If this was a typical trading market, then new equities 
may be introduced as graph reconfiguration occurs. This has 
two benefits: (i) introduction of items may well alter the 
dynamics of client trading patterns and so waiting for 
reconfiguration would not result in unnecessary overhead as 
graph values change significantly; (ii) one can apply some 
application level analysis on the effect new equites have on 
existing equities items. 

B. Experiments 
We now describe the experiments carried out to determine 

the appropriateness of our approach. Our main requirement is 
to determine if the system balances, and the semantic backoff 
combined with variation in client injection rates secures more 
successful trades than if no semantic backoff was present. 

1) Environmental Parameters 
We produced a discrete event simulation using the 

SimJava [18] framework to generate the results presented 
here. We modeled a realistic representation of the platform, as 
one would expect in n-tier architectures (clients, load balancer, 
application servers and database). All communication is 
performed through message passing. Trade requests are sent 
from client processes to the local replica then forwarded to the 
load balancer process that in turn forwards the requests to the 
appropriate application server. To service a trade request, an 
application server will communicate with the database as 
required to determine whether the trade is possible.  

In each experiment, we simulated 100 clients, three 
application servers and one database. A graph with 500 
vertices is randomly generated along with client accesses 
being pre-generated based on the layout of the graph. The 
initial graph layout contains vertices with and without edges. 
Over the duration of the experiment, reconfiguration of the 
graph will occur changing the structure to match that of the 
client accesses. Reconfiguration occurs every 30 seconds with 
a popularity threshold of one. This period was chosen after 
experimentation and was found to provide a balance between 



graph consistency and reconfiguration overhead. As HFT is a 
rather rapidly unfolding scenario we found typical values too 
high for a realistic simulation. The rollback threshold was 
chosen to allow for any edges that were used at least once to 
appear in the graph after the next reconfiguration.  

Message delay between clients and application servers 
(load balancer) was simulated as a random variable with a 
normal distribution between 1 - 25 milliseconds. This is 
slightly higher than one would expect in HFT environments. 
However, as the purpose here is to determine the suitability of 
a low cost platform for HFT support these figures were 
considered typical of cheap commodity cloud hardware. A 
fixed injection rate of 100 messages per second at each client 
was chosen as an initial figure but is modified over time given 
the desired rollback threshold. Processing overheads at the 
server were set for each trade request as 20 microseconds and 
for graph reconfiguration as 100 microseconds. At the 
database, read and writes were modelled as 3 and 6 
microseconds respectively.  

Three evaluations were performed: (1) the average length a 
client is required to rollback when receiving a message from 
the server; (2) a measurement of throughput for successful 
trades per second (measured at the server side database); and 
(3) the total number of unsuccessful trades. For each 
experiment the threshold for the injection rate modification is 
increased in intervals of ten. Each client performs 200 trade 
requests and leaves the system. The results presented in each 
graph were produced from the average of 10 executions. 

C. Results 
Figure 2 shows the graph representing successful trades 

per second across the whole system. When the rollback 
threshold initially rises there is an improvement in 
performance. When the rollback threshold is too low clients 
are persistently rolling back too frequently to allow the client 
injection rates to rise sufficiently high to achieve their 
optimum values. Each line displays an optimum point at 
which injection rates reach an appropriate value for 
maximizing successful trades. 

The approach including semantic contention management 
(back-off) (exploiting predictable trading behaviors) clearly 
outperforms the approach where no back-off management is 
present. Furthermore, the optimum injection rate for semantic 
back off is higher; indicating that overall throughput of the 
system is significantly better. An interesting observation is 
that optimum injection rates are much more significant when 
semantic back off is present, indicating that the two schemes 
are working collaboratively in a self-tuning manner.  

Figure 3 shows the average rollback of clients and clearly 
shows that when semantic contention management is present 
higher rollback thresholds result in longer rollbacks. This is to 
be expected as the server will delay informing a client of an 
unsuccessful trade in the presence of high contention for an 
equity. 

 
 Figure 2 – Trades across whole system with varying rollback thresholds. 

 
Figure 3 – Average rollback of clients across the system. 

 
Figure 4 – Total of unsuccessful trades. 

An interesting conclusion may be drawn from considering 
the graphs in figures 2 and 3: an increased average rollback 
does not result in poorer trading success for a client as long as 
semantic back off is employed. This can be explained, 
possibly, by the greater amount of information provided by the 
server (updated values for equities that a client may trade in 
the future). In addition, by also lowering the contention of an 



equity there is a greater chance of achieving a successful trade 
as other clients are backed off. 

Figure 4 shows the total number of unsuccessful trades 
over a run of the system. The variable injection rate has a 
dramatic effect on improving clients when no semantic back 
off is present. This is to be expected as most schemes that use 
back off only schemes share this property. The most 
interesting aspect of this graph is how successful combining 
variable injection rates with semantic back off is. Even for low 
injection rates, the system has approximately 50% fewer 
unsuccessful trades. 

V. CONCLUSION 
We have described an approach for managing the volatility 

of HFT environments. Our approach provides an automated 
self-tuning platform that combines semantic contention 
management and managed trading frequencies to achieve an 
optimum trading solution. Our approach can adapt to changes 
in trading patterns, hardware/software resources and trading 
volumes during runtime to find an appropriate balance 
between client trading injection rates and successful trades. 

Our approach is founded in optimistic replication schemes 
and affords high frequency trades by replicating trading 
markets at the clients. Such replicas maintain the property of 
eventual consistency. Our earlier work demonstrated the 
usefulness of semantic contention management for optimistic 
replication schemes [16]. Here we extend our previous work 
substantially with the ability to adapt to changes in application 
behavior during runtime, the addition of automated 
management of client injection rates (trades per second), and 
provisioning a solution for HFT environments ([16] was 
predominantly concerned with e-commerce). 

We show via experimentation that our approach provides 
significant performance improvements in attaining successful 
trades. Unfortunately, benchmarking for HFT support 
technology is yet to be described in the literature that is 
suitable for our purposes. In fact, there is little beyond the 
relationship of HFT to publish/subscribe middleware in the 
literature [19]. Therefore, we hope this work brings additional 
participation to tackling the problem of provisioning HFT 
software solutions. 

Future work will focus on robustness of HFT middleware. 
Fault-tolerance brings significant processing overheads to any 
solution (or great cost). We shall explore how pessimistic 
replication strategies we have developed within n-tier 
platforms [20] may be integrated into our HFT model with 
minimal hindrances to performance. 
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