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Abstract—In creating an enterprise architecture (EA) several
design decisions have to be made. The aim of this paper is
to provide a logic-based formalism for capturing architectural
design decisions in order to make the rationalization of these
decisions explicit as well as traceable. Our working hypothesis is
that capturing of design knowledge in terms of a logic-based
framework will enable consistency checks of the underlying
rationales and advanced impact/what-if analysis when confronted
with changes (e.g. decisions are changed, issues are solved). We
formalize a set of integrity constraints, which allow guidance of
decision capturing during model creation and provide means to
perform consistency checks. We apply our formal framework to
a practical case study from the insurance sector.
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I. INTRODUCTION

Large and complex enterprises are a common occurrence
in today’s business environment. Such enterprises usually
involve complex and interdependent business processes and
IT systems. Enterprise Architecture (EA) is used to model
such enterprises in a holistic fashion by connecting their IT
infrastructure and applications to the business processes they
support. In turn this links them also to the products and
services that are realized by those business processes [1],
[2]. When creating an EA, several design decisions have to
be made. These decisions are to a large extent based on
assumptions about the situation at hand. Such assumptions
may relate to the goals the (individual) stakeholders have,
strategic directions of the enterprise, architecture principles,
requirements, and so on. In practice, enterprises are confronted
with frequent changes and challenges to these assumptions.

Our long-term research goal is to explore the possibility
of explicitly linking architecture-level design decisions with
their underlying assumptions. The aim of doing so is to make
the rationalization of these decisions explicit and traceable,
so that we can formally reason about them in terms of a
logic-based framework. This will enable explicit reasoning
about the connections between the enterprise’s architecture, the
associated design decisions, and their underlying assumptions.
Formalizing the elements in an architectural decision model
has been shown to be useful for the structuring of knowledge,
and the measuring of the quality of existing decisions [3].
Architects and designers who are not the original developers
often have to control the quality of, and maintain the enterprise
architecture. These people need a good understanding of the

architecture in order to work effectively. It is not typical in EA
for design rationales to be obtained from design specifications,
because there is no systematic practice for capturing them.
Even when some of these decisions are captured, they are not
organized in such a way that they can be retrieved and tracked
easily. Remedying this situation becomes critical and chal-
lenging when system requirements and operating environments
continue to evolve [4]. Having a framework to formally reason
about decisions and their underlying assumptions also allows
for decision types and dependency patterns to be defined,
which helps to detect the incompleteness or inconsistency of a
decision model. Finally, knowledge engineers working in other
decision capturing domains (i.e., not EA), can reuse the model
structure to organize their knowledge [3].

In this paper, we contribute to our long-term research goal
by formalizing a recently proposed framework for decision
making in EA by Plataniotis et al. [5] using set and graph
theory concepts. The framework of Plataniotis et al. consists of
a metamodel that serves as a basis for decision design graphs
composed of EA decisions, issues, observation impact, and
several types of dependency relations. We analyze the corre-
spondence between the metamodel and the decision design
graphs, and propose a formal framework that captures the
decision design graphs more precisely. Moreover, motivated by
providing a better guidance on the use of the framework for a
priori decision analysis and support, we extend the framework
to cater for a more expressive notation of decision state, and
we make precise several informally introduced concepts of
Plataniotis et al. using integrity constraints. We apply our
framework to a case study and show the benefits of our
formal approach by demonstrating the possibility for a priori
decision analysis through consistency checks on the integrity
constraints.

The rest of this paper is structured as follows: In Section II
we discuss the framework of Plataniotis et al.; In Section III
we use this discussion as a motivation to present our formal
framework; In Section IV we validate our framework for a
priori decision analysis by applying it to our ArchiSurance
use case; Finally, in Section V we position our work in state-
of-the-art research.

II. PRELIMINARIES

In this section we briefly review the key components of the
metamodel of Plataniotis et al. [5], followed by a discussion.



We use these observations as a basis for the formal framework
that we will introduce in the next section.

A. EA Metamodel and Decision Design Graphs

Plataniotis et al. [5] recently presented an approach for
relating EA decisions. Using a metamodel and a decision
design graph, they explain how decisions from different enter-
prise domains (business, application, and technology) relate to
each other. For example, how decisions taken on a business
level affect IT decisions and vice versa. Their approach is
inspired by well-known mechanisms for capturing architectural
rationales in software architecture. The metamodel that was
presented by Plataniotis et al. is depicted in Figure 1. This
metamodel serves as an underlying model for design decisions
graphs, of which an example is depicted in Figure 6. From
now on, we will refer to the metamodel in Figure 1 simply as
“the metamodel”, and the decision design graph in Figure 6
as “the decision graph”. We will explain the details of the
decision graph in more detail when presenting the case study,
but in this section we will already use it to explain the main
concepts of the framework, which consists of the following
elements:

EA Decision represents a decision that has been made or
rejected in order to resolve an issue. An EA decision shows
decisions that are captured in the context of an Enterprise
Transformation [6]. The decision graph contains a total of 13
decisions, from EA Decision D01 to EA Decision D13.

EA Issue represents an architectural design problem that
enterprise architects have to address during the Enterprise
transformation process. In this way, they can be regarded as
a motivation for the design decisions. The decision graph
contains 6 issues, from EAIssue IS01 to EA Issue IS06.

EA Artifact serves as a bridging concept towards the
EA modeling language ArchiMate, whereby an EA artifact
links EA decisions to ArchiMate concepts. For instance, EA

Fig. 1: EA decisions relationship metamodel [5]

Decision D01 in the decision graph is related to EA artifact
“Customer profile registration Business processes”. EA issues
are not related to artifacts.

Layer is in line with the ArchiMate language [7]: An
enterprise is specified in three layers: Business, Application
and Technology. Using these layers, an enterprise architect is
able to model an enterprise holistically, showing not only ap-
plications and physical IT infrastructure (which are contained
in the application and technology layers), but also how the
IT impacts/is impacted by the products, services and business
strategy and processes. EA Decisions are related to layers, for
instance in the decision graph EA Decision D01 is related to
the Business Layer, while EA Decision D06 is related to the
Application Layer.

State represents the state of an EA Decision, which is
either Executed or Rejected. In an executed state, an EA
decision has already been made and was accepted. A rejected
decision, on the other hand, is a decision that was considered
as an alternative during the decision making process but was
rejected because another decision was more appropriate. In
the decision graph, the state of a decision is not explicitly
represented but it can be inferred from the relationships. A
decision that has an alternative relation with an issue is
rejected, while all other decisions are executed.

Relationship makes the different types of relationships
between EA decisions explicit. Based on ontologies for soft-
ware architecture design decisions, Plataniotis et al. define four
relationships. The Translation relationship illustrates relation-
ships between decisions and issues that belong to different
EA artifacts. During the enterprise transformation process
architects translate the requirements that new EA artifacts
impose (EA issues) to decisions that will support these re-
quirements by means of another EA artifact. Decomposition
relationships signify how generic EA decisions decompose
into more detailed design decisions within an EA artifact.
Alternative relationships illustrate the EA decisions that were
rejected (alternatives) in order to address a specific EA issue.
Substitution relationships illustrates how one EA decision
replaces another EA decision. An EA decision can be replaced
when it creates a negative observed impact in the enterprise
architecture.

Observed Impact signifies an unanticipated posi-
tive/negative consequence of an already made decision to an
EA artifact. This is opposed to anticipated consequences, as
indicated by the Translation and Decomposition relationships.
In current everyday practice, architects model anticipated con-
sequences using what-if-scenarios [8]. Unfortunately, not every
possible impact of made EA decisions can be predicted. The
main usefulness of capturing observed impacts is that they
can be used by architects to avoid decisions with negative
consequences in future designs of the architecture [5].

For instance, in the decision graph Decision D10 decom-
poses to decision D11 through issue IS06. D11 turns out to
have a negative observed impact OI1, which is translated to a
decision D13 through issue IS07 (alternative D12 for IS07 is
rejected). D13 addresses the negative observed impact of D11
by substituting D11.



B. Discussion

The metamodel serves as the underlying formalism for
the decision graph, but in this subsection we motivate why
this is not sufficient by discussing the differences between the
metamodel and the decision graph. We will take these remarks
into account when formalizing the decision graph in the next
section.

According to the decision graph, the creation of a trans-
lation/decomposition relationship between two EA Decisions
implies the creation of two separate relationships of the same
type: one for the EA Decision to EA Issue and another one
for the EA Issue to EA Decision. This creates information
redundancy issues because this is not captured in the meta-
model. The definition of at least one relationship of a specific
type should imply that the other relationship should be of he
same type. For example, in the decision graph EA Decision 01
is related with EA Issue 03 through a translation relationship.
Similarly, EA Issue 03 is related with EA Decision 06 through
a translation relationship. The definition of the relationship
type between EA Issue 03 and EA Decision 06 should imply
the same relationship type between EA Decision 01 and EA
Issue 03, but this is currently not captured in the metamodel.

Furthermore, the metamodel provides two different types
of states (executed, rejected) per EA Decision. Despite the fact
that these two states adequately describe the state of an EA
Decision during the a posteriori analysis, they don’t provide
enough expressivity in the a priori case. In the latter case,
there is the need to express that an EA Decision is in “open”
state while enterprise architects examine the alternatives [9].

Whereas the metamodel provides the notion of “Observed
impact”, it does not explicitly distinguish between “positive
observed impact” and “negative observed impact”. For in-
stance, in the decision graph EA Decision D11 has Observed
Impact OI1, which creates an issue IS07. Thus, it seems that
this observed impact is negative, but neither the metamodel or
the graph are able to distinguish positive impacts from negative
ones.

Finally, there are a number of assumptions on the design
graph that have not been made explicit in the metamodel.
Firstly, all issues in the graph have been resolved. Secondly,
there is always a single decision that is executed in order
to solve an issue, while the others are rejected. Finally, a
decision that creates a negative observed impact is assumed
to be replaced by a decision that addresses this impact. These
three assumptions are not formalized, and we propose to do
so using integrity constraints.

III. A FORMAL MODEL FOR EA DECISION MODELING

In the previous section we showed that the metamodel of
Figure 1 is not restrictive enough to characterize the design
decision graph of Figure 6 correctly. In order to resolve this
issue and to obtain a consistent formalisation for the decision
design graphs that allow for a priori decision modeling, we
will introduce a formal model in this section. We define
integrity constraints that are informally reflected in textual
descriptions of the previous section and in the decision graph.
In the next section we will validate the benefit of our formal
approach by applying it to a use case.

A. Elementary Definitions for EA Decision Modeling

Basic concepts from set and graph theory are adequate to
define the entities in the metamodel and the relations between
them. We begin with representations for the metamodel ele-
ments EA Decision, EA Issue, and Observed Impact.

Definition 1 (EA Issue): Let I be a set of EA Issues, where
each issue i ∈ I is a proposition representing the issue.

Rationale and example: An EA decision issue (short:
issue) represents a single design concern. For now, we fol-
low Plataniotis et al. and we do not add any attributes to
the issues, but we recognize that this is certainly possible
and a necessary extension. For instance, Zimmerman et al.,
attribute a total of 18 properties to issues that can be used
to characterize them [3]. Because such attributes do not have
a specific purpose in our formal model, we leave them out
for ease of exposition. The issues in the decision graph are
I = {IS01, . . . , IS07}.

Definition 2 (EA Decision): Let D be a set of EA
Decisions, where each decision d ∈ D is a tu-
ple (s, a, l) consisting respectively of a state s ∈
{open, executed, rejected}, an EA Artifact a, and a layer l ∈
{business, application, technology}. We also write sd, ad,
and ld to refer to respectively the state, the artifact, and the
layer of decision d.

Rationale and example: An EA Decision presents a
possible solution to the design issue that is expressed by
an EA Issue. The state s represents the current state of the
decision. While Plataniotis et al. distinguish two different
states of a decision (a decision is either “executed” or
“rejected”), we extend this with an additional state “open”.
As we mentioned in the previous section, this is motivated
by the fact that we aim to capture a priori decision analysis,
which is different from the ex post approach of Plataniotis et
al. The EA artifact a of an EA Decision represents the EA
artifact to which this decision is related. Finally, the layer l is
the layer on which the decision is made. Similar to EA Issues,
we leave out additional attributes that do not have a specific
purpose in our model. In the decision graph, Decision D06
can be represented with (s, a, l), where s = executed, a =
“Customer administration intermediary application service”,
and l = application.

Definition 3 (Observed Impact): Let O be a set of ob-
served impacts, where each observed impact o = (v, a, l)
consists of a value v that is either positive or negative,
i.e. v ∈ {positive, negative}, an EA Artifact a, and a
Layer l. When v = positive we say that o is a positive
observed impact; when o = negative we say that o is a
negative observed impact. We also write vo, ao, and lo to refer
respectively to the value, the artifact, and the layer of observed
impact o.

Rationale and example: An observed impact is ei-
ther positive or negative, where negative observed impacts
create new issues. This formalization allows for an ex-
plicit distinction between positive and negative observed
impacts. In the decision graph, the only observed im-
pact is OI1, which is negative, so we can formalize
this as OI1 = (v, a, l), where v = negative, a =



“Customer profile registration Business process”, and l =
business.

Definition 4 (Contains relation): Let ≺D⊆ I × D be a
contains relation between issues and decisions, ≺I⊆ D×I be a
contains relation between decisions and issues, ≺Oin

⊆ D×O
be a contains relation between decisions and observed impact,
≺Oout

⊆ O × I a contains relation between observed impact
and issues, and ≺DD⊆ D×D be a contains relation between
decisions and decisions. We set the general contains relation
≺=≺D ∪ ≺I ∪ ≺Oin ∪ ≺Oout ∪ ≺DD. If (a ≺ b), then we
say that a contains b or that b is contained in a. We sometimes
abbreviate (a ≺ b) ∧ (b ≺ c) with a ≺ b ≺ c.

Rationale and example: The contains relation is also used
in Zimmerman et al. and allows us to define a single hierarchi-
cal structure, which serves as a table of content, allowing the
user to locate issues and alternatives easily in the enterprise
architectural knowledge and helping the knowledge engineer
to avoid undesired redundancies. The contains relation is the
underlying dependency relation that we use to build decision
design graphs. We will use this relation to later define the
four types of Relationship entities that were introduced in the
metamodel. These four relationships are relatively complex,
so it helps to have a simple underlying representation of the
decision hierarchy. Intuitively, the contains relations can be
obtained by treating all arcs in the decision graph as of the
same type. It contains for instance the following relations:
D01 ≺ IS01 ≺ D02, D01 ≺ IS02 ≺ D03, D01 ≺ IS03 ≺
D04 (see Figure 2), but also D11 ≺ OI1 ≺ IS07 and
IS07 ≺ D013 ≺ D11 .

Fig. 2: The contains relation ≺ for part of the design graph.

Definition 5 (Decision Design Graph (DDG)): A decision
design graph D = (D∪I∪O,≺) consists of a set of decisions
D, a set of issues I , a set of observed impacts O, and a contains
relation ≺ that induces a graph containing issues, decisions,
and observed impacts of decisions.

Rationale and example: Modeling architectural decisions
in itself is not new: Ran and Kuusela also propose (but do not
formalize) the notation of Design Decision Trees (DDTs) [10].
Zimmermann et al. propose a formalization that is comparable
to ours, but our is specifically for enterprise architecture
decision making and uses decision graphs instead of trees.

B. Layered EA Decision Model and Logical Relations

The metamodel from Section II and the elementary defini-
tions from Section III-A allow knowledge engineers to capture

decisions and organize the knowledge in a decision hierarchy.
However, the resulting ordered architectural decision tree does
not yet support the vision of an active, managed decision
model taking a guiding role during architecture design. More
relations between decisions, issues and observed impacts must
be defined. In this section, we introduce the four relationship
of Plataniotis et al. and formalize logical constraints by again
applying concepts from graph theory.

Definition 6 (Translation relation): The translation rela-
tionship RT ⊆ D × I × D is a three-placed decision-
issue-decision relationship RT (d1, i, d2), also denoted with

d1
T (i)−−−→ d2, that connects two decisions through an issue

where these decisions are related to different EA artifacts.
Formally:

∀d1,d2∈D,i∈I : (d1
T (i)−−−→ d2)⇒ (d1 ≺ i ≺ d2) ∧ (ad1

6= ad2
).

Rationale and example: Translation relationships indicate
how a decision on one artifact translates to a decision on
another artifact through an issue. Thus, having a translation
relationship requires three entities: a decision, a issue, and
another decision. For instance, the design graph contains the
translation relationship D01

T (IS03)−−−−−→ D06. This is a valid
relationship, since we have D01 ≺ IS03 ≺ D06, and we also
have aD01 6= aD06 because aD01 =“Customer profile registra-
tion Business process” and aD06 =“Customer administration
intermediary application service”.

Definition 7 (Decomposition relation): The decomposition
relationship RD ⊆ D×I×D is a three-placed decision-issue-
decision relationship RD(d1, i, d2), also denoted with d1

D(i)−−−→
d2, that connects two decisions through an issue where these
decisions are related to the same EA artifacts. Formally:

∀d1,d2∈D,i∈I : (d1
D(i)−−−→ d2)⇒ (d1 ≺ i ≺ d2) ∧ (ad1

= ad2
).

Rationale and example: Decomposition relationships are
similar to translation relationships, with the only difference
that in decomposition relationships the two artifacts belonging
to the decisions in the relation should be the same. For
instance, the design graph contains the decomposition rela-
tionship D01

T (IS01)−−−−−→ D02, which is valid because we have
D01 ≺ IS01 ≺ D02 and aD01 = aD02 =“‘Customer profile
registration Business process”.

Definition 8 (Substitution relation): The substitution rela-
tionship RS ⊆ D × D is a two-placed decision-decision
relationship, also denoted with d1

S−→ d2, that connects two
decisions that are related to the same EA artifacts. Formally:

∀d1,d2∈D : (d1
S−→ d2)⇒ (d1 ≺ d2) ∧ (ad1

= ad2
).

Rationale and example: Substitution relationships are sim-
pler than the previous two relationships in the sense that they
contain only two elements. The decision graph contains only
one substitution relationship D013

S−→ D11.

Definition 9 (Alternative relation): The alternative rela-
tionship RA ⊆ I × D is a two-placed issue-decision rela-
tionship, also denoted with i

A−→ d, that connects an issue with
a rejected decision. Formally:

∀d∈D,i∈I : (i
A−→ d)⇒ ((i ≺ d) ∧ (sd = rejected)).



Rationale and example: The alternative relationship indi-
cates decisions that have been rejected in the decision process.
For instance, in the design graph we have IS03

A−→ D04 and
IS03

A−→ D05.

Definition 10 (Observed Impact relation): The observed
impact relationship RO ⊆ D × O × I × D is a four-placed
decision-impact-issue-decision relationship, also denoted
with d1

O(o,i)−−−−→ d2, which describes the effect of a negative
observed impact on a decision, which is addressed by an
issue and subsequently resolved by a decision. Formally:

∀d1,d2∈D,i∈I,o∈O : (d1
O(o,i)−−−−→ d2)⇒

(d1 ≺ o ≺ i ≺ d2) ∧ (vo = negative)

Rationale and example: The observed impact relation is
the only relation in the design graph that has not been
characterized by the metamodel. In the decision graph, EA
Decision D11 causes a negative Observed Impact OI1, which
is addressed by EA Issue IS07, that is subsequently resolved
by EA Decision D13.

With these relations introduced, we will now define three
logical constraints on EA decision models. We stress that this
list is by no means meant to be exhaustive; It represents a
list of constraints that are suggested by the decision graph and
from the discussion in Plataniotis et al.. These constraints are
used to check the decision graph for consistency. If the graph
is not consistent, we are able to locate the inconsistency by
determining what constraint is violated and for which element.
This is useful input for the architect in the decision making
process.

Integrity Constraint 1: All issues should be resolved; For
each issue, there should be a decision that is contained in this
issue and that is executed:

∀i∈I : ∃d∈D : (i ≺ d) ∧ (sd = executed)

Rationale and example: An issue represents an architec-
tural design problem that enterprise architects have to address
during the enterprise transformation process. Having a consis-
tency check for the status of the issue by verifying whether a
decision has been executed to resolve it can assist the architect
in detecting “loose ends”. This is particularly useful in large
and complex graphs with many interdependent nodes [11].

Integrity Constraint 2: If a decision that is contained in an
issue is executed, then all other decision that have a relation
with that issue should be rejected:

∀i∈I : ∃d∈D : ((i ≺ d) ∧ (sd = executed))⇒
(∀d′∈D : (d 6= d′)⇒ (sd′ = rejected))

Rationale and example: This constraint describes a depen-
dency between decisions that are contained in the same issue.
The decision graph suggests that issues are solved by a single
decision. This means that when a decision is executed that is
contained in an issue, all other decision that are contained in
this issue should be rejected. For instance, because decision
D06 is executed, both decision D04 and D05 are rejected.

Integrity Constraint 3: If a decision contains a negative
observed impact, then this decision should be replaced by a
decision addressing the negative impact:

∀d∈D : ∃o∈O : ((d ≺ o) ∧ (vo = negative))⇒

∃d′∈D,i∈I : ((d
O(o,i)−−−−→ d′) ∧ (d′

R−→ d)).

Rationale and example: The goal of having negative ob-
served impacts is to be able to reconsider decisions that
have caused this impact. This constraint addresses this idea
by stating that negative observed impacts should result in
the substitution of the decision that has caused the impact.
For instance, decision D11 contains observed impact OI1.
This constraint is satisfied for this impact because we have
D11

O(OI1,IS07)−−−−−−−−→ D13 and D13
S−→ D11, indicating that

decision D13 substitutes decision D11.

IV. CASE STUDY: ARCHISURANCE

In this section we introduce the ArchiSurance case study,
that we will use to validate our logic-based framework for a
priori decision analysis. We first introduce the case study, after
which we apply it to our framework.

Fig. 3: ArchiSurance direct-to-customer EA model [5]

A. Introduction

This case is inspired by a paper on the economic functions
of insurance intermediaries [12], and is the running case
used to illustrate the ArchiMate language specifications [13].
ArchiSurance is the result of a recent merger of three pre-
viously independent insurance companies, that now sells car
insurances products using direct-to-customer sales model. The
goal of the newly created company is to reduce its operation’s
and product’s costs.

The merger has resulted in a number of integration and
alignment challenges for the new company’s business pro-
cesses and information systems. These challenges appear in



the ArchiSurance baseline business, application, data and tech-
nology architecture.

Figure 3 presents the partial (Business and Application lay-
ers) ArchiSurance’s direct-to-customer sales model, modeled
with the EA modeling language ArchiMate. Two business ser-
vices support the sales model of ArchiSurance: “Car insurance
registration service” and “Car insurance service”. ArchiMate
helps us to understand the dependencies between different
perspectives on an enterprise. For example, in Figure 3 we see
that the business service “Car insurance registration service”
is realized by a business process “Register customer profile”.
In turn, we also see that this business process is supported by
the application service “Customer administration service”.

Although removing intermediates in the supply chain leads
to a decrease of operation costs, it also increases the risk
of harmful risk profiles [12]. Such profiles lead insurance
companies to calculate unsuitable premiums or, even worse,
to wrongfully issue insurances to customers. As a response,
ArchiSurance decides to use intermediaries to sell its insurance
products. After all, compiling accurate risk profiles is part of
the core business of an intermediary [12]. In our scenario,
an external architect call John is hired by ArchiSurance to
help guide change to an intermediary sales model. John
uses ArchiMate to capture the impacts that selling insurance
via an intermediary has in terms of business processes, IT
infrastructure and more.

Fig. 4: ArchiSurance intermediary EA model [5]

For illustration purposes we will focus on the translation
of the new business process “Customer profile registration” to
EA artifacts in the application layer. The resulting ArchiMate
model is depicted in Figure 4. Here we see for example
how a (new) business process “customer profile registration”,

owned by the insurance broker (ownership being indicated
by a line between the broker and the business process), is
supported by the IT applications “customer administration
service intermediary” and “customer administration service
ArchiSurance”.

B. Validation

In this section we demonstrate how the formal framework
introduced in Section III supports a priori decision analysis
of design graphs by consistency checks on the integrity con-
straints.

Our external architect John is in the process of transforming
the ArchiMate model from Figure 3 into Figure 4. For the
implementation of these EA artifacts a number of EA decisions
have to be made. John, in parallel with ArchiMate modeling
language, uses our approach to capture the relationships of
decisions and check the consistency of the decision graph.

Fig. 5: ArchiSurance scenario: Integrity constraint 1 is violated
because EA Issue IS03 is not resolved

John starts by adding the main decision: “Make customer
profile registration via intermediary” (D01) to the decision
design graph. This decision belongs to the EA artifact “‘Cus-
tomer profile registration Business process”. After the enter-
prise has decided to make this decision, three new issues arise,
IS01, IS02, and IS03. Both IS01 and IS02 are addressed by
making a decision that related to the same artifact. For IS03,
which stands for “Create an appropriate application service
to support new business process”, there are three different
decisions that can be made in the Application Layer, namely
D04, D05, and D06 (see Figure 5, the legend of the relations is
in Figure 6). At this moment, none of these three decision have
been made, so the status of these three decisions is still open.
Thus, in Figure 5 there are two Decomposes relations, namely
D01

D(IS01)−−−−−→ D02 and D01
D(IS02)−−−−−→ D03, and the other

relations are simply Contains relations: D01 ≺ IS03, IS03 ≺
D04, IS03 ≺ D05, IS03 ≺ D06. After John has created
the graph of Figure 5, he checks it for consistency. It turns
out that integrity constraint 1 is violated: Not all issues are
resolved because for issue IS03 there is no decision d such
that IS03 ≺ d and sd = executed. John can choose between
these three decision and selects decision D06, which stands for
“Introduce application service A”, as the executed decision.



Fig. 6: EA decisions relationships visualization1

After having changed the status of decision D06 from
“open” to “executed”, John checks the consistency of the graph
again. This time, another inconsistency arises, namely that
integrity constraint 2 is violated. The reason for this is that
since decision D06 is contained in issue IS03 (i.e., we have
IS03 ≺ D06) and D06 is executed (i.e. sD06 = executed),
all other decisions that are contained in IS03 (that is, decision
D04 and D05) should be rejected. Therefore, John decides
to change the status of both these decision from “open” to
“rejected”. When John checks the graph for consistency now,
he finds that the graph is consistent.

Decision D06 results in two new issues, of which “Find
an appropriate application to interface with the intermediary”
(IS05) is solved by “Acquisition of COTS application B”
(D10), resulting in the EA artifact “Customer administration
application”. Decision D10 decomposes through issue IS06 in
the decision “Application interface type 1” (D11).

Using the concept of an Observed impact, John formalizes
that users of “Customer administration application” had diffi-
culties using this new application interface. This is signified
by the negative observed impact 01 “Degraded user experience
in the application use” (OI1). As such, EA decision 11
“Application interface 1” has a negative observed impact on
the business process “Customer profile registration”.

According to integrity constraint 3, a negative observed
impact should be addressed by a decision replacing the original
decision that causes the observed impact. Therefore, John
translates the observed impact “Degraded user experience in
the application use” via EA issue 07 “have fitting application
interface” into “replace of existing application interface with an
interface similar to the old one” (EA decision 13), after having

rejected the alternative decision “Training of users on the new
application”. The last step John has to take is to replace EA
decision 11 “Application interface type 1” with EA decision
13 “Application interface type 2”.

When the transformation has finished and all decisions have
been made, John obtains the graph that is depicted in Figure 6.
This graph is consistent according to the integrity constraints.

V. RELATED WORK

In the domain of software architecture, which is a subset
of EA, several design rational approaches have been devel-
oped: argumentation based approaches such as Issue-Based
Information System (IBIS) [14], Design Rationale Language
(DRL) [15], template based approaches, such as [16] and
model based approaches, such as [17], [4]. Most of them
capture textually the architecture decisions, the rationales, the
issues and the implications. In addition, the model based
approach provides means to relate those decisions with the
software artifacts and with other decisions.

About twenty years ago, Ran et al. [10] proposed a
systematic approach to document, refine, organize and reuse
the architectural knowledge for software design in the form of
a Design Decision Tree (DDT) that is a partial ordering on
decisions put in the context of the problem requirements and
the constraints imposed by earlier decisions. More recently,
Tyree and Akerman [16] recognized that architecture decision
capturing plays a keys role in what they call “demystifying ar-
chitecture”. They stress that architecture decisions should have
a permanent place in the software architecture development

1Figure adapted from Plataniotis et al. [5]



process. Moreover, it facilitates traceability from decisions
back to requirements and it provides agile documentation
(which is crucial in an agile process where a team does not
have the time to wait for the architect to completely develop
and document the architecture).

Both Zimmerman et al. [3] and Tan et al. [4] recently
proposed a comprehensive framework for decision capturing in
software architecture. Zimmermann et al. also provide a formal
framework, focusing mostly on the re-usability of decision by
distinguishing between alternatives and outcomes.

In the field of enterprise architecture the literature is
significantly more scarce. Even if software architecture is a
subset of EA, in this field different types of decisions exist and
they can have dependencies and relationship with artifacts and
decisions from different layers of the architecture. Plataniotis et
al. [5] view complements model based approaches for software
architecture by providing more specialized attributes for EA
decisions as well as more specific dependency and relationship
types between EA Decisions.

Finally, goal-oriented modeling frameworks (e.g. i*2, Tro-
pos3) provide means to deal with the motivations of designs
, being more expressive then the ArchiMate 2.0. motivation
layer. Even so, their main focus is not to provide decision
rationales.

VI. CONCLUSION

In this paper we introduced a logic-based framework for
capturing relationships between Enterprise Architecture deci-
sions. This framework is based on recent work by Plataniotis
et al.. With this formalization, we allow for capturing decision
relationship dependencies and consistency checks on additional
logical dependencies that we formalized using integrity con-
straints.

We demonstrated how these constraints can be used to
check a decision graph for consistency. However, we did not
yet present a framework that will actively search for solutions
to inconsistencies and in this way support the architect in its
decision making process. To actually do this, a more elaborate
representation of decision quality is needed, such that different
decision can be compared with each other. We see this are
promising future work.

The integrity constraints that we have defined in this work
are not meant to be a complete list. As we discussed above,
each decision in the metamodel of Plataniotis et al. is either
Executed or Rejected. Kruchten et al. [9] argue that design
decisions evolve in a manner that may be described by a
state machine or a statechart. They distinguish between seven
different states, which are idea, tentative, decided, approved,
rejected, challenged, and obsolete. Having such an expres-
sive representation of a decision allows for more complex
constraints on the decision making process. This is another
direction of promising future work.

Finally, one of the biggest challenges in decision capturing
is the problem of return of capturing effort. The fact that it
takes architects much time to capture design making strategies

2http://www.cs.toronto.edu/km/istar/
3http://www.troposproject.org/

without having a direct benefit might be a discouraging factor.
We believe that our approach simplifies the capturing effort by
assisting the architect in its decision making process. Part of
our future research will focus on evaluating the actual practical
usefulness of our approach.
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