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ABSTRACT

Indexing and retrieval from remote sensing image databases
relies on the extraction of appropriate information from the
data about the entity of interest (e.g. land cover type) and
on the robustness of this extraction to nuisance variables.
Other entities in an image may be strongly correlated with
the entity of interest and their properties can therefore be
used to characterize this entity. The road network contained
in an image is one example. The properties of road networks
vary considerably from one geographical environment to
another, and they can therefore be used to classify and re-
trieve such environments. In this paper, we define several
such environments, and classify them with the aid of geo-
metrical and topological features computed from the road
networks occurring in them. The relative failure of network
extraction methods in certain types of urban area obliges us
to segment such areas and to add a second set of geometrical
and topological features computed from the segmentations.
To validate the approach, feature selection and SVM linear
kernel classification are performed on the feature set arising
from a diverse image database.

1. INTRODUCTION

The retrieval of images from large remote sensing image
databases relies on the ability to extract appropriate infor-
mation from the data, and on the robustness of this extrac-
tion [3]. Most queries do not concern, for example, imaging
modality, but rather information that is invariant to imag-
ing modality, for instance the land cover type of a region.
Illumination is another example of such a nuisance param-
eter. Image-based query characterizations are far from in-
variant to changes in such nuisance parameters, and they
thus fail to be robust when dealing with a large variety of
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images acquired under different conditions. Query charac-
terizations based on semantic entities detected in the scene,
however, are invariant to such nuisance parameters, and thus
inferences based on such entities can be used to retrieve im-
ages in a robust way. Road networks extracted from an im-
age provide one example: their topological and geometri-
cal properties vary considerably from one geographical en-
vironment to another. A set of geometrical and topologi-
cal features computed from an extracted road network can
therefore in principle be used to characterize images or parts
of images as belonging to different geographical environ-
ments. This differs from much previous work, for exam-
ple [9, 7], in that the aim is not to identify the same network
in different images, or in a map and an image, and produce
a detailed correspondence, but rather to use more general
road network properties to characterize other properties of
an image, in this case, its geographical environment.

A preliminary study described in [1] looked at the classi-
fication of a small image database into two classes, ‘Urban’
and ‘Rural’, using a small set of topological and geometri-
cal road network features and kernel k-means. The study
indicated that the idea had potential. The purpose of this
paper is to describe further studies examining the classifi-
cation of a much larger database into five classes (‘Urban
USA’, ‘Urban Europe’, ‘Mountains’, ‘Villages’, ‘Fields’,
shown in figure 1). Initially, the feature set was simply a
larger set of road network features, but the road network ex-
traction methods often failed to extract the finely structured
road networks in small urban areas, with the consequence
that the features computed from road networks poorly clas-
sify images containing such areas. In order to obtain use-
ful information from these parts of the images and improve
the classification, a new set of features based on segmented
urban areas was therefore introduced, and combined with
the existing road network features. In order to reduce the
dimensionality of the feature space, a suitable feature se-
lection scheme was also tested, which, in combination with
SVM linear kernel classification [2] on the combined set of
features from road networks and urban areas, gave promis-
ing results for the classification of the different geographical



environments contained in a diverse image database.
In section 2 we describe the two network extraction meth-

ods considered in this study. We also describe the road net-
work representation into which we convert the outputs of
these methods before computing the features. In section 2.2
we describe the set of road network features introduced to
classify the database into its classes. In section 3 we de-
scribe the features computed from segmented urban areas.
In section 4 we describe the results of a number of classifi-
cation experiments using our augmented feature set and an
SVM linear classifier. In section 5 we conclude.

355 Images database structure

Fig. 1. Images categorized into five different classes.

2. NETWORK EXTRACTION AND
REPRESENTATION

In order to compute geometrical and topological features of
the road network, we first need to extract the road network
from the image, and then convert the output to an appropri-
ate representation. This representation should be indepen-
dent of the output of the extraction algorithm, since we do
not want to be committed to any single such method.

2.1. Extraction methods

In the present work, we consider two network extraction
methods reported in [6, 4]. The output of the method de-
scribed in [6] is a binary image, which after a distance func-
tion computation can serve as an input to our problem. Fig-
ure 3(b) shows an example of the extracted network.

The output of the method described in [4] is a list of
multiply aligned segments. In order to have a suitable input
for our problem, we convert the output of this method into
a binary image and use some image processing techniques
to obtain single connected segments. We then compute a
distance function. Figure 3(d) shows an example of the ex-
tracted network.

(a) USA (b) Europe

(c) Mountains (d) Villages

(e) Fields

Fig. 2. An example of 2 urban and 3 rural classesc©CNES.

The distance function resulting from these methods is
converted to a graph representation of the road network for
feature computation purposes. The graph itself captures
the network topology, while the network geometry is en-
coded by decorating the vertices and edges with geomet-
rical information. The conversion is performed by com-
puting the shock locus of the distance function using the
method of [5, 8], extended to deal with multiple, multiply-
connected components. The method identifies the shock
points by finding out the limiting behaviour of the average
outward flux of the distance function as the region enclos-
ing the shock point shrinks to zero. A suitable threshold-
ing on this flux yields an approximation to the shock lo-
cus. The graph is constructed by taking triple (or, excep-
tionally, higher degree) points and end points as vertices,
corresponding to junctions and terminals, while the edges



(a) Original imagec©CNES (b) Extracted network.

(c) Original imagec©CNES (d) Extracted network.

Fig. 3. Example results from the two extraction methods:
(b) method of [6], and (d) method of [4].

are composed of all other points, and correspond to road
segments between junctions and terminals. Figure 4 shows
an example of the representation graph. The road network
(top right) is first extracted from the input image (top left).
The methods cited above is then used to generate the shock
locus (bottom left), which is then converted to the graph rep-
resentation (bottom right). The vertices and edges are deco-
rated with geometrical quantities computed from the shock
locus. The features are then computed from the graph and
its decorations. The features computed from the graph rep-
resentation are described in section 2.2.

2.2. Features from the graph

In this section we focus on 15 features summarized in ta-
ble 1. These features can be categorized into six groups: five
measures of ‘density’, four measures of ‘curviness’, two
measures of ‘homogeneity’, one measure of ‘length’, two
measures of ‘distribution’ and one measure of ‘entropy’. We
will now define the road network features.

Let v be a vertex, ande be an edge. Letle be the length
of the road segment corresponding toe, and letde be the
length ofe, that is the Euclidean distance between its two
vertices. Letmv =

∑
e:v∈e 1 be the number of edges at a

vertex. ThenNJ =
∑

v:mv>2 1 is the number of junction
vertices andEJ =

∑
mv>2 mv is the number of junction

Notation Description
m Number of edges in graph
n Number of vertices in graph
Ω Area of image
ΩL Network area
a Quadrant label
le Length of road segment corresponding to

edgee
mv Number of edges at a vertex

∑
e:v∈e 1

NJ Number of junction vertices
∑

v:mv>2 1
ÑJ Junction densityΩ−1NJ

L Network length
∑

e le
L̃ Length densityΩ−1

∑
e le

Ã Network area densityΩ−1ΩL

de Euclidean distance between vertices in an
edge

pe Ratio of lengthsle/de

var(p) Ratio of lengths variancem−1
∑

e p2
e −

(m−1
∑

e pe)2

mean(p) Ratio of lengths meanm−1
∑

e pe

ke Average curvaturel−1
e

∫
e
ds |ke(s)|

var(k) Average curvature variance
m−1

∑
e k2

e − (m−1
∑

e ke)2

mean(k) Average curvature meanm−1
∑

e ke

ED,i Proportion of junctions withmv = i
var(ED,i) Variance of edge distribu-

tion (1/ max(mv))
∑

i E2
D,i −

((1/ max(mv))
∑

i ED,i)2

mean(ED,i) Mean of edge distribution
(1/ max(mv))

∑
i ED,i

EJ Number of junction edges
∑

mv>2 mv

MJ,a Number of junction edges per quadrant∑
v∈a:mv>2 mv

ẼJ Density of junction edgesΩ−1EJ

M̃J,a Density of junction edges per quadrant
Ω−1

a MJ,a

var(M̃J) Variance of density of junction edges
(1/4)

∑
a M̃2

J,a − ((1/4)
∑

a M̃J,a)2

mean(M̃J) Mean of density of junction edges
(1/4)

∑
a M̃J,a

Ωr Area of a circular region ofr
Ñj,r Junction density in a circular region

Ω−1
j,r

∑
v∈Ωj,r:mv>2 1

maxj{Ñj,r} Maximum of the junction densities
maxj{Ñj,r}

βj Vector of angles between segments at
junctionj

Hβ Entropy of histogram of road segment
angles with bin size30◦

Tab. 1. A summary of the features computed from road
networks.



(a) Original imagec©CNES (b) Extracted road network

(c) Shock locus of road network (d) Graph representation

Fig. 4. An example of the graph representation.

edges. LetΩ be the area of the image in pixels. We de-
fine the ‘junction density’ to bẽNJ = Ω−1NJ and ‘density
of junction edges’ to bẽEJ = Ω−1EJ . These are intu-
itively a useful measure to separate urban and rural areas:
we expect urban areas to have a higher value ofÑJ andẼJ

than rural areas. Similarly, we define the ‘network length’
L =

∑
e le and the ‘length density’ to bẽL = Ω−1

∑
e le.

Again, we expect urban areas to have a higher value ofL̃
than rural areas. Note than one can have a high value ofL̃
and a low value of̃NJ if junctions are complex and the road
segments are ‘space-filling’. We also compute the network
areaΩL as the number of pixels corresponding to the net-
work from the extracted binary image and define the ‘area
density’ asÃ = Ω−1ΩL. As can be seen in figure 4, many
junction points are clustered around a small area in the net-
work. To obtain a local characteristic of the junction den-
sity, we define a measure called ‘junction density in a circu-
lar region’Ñj,r = Ω−1

j,r

∑
v∈Ωj,r:mv>2 1. This is the density

of junction points falling in a circular regionΩj,r of radius
r centred at a junction point. We then compute the max-
imum of these junction densities over all junction points,
maxj{Ñj,r}. A high value indicates that junction points
are clustered close to many other junction points, which is a
prominent measure of urban network structure. Rural areas
will have a lower value of this feature, indicating the sparse
structure of road junctions.

Let pe = le/de, andke = l−1
e

∫
e
ds |ke(s)|, i.e. the ab-

solute curvature per unit length of the road segment corre-

sponding toe. Although it may seem natural to characterize
the network using the average values per edge of these quan-
tities, in practice we have found that the variances of these
quantities are equally useful. We thus define the ‘ratio of
lengths variance’ and the ‘ratio of lengths mean’ to be the
variance and mean ofpe over edges, var(p) and mean(p),
and the ‘average curvature variance’ and ‘average curva-
ture mean’ to be the variance and mean ofke over edges,
var(k) and mean(k). Note that it is quite possible to have
a large value ofpe for an edge while having a small value
of ke if the road segment is composed of long straight seg-
ments, and vice-versa, if the road ‘wiggles’ rapidly around
the straight line joining the two vertices in the edge. We
expect rural areas to have high values of one of these two
quantities, while urban areas will probably have low values,
although this is less obvious than for the density measures.

To measure network homogeneity, we divide each im-
age into four quadrants, labelleda. Subscripta indicates
quantities evaluated for quadranta rather than the whole im-
age. LetMJ,a =

∑
v∈a:mv>2 mv be the number of edges

emanating from junctions in quadranta. This is very nearly
twice the number of edges ina, but it is convenient to re-
strict ourselves to junctions to avoid spurious termini at the
boundary of the image. Let̃MJ,a = Ω−1

a MJ,a be the den-
sity of such edges in quadranta. Then we define the ‘net-
work inhomogeneity’ to be the variance of̃MJ,a over quad-
rants, var(M̃J). We also include mean(M̃J) as a feature.

In order to distinguish between the two urban classes
(USA and Europe), the entropy of the histogram of angles
at junctions,Hβ , whereβj is the vector of angles between
road segments at junctionj, is a good measure. As is ev-
ident from the physical characteristics of these road net-
work structures, roads in USA tend to be parallel and cross
each other orthogonally forming T-junctions or crossroads,
whereas European roads tend to wiggle and meet or cross
each other at roundabouts. Thus it seems natural thatHβ ≤
2 bits are necessary to encode information about road seg-
ments at junctions for road networks in the USA, whereas
for road networks in Europe,Hβ ≥ 2 bits are necessary.
The same measure can also be used to distinguish between
Mountains and Fields, while the ‘density’ features distin-
guish rural networks from urban networks.

A ‘distribution’ measure of edges at a vertex provides
us with information as to how the edges at a vertex are dis-
tributed in the network. LetED,i be the proportion of junc-
tion points withi edges at them. We use mean(ED,i) and
var(ED,i) as features. The variance of the edge distribution
is lower in the case of networks in urban areas as opposed
to rural, and it is lower also in the case of urban networks in
the USA as opposed to in Europe.



3. EXTRACTION AND CHARACTERIZATION OF
URBAN REGION

Classification experiments show that the above features are
not sufficient for images that contain a significant propor-
tion of small urban areas. This is because the extraction
methods frequently fail to extract the dense road network
structures in these areas. Some example images are shown
in figure 5(a) and figure 5(c). In order to circumvent this
problem and to extract useful information from these parts
of the image, we instead segment the urban area itself, and
then compute some geometrical features of the resulting re-
gion. These features will be combined with the road net-
work features described above for classification purposes.

3.1. Extraction of urban region

We use a sequence of morphological operators to extract the
region of interest from the image. A difference is computed
between a morphologically closed and opened image. This
difference gives prominence to textured regions, like urban
areas. Then an alternated sequential filter aggregates neigh-
bouring components and eliminates small isolated compo-
nents. We compute two geometrical features from these re-
gions as shown in table 2.

(a) Original imagec©CNES (b) Segmented region

(c) Original imagec©CNES (d) Segmented region

Fig. 5. Images containing small urban areas and their seg-
mentations.

Notation Description
Ω Area of image
ΩR Area of extracted regions
ΓR Perimeter of extracted regions
R̃A Region area densityΩ−1ΩR

CfA Region compactness factorΩ−1
R Γ2

R

Tab. 2. Summary of features computed for urban areas.

3.2. Features from the region

We focus on the last two features in table 2. These two fea-
tures enable us to distinguish between Villages and Fields
classes, which otherwise were misclassified due to the lack
of extracted network information from the small compact
urban region in the images, shown in figure 5(a) and fig-
ure 5(c). LetΩ andΩR be the area of the image and the area
of the extracted regions respectively andΓR be the perime-
ter of the extracted regions. We define two descriptors,
R̃A = Ω−1ΩR, the extracted region density andCfA =
Ω−1

R Γ2
R, the extracted region compactness factor. These two

features help us to distinguish the Villages class from the
rest of the classes: for example,R̃A ' 1 for urban classes
andR̃A ' 0 for Mountains and Fields classes.

4. FEATURE SELECTION AND CLASSIFICATION

All the images in our database have the same resolution.
However, more generally we need to consider the scaling of
the above quantities with image resolution. We assume that
changing the resolution of the image does not change the ex-
tracted road network. This can happen, for example, if the
network extracted from a lower resolution image lacks cer-
tain roads contained in the network extracted from a higher
resolution image because they are less than one pixel wide.
This effectively limits the range of the resolutions that we
can consider simultaneously. Having assumed this, invari-
ance to image resolution is easily accomplished by convert-
ing quantities in pixel units to physical units using the image
resolution.

The features described in the above sections were com-
puted for a database of 355 SPOT5, 5m resolution images.
To provide ground truth, these images were hand classified
into the five classes described above representing various
kinds of urban and rural environments. Machine classifica-
tion was done with a five-fold cross validation on the data
set, with 80% of data for training and the remaining 20%
for testing in each fold.

The results of SVM linear kernel classification of 355
images into 5 classes, using 30 features, is shown in table 3
(15 features each from the graph for 2 network extraction
methods). There is a mean error of 36.1% with standard de-



Class
1

Class
2

Class
3

Class
4

Class
5

Villages 0.527 0.094 0.245 0.055 0.131
Mountains 0.048 0.805 0.000 0.015 0.059
Fields 0.218 0.000 0.593 0.063 0.129
USA 0.065 0.020 0.046 0.771 0.144
Europe 0.140 0.086 0.117 0.102 0.536

Tab. 3. Confusion matrix of an SVM linear kernel classifi-
cation of 355 images into 5 classes with 30 features

Class
1

Class
2

Class
3

Class
4

Class
5

Villages 0.726 0.047 0.151 0.030 0.055
Mountains 0.035 0.876 0.027 0.000 0.000
Fields 0.142 0.018 0.822 0.018 0.025
USA 0.035 0.000 0.000 0.818 0.137
Europe 0.069 0.058 0.000 0.135 0.783

Tab. 4. Confusion matrix of an SVM linear kernel classifi-
cation of 355 images into 5 classes with 32 features.

viation of 8.49%. As can be clearly seen in the confusion
matrix, the Villages class is confused with the Fields class
and also there is a slight confusion between the Urban USA
and Urban Europe classes. These confusions arise because,
as stated above, the road extraction methods fail to detect
the fine and densely structured roads present in some im-
ages. Table 4 shows the results of classification of the same
set of images, this time with 32 features: 30 road network
features plus the two features computed from the segmented
urban areas. As can be seen, there is an improvement in the
confusion matrix. The Villages class is less confused with
the Fields class than before. The SVM linear kernel classi-
fication in this case gives us a mean error of 20.3% with a
standard deviation of 7.75%.

With such a large number of features, and with some
similarity between different features, it seems likely that
there is some redundancy in the feature space. This redun-
dancy can be reduced by feature selection. In the final clas-
sification experiment, we performed feature selection us-
ing a Fisher linear discriminant (FLD) analysis, followed
by SVM linear kernel classification on the selected feature
set. The results of classification are shown in table 5. The
SVM linear kernel classification on the 15-dimensional fea-
ture space selected by the FLD shows a mean error of 17.5%
with a standard deviation of 3.81%. An overall classifi-
cation performance summary is depicted in table 6, where
classification error in% is given as “mean± standard devi-
ation” error.

Class
1

Class
2

Class
3

Class
4

Class
5

Villages 0.751 0.051 0.139 0.011 0.059
Mountains 0.034 0.896 0.014 0.000 0.000
Fields 0.074 0.015 0.826 0.012 0.000
USA 0.028 0.000 0.000 0.897 0.189
Europe 0.112 0.037 0.022 0.080 0.752

Tab. 5. Confusion matrix of an SVM linear kernel classifi-
cation of 355 images into 5 classes with 15 features selected
by FLD.

Feature Dimen-
sion

Selection Classification Error (%)

30 No 36.1±8.49

32 No 20.3±7.75

32 Fisher 17.5±3.81

Tab. 6. Classification performance.

5. CONCLUSION

The classification results reported above indicate that geo-
metrical and topological features computed from road net-
works and urban areas can serve as robust characterizations
of a number of geographical environments found in remote
sensing images. Future work will involve a two-level hi-
erarchical model with three top-level categories (‘Urban’,
‘Semi-Urban’ and ‘Non-Urban’), with several subcategories
within each main category (‘Urban/USA’, ‘Urban/Europe’,
‘Urban/Asia’, ‘Semi-Urban/Sparse Regions’, ‘Semi-Urban/-
Non-Sparse Regions’, ‘Non-Urban/Mountains’, ‘Non-Urban-
/Fields’); computing feature statistics; and experimenting
with different classifiers to improve the classification and
hence retrieval results. Future work will also involve a con-
struction of a larger database with few additional classes.

6. REFERENCES

[1] A. Bhattacharya, I. H. Jermyn, X. Descombes, and
J. Zerubia. Computing statistics from a graph represen-
tation of road networks in satellite images for indexing
and retrieval. InProc. CompIMAGE - Computational
Modelling of Objects Represented in Images: Funda-
mentals, Methods and Applications, Coimbra, Portugal,
2006.

[2] M. Campedel and E. Moulines. Classification et
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