
A STATISTICAL FRAMEWORK FOR VIDEO SKIMMING BASED ON LOGICAL STORY

UNITS AND MOTION ACTIVITY

Sergio Benini, Pierangelo Migliorati, Riccardo Leonardi

DEA-SCL, University of Brescia, Via Branze 38, 25123, Brescia, Italy

Tel: +39 030 3715528, Fax: +39 030 380014, E-mail:{firstname.lastname}@ing.unibs.it

ABSTRACT

In this work we present a method for video skimming based

on hidden Markov Models (HMMs) and motion activity.

Specifically, a set of HMMs is used to model subsequent log-

ical story units, where the HMM states represent different

visual-concepts, the transitions model the temporal dependen-

cies in each story unit, and stochastic observations are given

by single shots. The video skim is generated as an obser-

vation sequence, where, in order to privilege more informa-

tive segments for entering the skim, dynamic shots are as-

signed higher probability of observation. The effectiveness

of the method is demonstrated on a video set from different

kinds of programmes, and results are evaluated in terms of

metrics that measure the content representational value of the

obtained video skims.

1. INTRODUCTION

The proliferation of dedicated internet websites, digital TV

broadcasting, private recording of home video, has provided

the end-users with a large amount of video information. Nev-

ertheless, this massive proliferation in the availability of dig-

ital video has not been accompanied by a parallel increase in

its accessibility. In this scenario, video summarization tech-

niques may represent a key component of a practical video-

content management system. By watching at a condensed

video, a viewer may be able to assess the relevance of a pro-

gramme before committing time, thus facilitating typical tasks

such as browsing, organizing and searching video-content.

For unscripted-content videos such as sports and home-

videos, where the events happen spontaneously and not ac-

cording to a given script, previous work on video abstraction

mainly focused on the extraction of highlights. Regarding

scripted-content videos, that are videos which are produced

according to a script, such as movies, news and cartoons,

two types of video abstraction have been investigated so far,

namely static video summarization and video skimming.

The first one is the process of selection of a reduced set

of salient key-frames to represent the content in a compact

form and to present it to the final user as a static programme

preview. On the other hand, video skimming, also known as

dynamic video summarization, tries to condense the original

video in the more appealing form of a shorter video clip.

The generation of a video skim can be viewed as the pro-

cess of selecting and gluing together proper video segments

under some user-defined constraints and according to given

criterions. The end-user constraints are usually defined by

the time committed by the user to watch the skim, which in

the end determines the final skimming ratio.

On the other hand, skimming criterions used to select

video segments range from the exploitation of the hierarchical

organization of video in scenes and shots as in [1], the use of

motion information [2], or the insertion of audio, visual and

text markers [3].

In this paper the video skim is generated by combining the

information deriving from the story structure with the char-

acterization of the motion activity of the video shots. More

specifically, we compute a motion descriptor which inherently

estimates the contribution of each shot in term of “content in-

formativeness” and determines whether or not the shot would

be included into the final skim. The shot sequence which

forms the skim is then obtained as a series of observations

of a HMM chain, where each HMM try to model the structure

of each semantic scene, so capturing the “structure informa-

tiveness” of the video.

In the past HMMs have been successfully applied to dif-

ferent domains such as speech recognition, handwriting recog-

nition, or genome sequence analysis. For video analysis,HMMs

have been used to distinguish different genres [4], and to de-

lineate high-level structures of soccer [5] and tennis games

[6]. In this work instead, HMMs are used as a unified statisti-

cal framework to represent visual-concepts and to model the

temporal dependencies in the video story units, with the aim

of effective video skimming.

The rest of the paper is organized as follows. Section 2

presents the general criterions adopted to realize the skim,

whereas in Section 3 we estimate the intrinsic dynamics of

the video shots by a suitable motion activity descriptor. Sec-

tion 4 describes how each logical story unit is modeled by

a HMM. In Sections 5 and 6 the video skims are generated

and evaluated, respectively. Concluding remarks are given in

Section 7.



2. GENERAL CRITERIONS

Since a skimming application should automatically shorten

the original video while preserving the important and infor-

mative content, we propose that the time allocation policy for

realising a video skim should take into account the following

criterions:

• “Coverage”: the skim should include all the elements

of the story structure into the final synopsis (i.e., all the

story units);

• “Representativeness”: each story unit should be repre-

sented in the skim proportionally to its duration in the

original video;

• “Structure informativeness”: the information which is

introduced by the film editing process, especially that

conveyed by the shot patterns inside story units (e.g.,

dialogues, progressive scenes, etc.) should be included

into the skim;

• “Content informativeness”: to represent each story unit,

the most “informative” video segments should be pre-

ferred.

In the next paragraph, we start investigating the content

informativeness of video shots, by relying on a measure of

the motion activity.

3. MOTION ACTIVITY DESCRIPTOR

The intensity of motion activity is a subjective measure of

the perceived intensity of motion in a video segment. For

instance, while an “anchorman” shot in a news program is

perceived by most people as a “low intensity” action, a “car

chasing” sequence would be viewed by most viewers as a

“high intensity” sequence.

As stated in [7] the intensity of motion activity in a video

segment is in fact a measure of “how much” the content of

a video is changing. Motion activity can be therefore inter-

preted as a measure of the “entropy” (in a wide sense) of a

video segment. We characterize the motion activity of video

shots by extracting the motion vector (MV) field of P-frames

(see Figure 1) directly from the compressed MPEG stream,

thus allowing low computational cost. By characterizing its

general motion dynamics, we characterize the amount of vi-

sual information conveyed by the shot.

3.1. Filtering of the Motion Field

The raw MV field extracted turns out to be normally rough

and erratic, and not suitable for tasks such as accurately seg-

menting moving objects. However, after being properly fil-

tered the MVs can be very useful to characterize the general

motion dynamics of a sequence. The filtering process applied
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Fig. 1. A decoded P-frame and its motion vector field.

includes first removing the MVs next to image borders which

tend to be unreliable, then using a texture filter, followed by

a median filter. The texture filter is needed since, in the case

of low-textured uniform areas, the correlation methods used

to estimate motion often produce spuriousMVs. After having

filtered the motion vectors on texture criterion, a median fil-

tering is used to straighten up single spurious vectors such as

those that could still be present close to borders.

3.2. Evaluation of the Motion Intensity

In general, the perceived motion activity in a video is higher

when the objects in the scene move faster. In this case the

magnitudes of the MVs of the macro-blocks (MBs) that make

up the objects are significant, and one simple measure of mo-

tion intensity can be extracted from the P-frame by computing

the mean µP of the magnitudes of motion vectors belonging

to inter-codedMBs only (intra-codedMBs have noMVs).

However, most of the perceived intensity in a video is due

to objects which do not move according to the uniformmotion

of the video camera. Thus, a good P-frame-based measure of

motion intensity is given by the standard deviation σP of the

magnitudes of motion vectors belonging to inter-coded MBs.

The measure σP , can be also extended to characterize

the motion intensity MI(S) of a shot S, by averaging the
measures obtained on all the P-frames belonging to that shot.

MPEG7Motion Activity descriptor [7] is also based on a quan-

tized version of the standard deviation of MVs magnitudes.

For our purposes, each shot S is assigned its motion inten-

sity value MI(S) in its not-quantized version. This value
MI(S) tries to capture the human perception of the “inten-
sity of action” or the “pace” of a video segment, by consid-

ering the overall intensity of motion activity in the shot itself

(without distinguishing between the camera motion and the

motion of the objects present in the scene). Since this is in fact

a measure of “how much” the content of a video segment is

changing, it can be interpreted as a measure of the “entropy”

of the video segment, and can be used also for summarization

purposes.

4. LSU REPRESENTATION

In [8] Yeung et al. shown that in a Scene Transition Graph

(STG), after the removal of cut-edges, each connected sub-

graph well represents a Logical Story Unit (LSU), i.e., “a se-



quence of contiguous and interconnected shots sharing a com-

mon semantic thread”, which is the best computable approx-

imation to semantic scene [9]. In particular sub-graph nodes

are clusters of visually similar and temporally close shots,

while edges between nodes give the temporal flow inside the

LSU, as shown in Figure 2.
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Fig. 2. After the removal of cut-edges, each connected sub-

graph of the STG represents a Logical Story Unit.

Starting from the STG representation, each LSU can be equiv-

alently modeled by a HMM. This is a discrete state-space

stochastic model which works quite well for temporally cor-

related data streams, and where the observations are a prob-

abilistic function of a hidden state [10]. Such a modeling

choice is supported by the following considerations (see [5]):

i) Video structure can be described as a discrete state-space,

where each state is a conveyed concept (e.g., “man talking”)

and each state-transition is given by a change of concept;

ii) The observations of concepts are stochastic since video

segments seldom have identical raw features even if they rep-

resent the same concept (e.g., more shots showing the same

“man talking” from slightly different angles);

iii) The sequence of concepts is highly correlated in time,

especially for scripted-content videos (movies, etc.) due to

the presence of editing effects and typical shot patterns inside

scenes (i.e., dialogues, progressive scenes, etc.).

For our aims, as described in the next Section,HMM states

representing concepts will correspond to distinct clusters of

visually similar shots; state transition probability distribution

will capture the shot pattern structure of the LSU, and shots

will constitute the observation set (as shown in Figure 3).

4.1. HMM definition

Formally, a HMM representing an LSU is specified by:

• N , the number of states. Although the states are hidden,

in practical applications there is often some physical signifi-

cance associated to the states. In this case we define that each

state corresponds to a distinct node of a STG sub-graph: each

state is one of the N clusters of the LSU containing a num-

ber of visually similar and temporally close shots. We denote
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Fig. 3. LSUs of Figure 2 are equivalently modeled by HMMs.

states as C = {C1, C2, . . . , CN}, and the state at time t as qt.

• M , the number of distinct observation symbols. The ob-

servation symbols correspond to the physical output of the

system being modeled. In this case, each observation symbol

S = {S1, S2, . . . , SM} is one of theM shots of the video.

• ∆ = {δij}, the state transition probability distribution:

δij = P [qt+1 = Cj |qt = Ci], 1 ≤ i, j ≤ N

Transition probabilities are computed as the relative frequency

of transitions between clusters in the STG, i.e., δij is given by

the ratio of the number of edges going from cluster Ci to Cj

to the total number of edges departing from Ci.

• Σ = {σj(k)}, the observation symbol distribution, where

σj(k) = P [Sk at t|qt = Cj ], 1 ≤ j ≤ N, 1 ≤ k ≤ M

We define the observation symbol probability in state Cj , that

is σj(k), as the ratio of the motion intensity of the shot Sk to

the total motion intensity of the cluster, that is:

σj(k) =

{
MI(Sk)
MI(Cj)

if Sk ∈ Cj

0 otherwise ,

whereMI(Cj) is defined as the sum of all the motion inten-
sity of the shots belonging to cluster Cj , that is:

MI(Cj) =
∑

Sh∈Cj

MI(Sh) .

• π = {πi}, the initial state distribution, where:

πi = P [q1 = Ci], 1 ≤ i ≤ N .

In order to preserve the information about the entry point of

each LSU, πi = 1 if the cluster Ci contains the first shot of

the LSU, otherwise πi = 0.
From the above discussion it can be seen that a complete

specification of an HMM requires two model parameters (N
and M ), the observation symbols S, and the probability dis-
tributions ∆, Σ and π. Since the set S = {S1, S2, . . . , SM}
is common to all the HMMs, for convenience, we can use the

compact notation Λ = (∆,Σ,π, N) to indicate the complete
parameter set of the HMM representing an LSU.



5. SKIM GENERATION

In order to generate an informative skim which fulfills the cri-

terions stated above, the following solutions have been adopted.

• Coverage: Since the skim should include all the se-

mantically important story units, each detected LSU λi

participates to the skim (where the skim ratio is subject

to a minimal value).

• Representativeness: Let l1, l2, . . . , ln be the lengths of
the n LSUs the original video has been segmented in.

Then in the skim, for each LSU λi, a time slot of length

ξi is reserved, where ξi is proportional to the duration

of λi in the original video.

• Structure informativeness: In order to include in the

synopsis the information conveyed by the shot patterns

inside the story units, a skimmed version of each LSU

λ can be generated as an observation sequence of the
associated HMM, Λ, that is:

O = O1O2 · · · ,

where each observation O, is one of the symbols from
S.

The sequence is generated as follows:

1. Choose the initial state q1 = Ci according to the

initial state distribution π;

2. Set t = 1;

3. While (total length of already concatenated shots)

< (time slot ξ assigned to the current LSU)

(a) Choose Ot = Sk according to the symbol

probability distribution in stateCi, i.e., σi(k);
(b) Transit to a new state qt+1 = Cj , according

to the state transition probability for state Ci,

i.e., δij ;

(c) Set t = t + 1;

The above procedure is then repeated for all LSUs. Fi-

nally, all the obtainedHMM generated sequences of ob-

served shots are concatenated in order to generate the

resulting video skim.

• Content informativeness: In order to privilege the more

“informative” shots, the observation symbol probabil-

ity distribution Σ depends on the shot motion intensity.
In particular the higher is the motion present in a shot

Sk of the cluster Cj , the higher will be σj(k), i.e., Sk

will be more likely chosen for the skim. Since motion

activity can be interpreted as a measure of the “entropy”

of a video segment, by assigning higher probability of

observation to more dynamic shots, we privilege “infor-

mative” segments for the skim generation. At the same

time, we avoid to discard a-priori low-motion shots,

that can be chosen as well for entering the skim, even

if with lower probability. Moreover, once that one shot

is chosen for the video skim, it is removed from the

list of candidates for further time slots, at least until

all shots from the same cluster are employed too. This

prevents the same shot from repetitively appearing in

the same synopsis, and at the same time it favorites the

presence of low-motion shots, if the desired skim ra-

tio is big enough. Therefore, as it should be natural,

in very short skims, “informative” shots are likely to

appear first, while for longer skims, even less “infor-

mative” shots can enter the skim later on.

6. PERFORMANCE EVALUATION

To investigate the performance of the proposed video skim-

ming method, we carried out some experiments using the video

sequences described in Table 1 for a total time of about four

hours of video and more than two thousands shots.

Table 1. Video data set.

No. Video (genre) Length Shots

1 Portuguese News (news) 47:21 476

2 Notting Hill (movie) 30:00 429

3 A Beautiful Mind (movie) 17:42 202

4 Pulp Fiction (movie) 20:30 176

5 Camilo & Filho (soap) 38:12 140

6 Riscos (soap) 27:37 423

7 Misc. (basket/soap/quiz) 38:30 195

8 Don Quixotte (cartoon) 15:26 188

9 Music Show (music) 10:00 122

For the evaluation the method the two criterions of “in-

formativeness” and “enjoyability” adopted in [1] have been

used. Informativeness assesses the capability of the statisti-

cal model of maintaining content, coverage, representative-

ness and structure, while reducing redundancy. Enjoyability

instead assesses the performance of the motion analysis in se-

lecting perceptually enjoyable video segments for skims.

Starting from the LSU segmentation results we presented

in [11], we generated eighteen dynamic summaries with their

related soundtracks: for each video two associated skims have

been produced, one with 10% of the original video length and

the other with the 25% of the original length.

Ten students assessed the quality of these video skims

from high to low skim ratio, i.e., by watching first the 10%
video, then the 25%, and finally the original video (100%).
After watching a video, each student assigned two scores rang-

ing from 0 to 100, in terms of informativeness and enjoyabil-
ity. Then students were also requested to give scores to the

original videos in case they thought that these videos were not

100% informative or enjoyable. On this basis, after watching



the original video, the students were also given the chance to

modify the original scores assigned before to the two associ-

ated skims. Finally the scores assigned to skims have been

normalized to the scores given to the original video.

In these experiments, average normalized scores for en-

joyability are around 72% and 80%, respectively, for video
skims of 10% and 25% skimming ratio. Regarding informa-

tiveness instead, average normalized scores are around 68%
and 81%, respectively. These preliminary results are com-
parable with results presented in most recent works on video

skims [1], but they have been obtained on a larger data set of

video coming from different genres.

Moreover, since the skim generation does not take into

account the original shot order (i.e., in the skim a shot which

is later in the original video can appear before another shot

which is actually prior to it, as it sometimes happens in com-

mercial trailers!), nevertheless the obtained results suggest

that the skim preserves its informativeness and that the viewer

is not particularly disturbed if some shots are shown in non se-

quential order, at least as long as the visual-content remains

coherent.

7. CONCLUSIONS

In this paper we have proposed a method for the automatic

generation of video skims based on motion activity and hid-

den Markov Models. The final skim is a sequence of shots

which are obtained as observations of the HMMs correspond-

ing to each story units. In particular the observation proba-

bility distribution for shots is determined by a motion activity

measure which roughly estimates each shot contribution in

terms of “content informativeness”. The effectiveness of the

proposed method has been demonstrated in terms of informa-

tiveness and enjoyability on a large video set coming from

different genres.

8. REFERENCES

[1] C.-W. Ngo, Y.-F. Ma, and H.-J. Zhang, “Video summa-

rization and scene detection by graph modeling,” IEEE

Trans. on CSVT, vol. 15, no. 2, pp. 296–305, Feb 2005.

[2] Y.-F. Ma, L. Lu, H.-J. Zhang, and M. Li, “A user at-

tention model for video summarization,” in Proc. 10th

ACM Int. Conf. on Multim. Juan Les Pins, France, Dec

2002, pp. 533–542.

[3] M. A. Smith and T. Kanade, “Video skimming and

characterization through the combination of image and

language understanding,” in Proc. of IEEE Int. Work.

on Content-Based Access Image Video Data Base, Jan

1998, pp. 61–67.

[4] Y. Wang, Z. Liu, and J.-C. Huang, “Multimedia content

analysis using both audio and visual clues,” IEEE Signal

Processing Magazine, vol. 17, no. 11, pp. 12–36, Nov

2000.

[5] L. Xie, S.-F. Chang, A. Divakaran, and H. Sun, “Struc-

ture analysis of soccer video with hidden markov

model,” in Proc. of ICASSP’02. Orlando, Florida, USA,

May 2002.

[6] E. Kijak, L. Oisel, and P. Gros, “Hierarchical struc-

ture analysis of sport videos using hmms,” in Proc. of

ICIP’03. Barcelona, Spain, September 2003, pp. 1025–

1028.

[7] S. Jeannin and A. Divarakan, “MPEG7 visual motion

descriptors,” IEEE Trans. on CSVT, vol. 11, no. 6, Jun

2001.

[8] M. M. Yeung and B.-L. Yeo, “Time-constrained clus-

tering for segmentation of video into story units,” in

Proc. of ICPR’96. Vienna, Austria, Aug 1996, vol. III-

vol. 7276, p. 375.

[9] A. Hanjalic, R. L. Lagendijk, and J. Biemond, “Au-

tomated high-level movie segmentation for advanced

video retrieval systems,” IEEE Trans. on CSVT, vol. 9,

no. 4, Jun 1999.

[10] L. R. Rabiner, “A tutorial on hidden markov models and

selected applications in speech recognition,” Proceed-

ings of the IEEE, vol. 77, no. 2, pp. 257–286, Feb 1989.

[11] S. Benini, A. Bianchetti, R. Leonardi, and P. Miglio-

rati, “Video shot clustering and summarization through

dendrograms,” in Proc. of WIAMIS’06. Incheon, South

Korea, 19-21 April 2006.


