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ABSTRACT 
 

In this paper, an affine invariant curve matching method 
using curvature scale-space and normalization is proposed. 
Prior to curve matching, curve normalization with respect to 
affine transformations is applied, allowing a lossless affine 
invariant curve representation. The maxima points of the 
curvature scale-space (CSS) image are then used to 
represent the normalized curve, while retaining the local 
properties of the curve. The matching algorithm that 
follows, matches the maxima sets of CSS images and the 
resulting matching cost provides a measure of similarity. 
The method’s performance and robustness is evaluated 
through a variety of curves and affine transformations, 
obtaining precise shape similarity and retrieval. 
 
 

1. INTRODUCTION 
 

Shape is known as one of the most important visual 
features, since it enables us to recognize objects without 
using further information. Consequently, shape 
representation, recognition and matching are considered to 
be an important element in image processing field. Many 
methods have been proposed in the literature for efficient 
representation and analysis of boundary curves extracted 
from real objects. Shape representation methods focus either 
on shape boundaries (boundary-based methods) which use 
curvature [1]-[4] or on interior region of shape (region 
based methods) which use moments [5]-[8] and Fourier 
descriptors [9]-[12].  

Many approaches have taken under consideration the 
problem of drastic shape change due to perspective 
transformations when objects are far from the camera. 
Therefore, invariance to viewpoints is a desirable property 
in many shape recognition systems. These deformations can 
be modeled approximately by a general affine 
transformation. As a result, affine invariance in shape 
representation has proved to be of critical importance and 

several methods have been proposed in order to deal with 
the problem of affine transformations.  

A number of shape representations have been proposed 
to recognize shapes even under affine transformation 
[6],[7],[10]], affine invariant scale space [1]-[3] and affine 
curvature [4] have also been explored. A number of shape 
representation techniques are based on level-set methods 
[13]. 

Mokhatarian et al [2] proposed an affine invariant 
shape representation of closed curves based on multi scale 
theory and curve evolution called CSS shape representation, 
which has been set as one of MPEG-7 descriptors. The 
shape representation is computed by convolving the curve 
with a Gaussian function at different levels of scale and 
extracting the location of inflection points of the resulting 
curves in order to construct the curvature scale space (CSS) 
image. Next, to perform the matching process, the maxima 
of the CSS image [2] are extracted and matched using a 
proposed matching algorithm, which compares two sets of 
maxima and assigns a matching value to them. This method 
ensures affine invariance through affine length 
parametrization of the curve. As a result, the curve is being 
normalized while, on the other hand, preserving all of its 
local properties.  

Even though the CSS method has been proved to be 
robust under affine transformations, affine length 
parametrization provides affine invariance in case of 
translation, scaling, rotation and shear but doesn’t apply in 
case of reflection and starting point transformation. For this 
reason, the CSS matching algorithm attempts to apply a 
circular shift to the CSS image equivalent to the change in 
orientation of the corresponding object, but its performance 
depends on a hypothesis for the required shift that may not 
lead to the best match.  

In this paper we attempt to improve the CSS method’s 
efficiency, replacing the affine length normalization method 
with an affine invariant curve normalization method 
proposed by Avrithis et al [3]. The alternative normalization 
method, which is based on moments and Fourier 



coefficients, seems to improve affine robustness of 
transformed curves without any loss of information. The 
matching scheme of the proposed method is based on 
calculating the Euclidean distances between two maxima 
sets of CSS images. The measure of similarity is provided 
by a resulting matching cost which is in fact a summation of 
minimum distances between maxima sets. The processes of 
affine invariant representation and matching are completely 
decoupled in this approach. 

The paper is organized as follows Section 2 refers to 
the CSS shape representation using affine length 
parametrization while Section 3 presents the CSS shape 
representation using affine invariant curve normalization. 
The performance of the proposed method is examined in 
experimental field as it is presented in Section 4. 

 
2. CSS SHAPE REPRESENTATION AND 
MATCHING USING AFFINE LENGTH 

PARAMETRIZATION 
 

2.1 Curve parametrization 
 
Curvature scale space representation finds its roots in multi–
scale shape representation theory which handles image 
structures at different levels of scale. It is a method mainly 
used in the problem of shape similarity retrieval and it has 
proved to be efficient and robust under general affine 
transformations. The CSS representation of an object results 
to the construction of its CSS image, following a procedure 
of steps that also ensures affine invariance.  

In the first step, the equation curve is being 
parameterized by an arbitrary parameter u. If u is the arc 
length parameter, the resulting representation is called the 
natural representation of the curve and seems to be robust 
to Euclidean transformations. However, arc length is not 
preserved under affine transformation, which led to the use 
of affine length parameter. Therefore, a resampling based on 
affine length parametrization follows, in order to achieve 
affine invariance but also preserve the curve’s local 
characteristics. 
 
2.2 CSS image construction 
 
After applying the affine length parametrization, the curve 
is being smoothed by convolving each of its coordinates 
with a Gaussian function, while increasing the width of the 
Gaussian kernel. The resulting process creates ordered 
sequences of curves and is referred to as the evolution of the 
curve. Following curve smoothing, that reduces the effect of 
noise, the curvature function is calculated in order to find 
the locations of the curvature’s zero crossing points.  

  

 

Figure 1: Curve evolution 

The equation is shown below: 
( , ) 0uκ σ =      (1) 

where u is an approximation of the affine length parameter 
and σ is the width of the Gaussian kernel. The resulting 
locations are depicted on Fig.1 during the curve evolution. 

Through the curve evolution, and as s increases, the 
curve becomes smoother and it is observed that zero 
crossing points tend to join in pairs whenever a concave or 
convex part of the curve is being smoothed. Finally, when 
the last pair is joined, the evolution comes to an end and the 
resulting curve contains no concavities or convexities. Zero 
crossing points seem to define each curve and carry 
valuable information of its form. Therefore, zero crossing 
point locations are displayed below in a (u, σ) plane, where 
u is an approximation of the affine length parameter and σ is 
the width of the Gaussian kernel. The result of this process 
can be represented as a binary image called the regular CSS 
image of the curve (Fig. 2). 
 

 

(a) (b) 

Figure 2: (a) Boundary curve (b) Regular CSS image of the 
curve and its maxima points 

The intersection of every horizontal line with the 
contours in the image shown in Fig. 2 indicates the locations 
of curvature zero crossings of the corresponding evolved 
curve. Each concavity of the original curve is represented in 
both curve evolution (Fig. 1) as well as in regular CSS 
image (Fig. 2). In fact, there are two zero crossings of the 



curvature on every concave part of the shape, and as the 
curve becomes smoother, these points approach each other 
and finally join, when the concavity is filled. The resulting 
point represents the maximum of the relevant contour; 
basically it represents an actual segment of the shape. 
Therefore, each contour maxima in the CSS image is being 
extracted – shown on Fig. 2(b) – and their locations are then 
used to represent every image boundary.  

Unfortunately, the locations of maxima are not readily 
available and must be extracted from the CSS image. Notice 
that the CSS contours are usually connected everywhere 
except in a neighborhood of their maxima. Therefore, in 
order to find the maxima locations, the peaks of both 
branches of a contour in the CSS image are found and the 
midpoint of the line segment joining the pair is considered 
as maxima of the CSS image. Small contours of the CSS 
image are related to noise and are not included in the final 
representation. So, if a maximum is less than a certain 
threshold t, it is considered as noise. An indicative value for 
the threshold could be the 0.2 of the largest maximum of the 
CSS image.  
 
2.3. CSS matching 
 
Following the CSS maxima extraction, the CSS matching 
algorithm compares two sets of maxima and assigns a 
matching value to them. The matching value represents the 
similarity measure between the actual boundaries of image 
contours.  

The first step of the matching algorithm deals with the 
problem of different starting points of matching CSS 
images. A solution could be applying a circular shift to one 
of the two sets of image maxima, so that the effect of 
randomly selected starting point is compensated. Since the 
exact value of required shift is not available, it is assumed 
that the best shift is the one that shifts one CSS image so 
that its major maximum equals the major maximum of the 
other CSS image. Each maximum is then matched according 
to the minimum Euclidean distance·the final total cost of the 
match is the summation of Euclidean distances between the 
matched maxima [2]. 

Basically, the above matching algorithm attempts to 
normalize possible reflection and starting point 
transformation of the image through a circular shift. The 
hypothesis that the major maxima shift is considered as the 
best shift does not always lead to the best match, so 
alternative hypotheses for all possible shifts need to be 
examined. For each case, the matching cost should be 
determined and its lowest value will then represent the best 
match, a time consuming and error-prone process. In the 
proposed approach, on the other hand, starting point 
normalization is curried out before matching, making such 

search process unnecessary. Normalization in this case also 
includes reflection, apart from any affine transformation. 

 
3. CSS SHAPE REPRESENTATION AND 

MATCHING USING AFFINE INVARIANT 
NORMALIZATION 

 
As shown above, CSS representation using affine length 
parametrization seems to be efficient and robust under 
affine transformations. Nevertheless, its efficiency depends 
on successful affine normalization and matching algorithm 
implementation, procedures that can both include error 
possibility. Affine length parametrization can ensure affine 
invariance in case of translation, scaling, rotation and shear 
of the original curve but doesn’t apply in the case of 
reflection and starting point transformations.  

In order to improve the CSS method’s efficiency, we 
replace the affine length normalization method with an 
alternative normalization method [3]. 

Consequently, a new curvature shape representation 
(N-CSS) is proposed here, aiming at minimizing the effect 
of affine transformation in shape representation. N-CSS 
shape representation is based on the existing CSS 
representation method and attempts to improve the 
method’s performance by introducing alternative affine 
invariant curve normalization. 
 
3.1 Curve normalization 
 
Assume that the parametric vector equation for a curve is 
considered as: 

( ) ( ( ), ( ))s u x u y u=         (2)  
where u is an arbitrary parameter. 

At first, in order to obtain the discrete points of the 
curve, a uniform sampling is applied and the object’s 
boundary is represented by a number of equally distant 
points. Then, the boundary curve is being normalized in 
order to become robust to general affine transformation. The 
normalization method is considered to ensure affine 
invariance with respect to any affine transformation, 
including translation, scaling, rotation, shear, starting point 
and reflection transformations. Affine invariant curve 
normalization for shape based retrieval is a method for two–
dimensional curve normalization that can be applied as a 
preprocessing step to any shape representation, 
classification, recognition or retrieval technique, without 
any actual loss of information of the original curve. In 
particular, the curve is being normalized in several stages in 
order to eliminate translation, scaling, rotation and shear as 
well as starting point and reflection transformations. 
Normalization is based on a combination of curve features 
including moments and Fourier descriptors.  



The first stage of normalization includes curve 
orthogonalization, a procedure which effectively manages 
to normalize the original curve with respect to translation, 
scaling and shear transformation. In fact, affine 
transformations are reduced to orthogonal ones based on 
curve moments. For each curve s, the (p,q)-order moments 
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of order up to two are used for the construction of the 
corresponding normalized curve ( )an s . 

Below, the individual orthogonalization steps are 
concisely presented:  
 
1. The center of gravity of the curve is normalized so as to 

coincide with the origin: 
1 10 ( ),x x m s= −          1 01 ( )y y m s= −        (4) 

where 10 01( ), ( ).x ym s m sμ μ= =   
2. The curve is scaled horizontally and vertically so that 

its second-order moments become equal to one: 
      2 1,xx xσ=                   

2 1yy yσ=  (5) 

where 20 1 02 11/ ( ), 1/ ( ).x ym s m sσ σ= =  
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where Rθ is a 2 x 2 matrix corresponding to a 
counterclockwise rotation by θ  radiants. 

4. Finally the curve is scaled again, exactly as in step 2: 
4 3,xx xτ=              4 3yy yτ=        (7) 

where 20 3 02 31/ ( ), 1/ ( ).x ym s m sτ τ= =  

The normalized curve 4( )an s s≡ can also be written as: 
( ) ( )( ( ))

0 01 11
0 01 12

a

xx x

yx x

n s N s s s

x
y

μ

μτ σ
μτ σ

= −

⎛ ⎞−− ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎜ ⎟−⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

      (8) 

where [ ]10 01( ) ( ) ( )s m s m sμ Τ= and N(s) denotes the 2 x 2 

normalization matrix of s. The resulting curve may contain 
only rotation and/or reflection transformations that are 
examined in the following normalization stage. 

The second normalization stage applies starting point 
normalization for closed curves. As a result, rotation and 
reflection normalization follows, since they are affine 
transformations depended on the starting point of the curve. 
The normalization procedure with respect to the starting 

point is based on discrete Fourier transform of the complex 
vector z representing a curve: 
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For each element of the Fourier transform we will 
employ its primary argument, or phase, defined as 

arg [0, 2 ) : , .j
k k ku u re rθα θ π += = ∈ = ∈ℜ   

The corresponding phase vector is then 
[ ]0 1 1arg Na u a a a −= = " . 

Then, this normalization stage is completed by applying 
a circular shift, if needed, to the starting point. Therefore, 
we estimate a standard circular shift for each curve, based 
on the difference between the first and last Fourier phases: 

 
1 1( ) ( ) mod 24 N

N Np z a a
π −

⎡ ⎤= −⎢ ⎥⎣ ⎦
       (10) 

and then apply the opposite shift in order to normalize the 
curve: 

( )( ) ( )p p zn z S z−= .        (11) 

In the final normalization stage, the curve is being 
normalized with respect to rotation and reflection 
transformation. As in the starting point case, normalization 
is based on the first and last Fourier phase 1a  and 

1Na −
 of z, 

and consists of the following steps: 
1. The rotation of the initial curve z is normalized 

according to the average value of 1a and 1Na − : 
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2. The horizontal and vertical reflection is normalized 
according to the third-order moments of 1z : 

1 1 1
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where sgn denotes the signum function 
Two final steps are required after rotation and reflection 

normalization. First, the starting point ambiguity of N/2 that 
may have derived from the starting point normalization is 
resolved by applying an additional circular shift of N/2 
samples, if 0 0x < ; otherwise the normalized curve is left 
intact. Secondly, the curve orientation is normalized to 
being counterclockwise. 
 
 



-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

 
(a) 

-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500
-1000

-500

0

500

1000

1500

2000

2500

 
(b) 

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

 
(e) 

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 
(c) 

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 
(d) 

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10

 
(f) 

Figure 3: Normalized curves with affine length parametrization (a),(b) (CSS method), with affine normalization (c), (d) (N-CSS method) 
and corresponding CSS images (e) and (f) 

 
3.2 Normalized CSS matching 
 
After applying curve normalization, the proposed method 
follows respectively the exact steps of the CSS method, 
which include curve smoothing, construction of the CSS 
image and finally, the matching procedure. 

So, initially, the resulting normalized curve is being 
smoothed using the Gaussian function. Each coordinate of 
the boundary curve is convolved with a Gaussian function 
while increasing the width of the Gaussian kernel σ.  

We continue by constructing the CSS image of the 
curve and extracting the locations of CSS image maxima. 
As mentioned in Section 2, maxima locations are indicative 
of each CSS image and are used in the consequent matching 
procedure. In N-CSS method we apply the same matching 
algorithm as in CSS method, in order to compare two sets of 
CSS maxima and calculate their matching cost. However, 
the matching procedure is indifferent to the required best 

shift hypothesis, since starting point normalization has 
already been applied. That constitutes our method’s main 
advantage and indicative results are shown in Fig. 3, where 
affine normalization seems to be capable of a more precise 
matching. 
As shown in Fig. 3(e) and Fig. 3(f), the normalization 
applied in N-CSS method places the two CSS images in 
similar position with respect to their starting point, so that 
no additional shift is required. This improvement seems to 
be quite valuable whereas the number of the concave parts 
of the boundary curve increases. In such cases more 
hypotheses for the required best shift need to be considered, 
since there are respectively more contour maxima that can 
perform the best shift match. Therefore, N-CSS 
normalization fully succeeds in minimizing error possibility 
included in both affine length normalization and matching 
procedure and, as a result, effectively improves the 
performance of CSS method.  
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Figure 5: CSS images of different shapes of same shape category (a) in CSS method (b) in N-CSS method 

 
 

4. EXPERIMENTAL RESULTS 
 

In this section, we examine the performance of our 
proposed shape representation method in comparison with 
the CSS method and the results of our experiments are 
presented and discussed. In order to achieve that, we have 
created a database of real object’s contours categorized by 
shape, such as cars, planes, drinks etc. Our experimental 
procedure consists of three different types of experiments 
involving general affine transformations. More specifically, 
the first experiment deals with affine transformation of the 
same boundary curve of the same shape category. 
Therefore, we have created a number of random affine 
transformations for each boundary curve in the database and 
calculated the matching cost of the original and affine 
transformed curve, using both CSS and N-CSS method. 

For the whole experimental procedure, it is assumed 
that the contour shape of an object is available and 
represented by a set of ordered points forming a 2-D planar 
and closed curve. This set of sampled points is obtained 
from image data by means of manual or automatic 
segmentation. 
As already mentioned, our proposed method seems to be 
quite efficient in case of matching affine transformed curves 
of the same shape, where affine invariant normalization 
contributes to effective curve matching. Equivalently, we 
continue by evaluating the method’s performance in case of 
affine transformations of different shapes but in the same 
shape category. For example, we match two different types 
of glasses and their random affine transforms (Fig. 4). In 
Fig. 5 we can observe two indicative CSS images for both 
CSS and N-CSS method. Comparing the two CSS images 
(Fig. 5(a) and (b)) we come to the conclusion that N-CSS 
normalization also provides starting point affine invariance 
and therefore more accurate matching. More specifically, 
the CSS images approximately match the size of the  
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Figure 4: Contours of different shapes of the same shape category  

corresponding contours, placing each contour in 
proportional position. 

The resulting CSS images do not match in every 
contour shape as in Fig. 3, which is expected due to the fact 
that, even in the same shape category, the boundary shape 
slightly alters. 

Finally, we examine the method’s performance in case 
of affine transformations of different shapes of different 
shape category, including their random affine transforms. 
The results of these experiments have also improved CSS 
image representation as well as its following matching 
procedure. However, since the shape of the examined 
boundary curves completely alters, matching cost value 
remains respectively high. 

To verify the above theory, we conducted a number of 
experiments including a variety of curves from different 
shape categories. Curve matching for each curve and its 
affine transformations was applied, resulting to a matching 
cost value. More specifically, our database consists of 5 
shape categories (cars, fish, glasses, hammers, planes). 

Firstly, we apply 100 random affine transformations to 
each curve and calculate the matching cost between the 
original (non-affine) and its affine transformed curves (see 
Fig.3). The average matching cost values are depicted on 
Table 1. Observing the matching cost values, it becomes 



clear that affine curve normalization used in N-CSS method, 
leads to a more efficient curve matching, regarding random 
affine transforms of the same curve.  

 

 
Table 1: Average matching cost values for the same curve of the 

same shape category estimated by CSS and N-CSS method 
 
In fact, the matching cost values in case of N-CSS 

method seem to approach the desired minimum cost. The 
results also indicate the success rate of affine invariant 
normalization used in our proposed N-CSS method. 

Next, we apply a random affine transformation to each 
curve of the same shape category (Fig.4), and calculate the 
matching cost between the affine transformed curves 
(Fig.5). The average matching cost values are depicted on 
Table 2. 
 

Methods 
Shape category 

cars fish glasses hammers planes 

CSS 40,37 58,67 54,49 52,63 60,70 

N-CSS 30,99 54,12 46,36 38,72 47,91 

 
Table 2: Average matching cost values for different curves of the 

same shape category estimated by CSS and N-CSS method 
 
The above experimental results show that our proposed 
method (N-CSS) improves the performance of the existing 
method (CSS), but not in an extended rate as in the previous 
experiment. Such outcome is normally expected, since the 
normalization of N-CSS method provides affine invariance 
but is depended on the characteristics of each curve. So, as 
the shape of the curve alters, the matching cost of N-CSS 
method evenly increases. Therefore, N-CSS method has 
similar performance in case of different curves of different 
shape category, as shown in Table 3 and 4. 
 

CSS method cars fish  glasses 

cars  
40,37 52,77 57,15 

fish 
52,77 58,67 60,73 

glasses 
57,15 60,73 54,48 

 

Table 3: Average matching cost values for different curves of 
different shape category estimated by CSS method 

N-CSS method cars fish  glasses 
cars  

30,99 52,21 36,49 
fish 

52,21 54,12 46,30 
glasses 

36,49 46,30 46,36 
 
Table 4: Average matching cost values for different curves of 
different shape category estimated N-CSS method 

 
To sum up, average matching cost results of both CSS 

and proposed N-CSS method are shown in Table 5. 
 

Curve contours 
Matching cost 

CSS 
method 

N-CSS 
method 

Same shape/same category 53,83 11,354 

Different shape/same category 53,37 43,62 

Different shape/different category 54,98 44,61 

 
Table 5: Average matching cost values estimated by CSS and N-

CSS method 
 

Observing the resulting matching costs, we come to the 
conclusion that our proposed method can lead to an 
improved shape representation and consequently to a more 
reliable curve matching. Moreover, curve normalization 
prior to curve matching seems to fully compensate possible 
insufficiency of affine length parametrization and matching 
algorithm. The resulting matching values can be considered 
not only as a measure of similarity between curves but also 
as a distinctive measure to classify curves into different 
shape categories, whereas the existing method proves to be 
inadequate. 

Furthermore, depending on the average matching cost 
values, we can establish criteria for shape similarity 
retrieval and even more for successful image classification. 

 
5. CONCLUSION – FURTHER WORK 

 
Affine invariant curve matching using curvature scale-space 
and normalization has proved to be quite efficient in the 
problem of shape similarity retrieval in an affine 
transformed environment.  

In this paper, the improvement is achieved through 
affine invariant curve normalization, applied as a 
preprocessing stage to CSS image construction and 
matching procedure. As a result, our proposed method is 
able to ensure affine invariance with respect to both 
parameter and coordinate affine transformations, while 
retaining all the local characteristics of the curve. The 
matching algorithm which compares two sets of 
representations and assigns a matching value as a measure 

Methods 
Shape category 

cars fish glasses hammers planes 

CSS 46,73 56,17 42,10 60,81 63,36 

N-CSS 8,91 14,48 7,84 6,87 18,67 



of similarity has also proved to be simple and fast. In 
addition, every contour of the CSS image corresponds to a 
concavity or a convexity of the curve, providing important 
information regarding the shape of the image. 

The proposed affine invariant curve matching method 
can be submitted to further enhancement and possible 
improvement by re-evaluating its individual stages. A first 
approach could deal with the improvement of the matching 
algorithm, where alternative hypotheses for the best match 
between maxima can be applied. Furthermore, one could re-
examine convolution based on the Gaussian function, 
proposing alternative curve smoothing methods. Finally, the 
CSS maxima extraction could be handled by alternative 
algorithms, aiming at a more accurate detection of the 
maxima points of the curve. 
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