

COMPUTING
SCIENCE

Volatility Management of High Frequency Trading Environments

Matthew Brook, Craig Sharp, Gary Ushaw, William Blewitt and
Graham Morgan

TECHNICAL REPORT SERIES

No. CS-TR-1390 July 2013

TECHNICAL REPORT SERIES

No. CS-TR-1390 July, 2013

Volatility Management of High Frequency Trading
Environments

M. Brook, C. Sharp, G. Ushaw, W. Blewitt and G. Morgan

Abstract

High frequency trading (HFT) environments provide technologies that enable
algorithmic trading within automated marketplaces. The most prominent example of
an HFT environment is within equity trading, where many millions of trades are
achieved at a high volume to gain a reasonable cumulative profit. Such environments
rely on low latency/high performance technologies to allow trades to react in a timely
manner to market volatility. However, sometimes the volatility of the market goes
beyond what supporting infrastructure can allow, resulting in erroneous behaviour of
the marketplace. In this paper we tackle the problem of managing market volatility to
limit erroneous market behaviour. Our approach is unique in that it is non-dependent
on the trading environment itself and self-regulates based only on trading frequency
and contention. We demonstrate our results and show that by managing trade
injection rates and contention of shared state the volatility of HFT environments can
be managed appropriately and in an automated manner.

© 2013 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

BROOK., B. SHARP, C., USHAW, G., BLEWITT, W., MORGAN, G.

Volatility Management of High Frequency Trading Environments
[By] M. Brook, C. Sharp, G. Ushaw, W. Blewitt, G. Morgan

Newcastle upon Tyne: Newcastle University: Computing Science, 2013.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1390)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1390

Abstract

High frequency trading (HFT) environments provide technologies that enable algorithmic trading within
automated marketplaces. The most prominent example of an HFT environment is within equity trading, where
many millions of trades are achieved at a high volume to gain a reasonable cumulative profit. Such environments
rely on low latency/high performance technologies to allow trades to react in a timely manner to market volatility.
However, sometimes the volatility of the market goes beyond what supporting infrastructure can allow, resulting
in erroneous behaviour of the marketplace. In this paper we tackle the problem of managing market volatility to
limit erroneous market behaviour. Our approach is unique in that it is non-dependent on the trading environment
itself and self-regulates based only on trading frequency and contention. We demonstrate our results and show that
by managing trade injection rates and contention of shared state the volatility of HFT environments can be
managed appropriately and in an automated manner.

About the authors

Matthew Brook is a Phd student in the School of Computing Science at Newcastle University.

Craig Sharp is a Research Assistant in the School of Computing Science at Newcastle University.

Dr Gary Ushaw is a Teaching Fellow in the School of Computing Science at Newcastle University. He worked for
15 years in the video games industry as Engineering Lead and Project Manager, with companies such as Sony,
Ubisoft, Atari, BBC Worldwide and Rockstar, following a PhD attained from the University of Edinburgh's Signal
Processing Group.

William Blewitt is a Research Associate in the School of Computing Science at Newcastle University.

Dr Graham Morgan is a lecturer in the School of Computing Science at Newcastle University. His interests are in
the area of distributed applications, including web services, networked virtual environments, fault tolerance and
group communications.

Suggested keywords

REPLICATION
EVENTUAL CONSISTENCY
HIGH FREQUENCY TRADING

Volatility Management of High Frequency Trading
Environments

Matthew Brook, Craig Sharp, Gary Ushaw, William Blewitt, Graham Morgan
School of Computing Science, Newcastle University, UK

 (m.j.brook1, craig.sharp, gary.ushaw, w.g.blewitt, graham.morgan)@newcastle.ac.uk>

Abstract—High frequency trading (HFT) environments
provide technologies that enable algorithmic trading within
automated marketplaces. The most prominent example of an
HFT environment is within equity trading, where many millions
of trades are achieved at a high volume to gain a reasonable
cumulative profit. Such environments rely on low latency/high
performance technologies to allow trades to react in a timely
manner to market volatility. However, sometimes the volatility of
the market goes beyond what supporting infrastructure can
allow, resulting in erroneous behaviour of the marketplace. In
this paper we tackle the problem of managing market volatility
to limit erroneous market behaviour. Our approach is unique in
that it is non-dependent on the trading environment itself and
self-regulates based only on trading frequency and contention.
We demonstrate our results and show that by managing trade
injection rates and contention of shared state the volatility of
HFT environments can be managed appropriately and in an
automated manner.

Keywords—replication; eventual consistency; high frequency
trading;

I. INTRODUCTION
In distributed systems research there are few application

domains as sensitive to timeliness as high frequency trading
(HFT) environments. The requirement to trade at intervals
measured in a fraction of a second need to be satisfied to attain
a fractional profit. Over time the accumulation of such trades
can afford a substantial profit. The equation is simple; increase
the frequency of trades increases profits.

Issues arise in all equity markets when contention for
equities rises. We use the term contention to refer to the degree
to which simultaneous trades are requested on the same equity.
Such scenarios in human driven trades reflect volatility in the
market and could lead to undesirable outcomes (significant
drops, possibly economically unwarranted). In a HFT scenario
the result could be disastrous due to the lack of human
intervention coupled with the trading frequency. Research into
algorithmic trading expends great effort in integrating safety
measures into algorithms to avoid such scenarios.

In this paper we consider an alternative approach to
managing volatility in HFT environments. We propose pushing
responsibility for managing volatility to the supporting
software infrastructure on which HFT algorithms execute. We

use contention management techniques that exploit the
semantics of HFT trading (patterns) combined with forcibly
varying the trading rates of clients. This removes volatility and
provides a safety net for algorithmic trading, alleviating such
algorithms from having to encode their own, sometimes very
complex, solutions to avoid unchecked volatility.

Our solution at first glance appears unintuitive (back off
trades and lower the trading frequency). However, we show
that a supporting platform that is semantically aware of its
application domain can actually improve successful trade
throughput for HFT environments. We achieve this by utilizing
techniques often associated with high performance, scalable
replication schemes used in cloud computing and server side
technology (e.g., search engines, cloud resource management).
With appropriate client side extensions and increased reach of
state replication, our scheme provides an eventually consistent
solution for HFT deployment.

As we are combining two distinct areas of research (HFT
environments and scalable replication schemes) we afford a
generous background and related work section. This is to
provide the reader with all required terminology and
understanding for the remainder of the paper. Section 3
presents our approach in general terms. Section 4 presents a
reproducible description of our approach for experimental
purposes. We also show, via simulation, how successful our
approach is in achieving high trading success rates. Section 5
presents our concluding remarks and discusses our future work
in this area.

II. BACKGROUND AND RELATED WORK
In this section we describe how existing scalable

replication schemes in modern day data retrieval systems may
be adaptable for use within HFT environments. To do this we
first describe HFT environments in terms of their
computational requirements and technological shortcomings.
We then describe scalable data replication schemes and the
benefits they bring to a number of different application
domains. We finish this section with our argument suggesting
how scalable replication schemes may be tailored to bring a
cost efficient, yet improved, solution to the technical demands
of HFT environments.

A. High Frequency Trading
Equity markets are traditionally the domains of human

directed trading. However, with the advent of computers,
attempts were made to encode human style trading within
automated procedures. From the 1970s the introduction of
computerization has increasingly provided the opportunity for
algorithmic trading to occur with ever reducing dependence on
human-in-the-loop intervention [1].

In the 1980s there were a number of advances in
computerization that provided the first recognizable fully
automated trading environments (e.g., pair trading utilizing
statistical arbitrage and convergence trading strategy [2]). Such
devices were considered low-risk, yet yielded profits [1].
However, there is debate, academically, as to how much such
systems contribute to undesirable market conditions (e.g.,
bubbles, crashes, flash crashes). Although an interesting
academic discussion, it is beyond the scope of this paper to
consider the appropriateness of algorithmic trading. We are
only interested in the fact that such systems exist and require
software support.

Algorithmic trading software can be constructed based on
pattern recognition technology and may utilise modern day
artificial intelligence techniques (e.g., genetic algorithms,
neural networks). The basic premise is that patterns of trading,
possibly quite complex, can inform future trades in a
positive/profitable manner. Trends can be predicted (with a
degree of probability) for a period of time into the future. Such
prediction models have higher probabilities of success if their
time horizon is shorter. However, the shorter the time horizon
between trades (buy an equity then sell) the lower the profits
per trade. Other trading mechanisms may also be employed
(e.g., short selling), but the principals related to profits remains
the same.

Recently the low latency high performance capabilities of
modern computer systems have allowed algorithmic trading
systems to trade at high frequencies (HFT). HFT allows
fractional profits to be made on trades occurring many times a
second. This suits algorithmic trading as time horizons are low
while the volume of trades is high enough to generate a
suitable profit over a reasonable time. Reports suggest that
HFT is widespread; accounting for approximately 35% of UK
and 70% of US equity trades [3].

There are a number of techniques used to construct
algorithmic trading solutions. However, all solutions are
embodied within the algorithms employed to determine trading
bounds on equity value. That is, the supporting technology
simply affords the high frequency required to allow different
styles of algorithms to succeed in an HFT environment. In this
respect, a detrition of the underlying technology in terms of
performance would hinder the success of the algorithms
themselves.

There are numerous articles published with respect to the
algorithmic nature of automated trading of equities. However,
such literature stands alone from the supporting technology
itself. The only assumption made by the literature in terms of
software/hardware platform is an ability to attain so many
trades per-second at the platform level. When technology

deteriorates in performance the supported algorithms may
underperform as latency of trades increase. As such, HFT
environments are expensive as the latest technology is
employed to provide robust high performance solutions to
ensure a minimum latency is guaranteed.

B. Scalable Networked Replication Schemes
Scalability in data retrieval systems implemented across

computer networks primarily depends on replication strategies.
In essence, data is replicated and it is these replicas with which
clients interact. In many instances, such data is co-located with
the clients themselves. This lowers access times for such data
as no or little network latency is involved. Even if the data is
not geographically close to a client overall performance will
improve as replicas afford many more opportunities for data
access (there are more of them) than a single, non-replicated
data item. This is because to maintain correctness (in terms of
consistency) of a data item concurrent accesses need to be
regulated in some way [4]. As concurrency control has no
scalable solution for general data access strategies then
minimising its usage is a necessity if a scalable system is
desired.

The replication of data brings about higher availability of a
system; as replicas fail or are taken down for maintenance
other replicas may continue to satisfy the demands of clients.
Flexibility may also be introduced by allowing replicas to be
added to the system or taken away depending on the load of the
system. This makes economic sense as when load is light (e.g.,
low client numbers or infrequent client requests) power
consumption can be saved as machines are removed. This is
similar to the commodity cost model found in cloud
computing. Most data retrieval systems for cloud-based
applications are based on data replication policies for increased
performance [5].

The problem with data replication schemes is the degree of
consistency they exhibit. If replicas were required to be always
viewed the same by all clients (mutually consistent views) then
we would have a pessimistic approach. Unfortunately,
pessimistic approaches are non-scalable, as all replicas would
need to agree what their state is (to make sure that if two
clients simultaneously request state from replicas representing
the same data item that they get the same value). Therefore, in
all scalable solutions to data replication the optimistic approach
is favoured.

Optimistic replication schemes allow parts of a distributed
application to progress in the presence of transient
unreachability of one or more geographically separated sub-
systems. This property also ensures that optimistic replication
may scale to a large number of replicas due to the lightweight
synchronisation requirement compared to that found in their
pessimistic counterparts.

Optimistic replication suits those applications where
inconsistencies occur rarely. This may be due to the static
nature of data (i.e., elements of data do not change – reads are
much more common than writes) or the compartmented nature
of the data itself (e.g., interference across replicas is low). As
such, optimistic replication has become a popular solution in

many well known distributed applications that share these traits
(e.g., search engines, resource discovery).

Eventual consistency [6, 7] is the term used to describe the
property that guarantees the convergence of replicated states
within an optimistic replication scheme. In principal, all
replicas will converge, as past inconsistencies will be
reconciled at some point during future execution. It follows
that an absence of writes coupled with a window of full
connectivity across replicas is required to ensure all replicas
become mutually consistent. This is a version of the consensus
problem with well-understood provable properties, providing a
solid theoretical basis for optimistic replication schemes based
on eventually consistent protocols.

An early example of a practical solution using a basic
optimistic replication strategy over the Internet can be found in
DNS [7]. However, it was the popularity of mobile networks
(transient connectivity) and the need to access unreliable data
repositories with low latencies (availability, scalability) that
brought about increased research activity in optimistic
replication schemes.

Two of the most popular, and well-known, optimistic
replication techniques were developed to satisfy industry
demands. Dynamo [8] was developed to provide Amazon with
availability support for its server infrastructure. As Amazon
consists of many thousands of components, failures occur
continuously and therefore consistency is sacrificed to achieve
availability. Cassandra [9] was developed to allow scalable
management of user messages on facebook. Similar to
Dynamo, Cassandra is expected to run on thousands of nodes
where consistency can be sacrificed to aid availability. These
recent works find their foundations in earlier academic
research. We now describe two of these earlier systems to
highlight the requirements tackled that led to modern day
server-side optimistic replication solutions.

Bayou [10] is an optimistic replication scheme designed
with the goal of satisfying consistency requirements of shared
state that resides across mobile devices. In essence, devices can
access and update their local copy of shared state with
synchronisation occurring once connectivity between other
devices has been re-established. During synchronisation there
is a chance that some of the local actions enacted on shared
state cannot be honoured. In such circumstances devices
attempt an alternate request (determined by the application
programmer). The challenging aspect of Bayou is the ability to
propagate synchronisation across peer-to-peer mobile networks
epidemically (no central server).

The IceCube system [11, 12] goes beyond Bayou in
creating a framework within which an optimal reconciliation of
replica states may occur in the context of application
dependencies. That is, minimise those local actions that cannot
be honoured. In essence, the application developer identifies
constraints between actions that act upon shared state that in
turn are used to create a single re-playable schedule of actions.
By using constraints the developer has the ability to inform
what type of reconciliation would be most appropriate before
reconciliation occurs (the optimal schedule). Such a schedule
may be replayed at replicas to not only arrive at a consistent
state, but a state that best satisfies the intent of the actions

occurring in the overall system. This reduces the number of
those actions that could not be honoured. Irreconcilable actions
are dropped from the schedule and the system must handle
these exceptions in an application dependent manner.

C. Dsicussion
In the literature the supporting software/hardware of HFT

environments is not considered nor described. Articles within
this domain concentrate on the algorithms themselves.
However, we do know they reside on propriety, expensive
platforms providing latency guarantees. Therefore, one
assumes consistency of state is achieved via dedicated shared
access mechanisms operating strict concurrency control. We
can assume this as the published algorithms rely on accuracy
of achieving trades as indicated by the underlying technology.

A low cost solution to provisioning a HFT environment
could be derived using optimistic replication techniques. The
performance would be adequate (given current cloud based
techniques that scale to millions of simultaneous users).
Unfortunately, the system would suffer, as inconsistency
would result in past trades not honored due to out-of-date
quotes on equities. This is compounded because a brief
amount of time will pass where such trades would be assumed
honored by a client. Only when the underlying system informs
that the trade was unsuccessful would a client realize that
there is a problem.

Existing scalable optimistic replication schemes providing
eventually consistent data retrieval systems are not suitable for
HFT support. For example, Bayou, IceCube, would require
compensation; Dynamo and Cassandra would not care.
However, if we extend such systems with two additional
properties there may be a practical solution:

• Semantic contention management – utilize the patterns of
trading exhibited by HFT environments to minimize
number of inconsistencies present in the system.

• Client injection rate balancing – alter the rate at which
clients enact trades.

We can exploit the prediction properties within HFT
environments to limit inconsistencies in the replicated state. If
we know which equities a client may access in the near future
we can supply a client with updated state before they may
need them. In addition, if we have preemptively provided a
client with such state we can prevent others from accessing
that state in a manner that will result in inconsistency. This
process of determining who should and should not access
shared state is termed contention management and is
commonly found when a shared resource is oversubscribed
(e.g., network protocols, process scheduling, transactional
memory – [13, 14, 15]). The ability to exploit application
behavior in such a decision brings us the term semantic
contention management.

Providing semantic contention management alone would
not provide an adequate solution. Clients in modern day HFT
environments base their frequency of trades on available

resources of the platform and the latency of the network. As
the contention manager actively resolves heightened
contention for shared resources the overall system will
decrease in performance, resulting in higher failed trades. If
clients continue to proceed at too high a frequency then the
overall system will continue to deteriorate to a level of
unacceptable failure in terms of the number of lost trades.
Therefore, clients need to slow their trading frequency to
achieve an equilibrium that allows contention to be resolved
adequately.

Varying client injection rates will, at first thought, reduce
overall performance. However, this is not the case as the
successfulness of the overall system in terms of successful
trades per-second should rise (less failure).

D. Contribution
This paper proposes a semantically aware approach for

managing the volatility commonly found in HFT
environments. We achieve this by varying client-trading
frequencies while exploiting the semantic properties inherent
in algorithmic trading. We summaries our contribution as
follows in terms of novelty and usefulness:

• Self-balancing technologies for HFTs – In the literature
there are no publications relating to HFT software
support techniques. We propose a supporting technology
that can balance the required success rate of trades
against available resources during run-time. Even
existing systems may benefit, as there appears to be little
or no consideration of what happens if the resource
allocation is dynamic during runtime.

• Client promotion of eventually consistent systems – We
balance, for the first time, client injection rates against
inconsistencies in optimistic replication schemes. Thus,
we provide an avenue for a system to determine injection
rates to lower inconsistencies.

• HFT technological requirements – The considerations of
HFT technological support is a topic yet to be described
in detail. Here we describe HFT requirements in the
context of distributed systems research. For the first time
we identify such requirements and determine how they
require specialist consideration in terms of existing
technology (i.e., optimistic replication schemes).

III. APPROACH
In this section we present a description of our approach in

terms of client side and server side responsibilities. A detailed
description of our initial implementation of semantic
contention management is provided in [16]. However, [16]
lacks the variability of client side injection and does not
account for changing trends within the application domain (two
key features required for HFT support). We present the
description in general terms, as there are numerous options for
specific implementations. The purpose here is to describe the
combination of techniques to achieve the supporting

infrastructure. The section on evaluation details the
implementation details chosen by us.

A. Architectural Overview
We assume network clients represent traders and are

measured in the hundreds. Clients are geographically distinct
from a server that maintains the correct and consistent state of
a trading market. Each client maintains a local replica of the
trading market. A client enacts trades on their local trading
market copy; this affords a highly responsive environment for
clients. Trades enacted locally at client replicas are propagated
to the server. On receiving such trades the server either updates
the server side trading market based on a client’s trade or
informs the client that the trade was not possible due to
inconsistencies. An inconsistency occurs if a client enacted a
trade on an equity in their local database that was out-of-date
compared to that of the same equity in the server replica.

Clients enact trades on their local replica without waiting
for server notifications. Clients may enact many trades on a
local replica before been informed by the server that one of its
past trades was invalid. When such a scenario occurs the client
rolls back to the failed trade and voids all subsequent trades
enacted after the failed trade. The client then continues trading
from this point. The reason for voiding trades is because
successful trades inform the algorithmic process. If the
assumption was incorrect (trade was good when it actually
failed) one can assume subsequent trades should have been
different in nature. By rolling back we avoid this scenario and
do not negate the benefits of the algorithm governing client
trading.

We assume that all client replicas are duplicates of the
server before any trades occur within the system. This is an
initialization issue and can be achieved trivially in existing
software systems. The server replica represents the
authoritative state of the trading market and trades successfully
enacted at the server side cannot be undone.

Client replicas are updated as and when a failed trade is
recognized at the server. When a server informs a client that a
trade was unsuccessful the server also informs the client of
what parameters are associated to an equity’s valuation status.
This allows a client to update its own replica and then proceed
with a more up-to-date view of an equity’s state after rollback
has occurred.

An assumption made in the overall progression of the
system is that clients are only informed of failed trades.
Consequently, this has the same effect as indicating that all
proceeding trades to the failed trade were successful. This
allows clients to realize that such trades will never be rolled
back, allowing resources reserved for accommodating such an
event to be released.

B. Semantic Contention Management
The system is extended at the server side to handle

semantic contention management and exploit the patterns
associated with algorithmic trading. Clients play no role in
such contention management; they simply receive notification
of failed trades.

We assume a basic model of patterns inherent within a
series of trades. We don’t actually tune the system to best
reflect the advanced prediction mechanisms in any one specific
algorithm. We do this to separate our system from a particular
implementation (as there are many).

The server maintains a directed graph representing trade
progression over time. The graph contains a vertex per-equity.
Edges between vertices represent the likelihood of a client
trading a series of equities. In figure 1 we represent a world
with only 5 equities and show the likelihood of progression
between successful trades. For example, a client has a higher
rating of progressing from B to E than from B to D. The
exclusion of an arc does not mean one trade can’t be traded
after another (e.g., C following A), it simply means that the
patterns modeled rarely allow it.

A" B"

C"
D"

E"

9"

2" 7"

9"

9"

Figure 1 – Directed graph with probabilities

For clarity we only consider single trades, however, the
model can be extended to multiple trades. Multiple graphs can
be aggregated or a single graph may represent trading patterns
of block trades. Although maintaining a graph in this manner
may appear expensive in terms of resources, the size of trading
markets in terms of equities is small compared to data
repositories common in modern day computing environments
(e.g., search engines, cloud computing).

When notifying a client of a failed trade the server not only
reports back to the client the up-to-date value of the failed
trade, but the neighboring values of the failed trade in the
graph. This allows the pre-emptive updating of the client
replica in the hope that the client will act predictably. The
detailed algorithm for achieving this is presented in [16].

In addition to maintaining such a graph the server also
maintains a volatility measure for each vertex. This indicates
how many times per second a particular equity is traded (its
popularity). When a server recognizes a failed trade it waits to
inform the client for a period of time based on the popularity of
the equity. The more popular the equity is, the longer the wait.
This prevents multiple clients from simultaneously attempting
the same trade in quick repetition and is a classic back-off
approach common in shared resource access strategies.

The graph can be dynamic or static in nature. That is, a
static graph will remain unchanged over time whereas the
weightings of edges may change over time in a dynamic graph
to represent the changing popularities of trading progressions.
As trading patterns do change subtly over time then the graph
should represent this. Therefore, we advocate a dynamic graph
that recognizes changes in patterns and adapts to them. This
will be based on threshold values and require periodic
evaluation of historical data to determine which edges and
vertices are popular over recent trades.

C. Client Injection Rate Variation
The server side contention management scheme ensures

equilibrium of update rates for popular equities by utilizing a
back-off strategy. However, if clients are left to continue
trading at the same frequency their rollbacks will increase as
their trades are backed-off. Therefore, to balance the
equilibrium of updates achieved at the server side we need to
adjust the injection rates of trades across clients. In essence, we
wish to slow down or speed up trading frequencies on a per-
client basis to match the ability of the server to achieve
successful trades. If this is not achieved the ability of the
prediction present within algorithmic trading will be wasted as
all those trades rolled-back would have to be ignored.

To vary injection rates on a per-client basis a scheme
relating to rollback threshold may be employed. Given that a
client knows the degree of rollback, this can be used when
calculating injection rate. As rollback is relative to the original
injection rate (too high and rollback will be high, too low and
rollback will be low), then the new injection rate must be
relative to the previous inject rate.

Calculating client back off is not a new paradigm and has
been researched extensively and showed to work effectively
for different application domains (e.g., [17]). In our scenario,
any exponential back-off scheme may be employed with a
degree of success. As the model of execution occurs primarily
in a single application domain we propose the adoption of a
simple back-off approach. However, it may be that algorithmic
trading properties do lend themselves to particular back-off
strategies. Unfortunately, it is not possible to explore such
scenarios within the scope of this paper.

D. Balancing act
Successful implementation of our approach should result in

a scenario where client injection rates and server side back-off
balance over time (become fairly static). The expectation is that
the overall system automatically tunes itself to achieve the
injection rate that best reflects the ability of the underlying
technology to achieve the optimum number of successful
trades (manage contention). The semantic nature of the
contention manager should provide an opportunity to exploit
patterns of trading to ensure successful trades are higher than
simply providing a static platform or variable injection rates
alone.

IV. EVALUATION
In this section we describe the evaluation of our approach.

We first describe the actual techniques we used to
accommodate semantic contention management and client
injection rate back-off. We then describe the parameters
associated to the experiments. Results are then presented with
explanatory text.

A. Techniques
The techniques used in our approach are relatively

straightforward. We present here an overview to enable
reproducibility of our results.

1) Server side back-off

Each equity (vertex in the graph) has a FIFO queue
associated to it within which failed trades are placed. Items are
removed from the queue based on the volatility of the equity.
Volatility is measured as the number of failed trades over a
period of time (e.g., second). The higher the volatility value
the lower the frequency items are taken from the queue. Items
taken from the queue represent a failed message, with such
information returned back to a client to inform them that their
trade was unsuccessful. Hence, when volatility is high the
frequency of informing clients of failed trades lowers,
reducing the rate of reattempted trades providing a reduction
in contention.

2) Client injection rates
 When clients receive a message informing them of a

failed trade they rollback all trades they have carried out since
the failed trade, resetting the appropriate values in their local
replica of the trading market. A threshold for rollback
indicates at which point injection rates are lowered. For
example, we may deem rollbacks of over 20 trades to require
lowering of the injection rate (rollback threshold of 20).
Lowering of a client’s injection rate is via some pre-
determined algorithm. Rollback threshold and the pre-
determined algorithm may vary depending on market
circumstances and the supporting technology capabilities. In
our approach we halved the injection rate when rollback
threshold was breached.

We expect failed trades to exist, even in a balanced
system. We increment the injection rate whenever a failed
trade is reported that does not breach the rollback threshold.
This is important as we acknowledge that inconsistency will
persist to some extent within the system. There is a need to
raise the injection rate to ensure the injection rate can achieve
balance with the semantic contention management scheme.
Backing off then slowly increasing the threshold is one way of
achieving this.

3) Dynamic graphs
To satisfy the changing trading patterns of clients over

time the graph representing the probabilistic progression of
client trades may alter during runtime. Therefore, the graph is
modified as and when trades occur.

A client trading two equities in succession will create an
edge between such equities in the graph. Unfortunately, if we
were to continue in this manner we may well end up with a
fully connected graph, unnecessarily increasing the load in the
overall system and not allowing distinguishable patterns to be
observed. Therefore, to allow for the deletion of edges as well
as the creation of edges we associate a popularity value to an
edge. If clients progress along an edge they increase its
popularity value by one.

Identifying the popularity of an edge provides a scheme
within which the most popular edges will maintain the highest
values. Over time this will reflect edge popularity within the
graph. Unfortunately, we actually want to reflect the current
popularity of an edge, not the complete historic view.
Therefore, the graph must be pruned as and when required.

Periodically, the graph is searched for values below a certain
threshold. This results in the removal of their edges. After
pruning the graph all remaining edges are reset to the value 0.

Periodic pruning and resetting of popularity values
provides our scheme with a basic reconfiguration process to
more appropriately reflect current trading patterns. We
acknowledge that this process of reconfiguration will incur a
performance cost relative to the number of data items
(vertices) and edges present in the graph. The decision on the
time between periodic reconfiguration will be based on a
number of factors: (i) the relative performance cost of the
reconfiguration; (ii) the number of client requests within the
period. If the number of requests is low but reconfiguration
too frequent then edges may be removed that are still popular.
Therefore, we dynamically base our reconfiguration timings
on changes in load.

An interesting observation of reconfiguration is it also
presents a window of opportunity to alter the data items
present. If this was a typical trading market, then new equities
may be introduced as graph reconfiguration occurs. This has
two benefits: (i) introduction of items may well alter the
dynamics of client trading patterns and so waiting for
reconfiguration would not result in unnecessary overhead as
graph values change significantly; (ii) one can apply some
application level analysis on the effect new equites have on
existing equities items.

B. Experiments
We now describe the experiments carried out to determine

the appropriateness of our approach. Our main requirement is
to determine if the system balances, and the semantic backoff
combined with variation in client injection rates secures more
successful trades than if no semantic backoff was present.

1) Environmental Parameters
We produced a discrete event simulation using the

SimJava [18] framework to generate the results presented
here. We modeled a realistic representation of the platform, as
one would expect in n-tier architectures (clients, load balancer,
application servers and database). All communication is
performed through message passing. Trade requests are sent
from client processes to the local replica then forwarded to the
load balancer process that in turn forwards the requests to the
appropriate application server. To service a trade request, an
application server will communicate with the database as
required to determine whether the trade is possible.

In each experiment, we simulated 100 clients, three
application servers and one database. A graph with 500
vertices is randomly generated along with client accesses
being pre-generated based on the layout of the graph. The
initial graph layout contains vertices with and without edges.
Over the duration of the experiment, reconfiguration of the
graph will occur changing the structure to match that of the
client accesses. Reconfiguration occurs every 30 seconds with
a popularity threshold of one. This period was chosen after
experimentation and was found to provide a balance between

graph consistency and reconfiguration overhead. As HFT is a
rather rapidly unfolding scenario we found typical values too
high for a realistic simulation. The rollback threshold was
chosen to allow for any edges that were used at least once to
appear in the graph after the next reconfiguration.

Message delay between clients and application servers
(load balancer) was simulated as a random variable with a
normal distribution between 1 - 25 milliseconds. This is
slightly higher than one would expect in HFT environments.
However, as the purpose here is to determine the suitability of
a low cost platform for HFT support these figures were
considered typical of cheap commodity cloud hardware. A
fixed injection rate of 100 messages per second at each client
was chosen as an initial figure but is modified over time given
the desired rollback threshold. Processing overheads at the
server were set for each trade request as 20 microseconds and
for graph reconfiguration as 100 microseconds. At the
database, read and writes were modelled as 3 and 6
microseconds respectively.

Three evaluations were performed: (1) the average length a
client is required to rollback when receiving a message from
the server; (2) a measurement of throughput for successful
trades per second (measured at the server side database); and
(3) the total number of unsuccessful trades. For each
experiment the threshold for the injection rate modification is
increased in intervals of ten. Each client performs 200 trade
requests and leaves the system. The results presented in each
graph were produced from the average of 10 executions.

C. Results
Figure 2 shows the graph representing successful trades

per second across the whole system. When the rollback
threshold initially rises there is an improvement in
performance. When the rollback threshold is too low clients
are persistently rolling back too frequently to allow the client
injection rates to rise sufficiently high to achieve their
optimum values. Each line displays an optimum point at
which injection rates reach an appropriate value for
maximizing successful trades.

The approach including semantic contention management
(back-off) (exploiting predictable trading behaviors) clearly
outperforms the approach where no back-off management is
present. Furthermore, the optimum injection rate for semantic
back off is higher; indicating that overall throughput of the
system is significantly better. An interesting observation is
that optimum injection rates are much more significant when
semantic back off is present, indicating that the two schemes
are working collaboratively in a self-tuning manner.

Figure 3 shows the average rollback of clients and clearly
shows that when semantic contention management is present
higher rollback thresholds result in longer rollbacks. This is to
be expected as the server will delay informing a client of an
unsuccessful trade in the presence of high contention for an
equity.

 Figure 2 – Trades across whole system with varying rollback thresholds.

Figure 3 – Average rollback of clients across the system.

Figure 4 – Total of unsuccessful trades.

An interesting conclusion may be drawn from considering
the graphs in figures 2 and 3: an increased average rollback
does not result in poorer trading success for a client as long as
semantic back off is employed. This can be explained,
possibly, by the greater amount of information provided by the
server (updated values for equities that a client may trade in
the future). In addition, by also lowering the contention of an

equity there is a greater chance of achieving a successful trade
as other clients are backed off.

Figure 4 shows the total number of unsuccessful trades
over a run of the system. The variable injection rate has a
dramatic effect on improving clients when no semantic back
off is present. This is to be expected as most schemes that use
back off only schemes share this property. The most
interesting aspect of this graph is how successful combining
variable injection rates with semantic back off is. Even for low
injection rates, the system has approximately 50% fewer
unsuccessful trades.

V. CONCLUSION
We have described an approach for managing the volatility

of HFT environments. Our approach provides an automated
self-tuning platform that combines semantic contention
management and managed trading frequencies to achieve an
optimum trading solution. Our approach can adapt to changes
in trading patterns, hardware/software resources and trading
volumes during runtime to find an appropriate balance
between client trading injection rates and successful trades.

Our approach is founded in optimistic replication schemes
and affords high frequency trades by replicating trading
markets at the clients. Such replicas maintain the property of
eventual consistency. Our earlier work demonstrated the
usefulness of semantic contention management for optimistic
replication schemes [16]. Here we extend our previous work
substantially with the ability to adapt to changes in application
behavior during runtime, the addition of automated
management of client injection rates (trades per second), and
provisioning a solution for HFT environments ([16] was
predominantly concerned with e-commerce).

We show via experimentation that our approach provides
significant performance improvements in attaining successful
trades. Unfortunately, benchmarking for HFT support
technology is yet to be described in the literature that is
suitable for our purposes. In fact, there is little beyond the
relationship of HFT to publish/subscribe middleware in the
literature [19]. Therefore, we hope this work brings additional
participation to tackling the problem of provisioning HFT
software solutions.

Future work will focus on robustness of HFT middleware.
Fault-tolerance brings significant processing overheads to any
solution (or great cost). We shall explore how pessimistic
replication strategies we have developed within n-tier
platforms [20] may be integrated into our HFT model with
minimal hindrances to performance.

REFERENCES

[1] Kissell, R., & Malamut, R. (2006). Algorithmic decision-making
framework.The Journal of Trading, 1(1), 12-21.

[2] Gatev, E., Goetzmann, W. N., & Rouwenhorst, K. G. (2006). Pairs
trading: Performance of a relative-value arbitrage rule. Review of
Financial Studies,19(3), 797-827.

[3] Zervoudakis, F., Lawrence, D., Nava, N., Gontikas, G., & Al Merey, M.
Perspectives on High-Frequency Trading,
http://www0.cs.ucl.ac.uk/staff/f.zervoudakis/documents/Perspectives_on
_High-Frequency_Trading.pdf, viewed March 2013

[4] Bernstein, P. A., Hadzilacos, V., & Goodman, N. (1987). Concurrency
control and recovery in database systems (Vol. 370). New York:
Addison-wesley.

[5] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R.
(2010, June). Benchmarking cloud serving systems with YCSB.
In Proceedings of the 1st ACM symposium on Cloud computing (pp.
143-154). ACM.

[6] Vogels, W.: Eventually consistent. Communications of the ACM 52(1),
40-44 (2009)

[7] Mockapetris, P. V.: Domain names-implementation and specification.
Available at http://www.ietf.org/rfc/rfc1035.txt

[8] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman,
A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo:
Amazon's highly available key-value store. ACM SIGOPS Operating
Systems Review 41(6), 205-220 (2007)

[9] Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review 44(2), 35{40 (2010)

[10] Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer, M., Hauser,
C.: Managing update conflicts in Bayou, a weakly connected replicated
storage system. In: Proceedings of the _fteenth ACM symposium on
Operating systems principles. pp. 172{182. ACM (1995)

[11] Kermarrec, A., Rowstron, A., Shapiro, M., Druschel, P.: The IceCube
approach to the reconciliation of divergent replicas. In: Proceedings of
the twentieth annual ACM symposium on Principles of distributed
computing. pp. 210{218. ACM (2001)

[12] Pregui_ca, N., Shapiro, M., Matheson, C.: Semantics-based
reconciliation for collaborative and mobile environments. On The Move
to Meaningful Internet Systems 2003: CopIS, DOA, and ODBASE pp.
38{55 (2003).

[13] Metcalfe, R. M., & Boggs, D. R. (1976). Ethernet: distributed packet
switching for local computer networks. Communications of the
ACM, 19(7), 395-404.

[14] Anderson, T. E., Lazowska, E. D., & Levy, H. M. (1989). The
performance implications of thread management alternatives for shared-
memory multiprocessors. Computers, IEEE Transactions on, 38(12),
1631-1644.

[15] Scherer III, W. N., & Scott, M. L. (2005, July). Advanced contention
management for dynamic software transactional memory.
In Proceedings of the twenty-fourth annual ACM symposium on
Principles of distributed computing (pp. 240-248). ACM.

[16] Abushnagh Y, Brook M, Sharp C, Ushaw G, Morgan G. Liana: A
Framework That Utilizes Causality to Schedule Contention Management
across Networked Systems.In: On the Move to Meaningful Internet
Systems (OTM). ODBASE 2012, volume 7566 of Lecture Notes in
Computer Science, page 871-878. Springer, Rome, Italy, (2012).

[17] Nutt, G., & Bayer, D. (1982). Performance of CSMA/CD networks
under combined voice and data loads. Communications, IEEE
Transactions on,30(1), 6-11.

[18] University of Edinburgh, SimJava. Available at:
http://www.dcs.ed.ac.uk/home/hase/simjava/ (Accessed: 14 March)

[19] Jayaram, K., Jayalath, C., & Eugster, P. (2010). Parametric subscriptions
for content-based publish/subscribe networks. Middleware 2010, 128-
147.

[20] Kistijantoro, A. I., Morgan, G., Shrivastava, S. K., & Little, M. C.
(2008). Enhancing an application server to support available
components. Software Engineering, IEEE Transactions on, 34(4), 531-
545.

	TRCover1390
	TRAbstract1390
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1390
	1390withoutcovers

